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0.1 Non-weighted RLS algorithm: existence of the limit

Assumption 0.1.1

The plant is deterministic, and there exists a “true” model in the model class that describes it perfectly.
In other words, there exists a parameter θ̄ that explains the measures exactly:

yt = ϕ>t θ̄ for all t.

Note: most of what follows holds under fairly general conditions, mutatis mutandis, also if a process
noise is present and the regressors are random vectors, i.e. if

yt = ϕ>t θ̄ + εt

where ϕt are a random vectors and εt is a zero-mean white noise independent of ϕt. But for the
purposes of these notes you can safely forget about the noise and assume that the regressors are
deterministic: if not for other reasons, at least to fix ideas.

To estimate θ̄ we employ the regularized, non-weighted Least Squares estimator regularized with λ > 0:

Rt = λI +

t∑
τ=0

ϕτϕ
>
τ , St =

t∑
τ=0

ϕτyτ ,

θ̂t = R−1
t St (the unique solution of the normal equations).

For the analysis we will exploit the structure of the non-weighted Recursive Least Squares (RLS) algorithm,

which is a scheme to update θ̂t → θ̂t+1 without re-doing the entire computation and the matrix inversion. Here
follows a fast paced review of the algorithm’s derivation.

First, notice that

Rt+1 =

t+1∑
τ=0

ϕτϕ
>
τ = Rt + ϕt+1ϕ

>
t+1,

St+1 =

t+1∑
τ=0

ϕτyτ = St + ϕt+1yt+1.
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Second, work out:

θ̂t+1 = R−1
t+1St+1

= R−1
t+1 (St + ϕt+1yt+1)

= R−1
t+1

(
Rtθ̂t + ϕt+1yt+1

)
= R−1

t+1

(
Rt+1θ̂t − ϕt+1ϕ

>
t+1θ̂t + ϕt+1yt+1

)
= θ̂t +R−1

t+1ϕt+1︸ ︷︷ ︸
Kt+1

(
yt+1 − ϕ>t+1θ̂t

)
. (1)

(The vector Kt+1 is a gain multiplying the residual yt+1 − ϕ>t+1θ̂t.) Third, to update from R−1
t to R−1

t+1 apply
Woodbury’s identity (matrix inversion lemma) with A = Rt, B = ϕt+1, C = 1, and D = ϕ>t+1:

R−1
t+1 =

(
Rt + ϕt+1 · 1 · ϕ>t+1

)−1

= R−1
t −R−1

t ϕt+1

(
1 + ϕ>t+1R

−1
t ϕt+1

)−1
ϕ>t+1R

−1
t

= R−1
t −

R−1
t ϕt+1ϕ

>
t+1R

−1
t

1 + ϕ>t+1R
−1
t ϕt+1

.

(Note the great advantage: 1 + ϕ>t+1R
−1
t ϕt+1 is a number, so in the end to apply RLS we need divisions by

numbers instead of inversions of matrices/solutions of linear equations.) It follows:

Kt+1 = R−1
t+1ϕt+1 = R−1

t ϕt+1

(
1−

ϕ>t+1R
−1
t ϕt+1

1 + ϕ>t+1R
−1
t ϕt+1

)
=

R−1
t ϕt+1

1 + ϕ>t+1R
−1
t ϕt+1

,

so that, in particular,

R−1
t+1 = R−1

t −Kt+1ϕ
>
t+1R

−1
t =

(
I −Kt+1ϕ

>
t+1

)
R−1
t .

At this stage one realizes that there are many inversions of R around, but none of them is actually performed.
Indeed the usual RLS scheme prescribes to deal with the inverse matrix Pt := R−1

t only; substituting it in the
previous expressions we get the final algorithm:

Take-home message 0.1.2 (RLS algorithm with regularization)

Initialization:

θ̂−1 = an arbitrary vector in Rp;
P−1 = (λI)−1 = I/λ.

As regressors/measures (ϕ0, y0), (ϕ1, y1), . . . , (ϕt, yt), (ϕt+1, yt+1) come one after another, keep comput-

ing the gain K and updating the estimate θ̂ and the inverse matrix P :

Kt+1 =
Ptϕt+1

1 + ϕ>t+1Ptϕt+1
;

θ̂t+1 = θ̂t +Kt+1

(
yt+1 − ϕ>t+1θ̂t

)
;

Pt+1 = Pt −
Ptϕt+1ϕ

>
t+1Pt

1 + ϕ>t+1Ptϕt+1
=
(
I −Kt+1ϕ

>
t+1

)
Pt.

Note: this is just a fast procedure to compute the LS estimate at subsequent times. Indeed, θ̂t+1 continues
to be the LS estimate at time t+ 1 irrespective of the recursion used to compute it; if one computed it
by means of the formula θ̂t+1 = R−1

t+1St+1 with the matrix inversion s/he would obtain the same result.

And now some cool matrix stuff...
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Tools from linear algebra 0.1.3 (Positive semi-definite matrices)

A symmetric matrix P = P> ∈ Rp×p is called positive semi-definite if θ>Pθ ≥ 0 for all θ ∈ Rp. This is
denoted P ≥ 0. Some facts follow:

• For any matrix Φ ∈ Rn×p, the matrix Φ>Φ is positive semidefinite; indeed θ>Φ>Φθ = (Φθ)>Φθ =
‖Φθ‖2 ≥ 0. For example, if ϕτ ∈ Rp×1 is a column vector then ϕτϕ

>
τ ≥ 0.

• A sum of positive semi-definite matrices is also positive semi-definite. So,
∑t
τ=0 ϕτϕ

>
τ ≥ 0.

• The notion of positive semi-definiteness induces a partial ordering between symmetric matrices:
we write P1 ≥ P2 (or P2 ≤ P1) whenever P1−P2 ≥ 0. This is a well-defined order relation between
symmetric matrices; however, it is partial, i.e. not all pairs P1, P2 are comparable.

• If P0 ≥ P1 ≥ P2 ≥ . . . ≥ Pt ≥ . . . is a monotone non-increasing sequence of matrices bounded from
below (Pt ≥ P̄ for all t, for example Pt ≥ 0), then the sequence has a limit:

lim
t→∞

Pt = P∞.

(This is a generalization of what happens with monotone sequences of numbers.)

Tools from linear algebra 0.1.4 (Positive definite matrices)

A symmetric matrix P = P> ∈ Rp×p is called positive definite if θ>Pθ > 0 for all θ 6= 0. This is denoted
P > 0. Of course if P > 0 then also P ≥ 0; some other facts follow:

• If P > 0 then P is nonsingular and hence invertible (with positive eigenvalues). Its inverse is also
positive definite: P−1 > 0.

• If P1 ≥ P2 and P2 > 0, then also P1 > 0. Moreover, P−1
1 ≤ P−1

2 .

• If λ is a positive number, then λI > 0. Indeed θ>(λI)θ = λ‖θ‖2 > 0 for all θ 6= 0.
So, λI +

∑t
τ=0 ϕτϕ

>
τ > 0.

• Any positive definite matrix P ∈ Rp×p induces a well-defined scalar product 〈·, ·〉 over Rp trough
the following definition:

〈θ1, θ2〉 := θ>1 Pθ2.

The converse is also true: every scalar product over Rp is induced by a positive definite matrix
(the standard one, 〈θ1, θ2〉 = θ>1 θ2, is induced by the identity matrix I).

From the properties of positive definite matrices we get the following facts:

• The symmetric matrices Rt = λI +
∑t
τ=0 ϕτϕ

>
τ , t ∈ N, are all positive definite, and form a monotone

non-decreasing sequence:

. . . ≤ Rt−1 ≤ Rt ≤ Rt+1 ≤ . . .

• therefore, their inverses Pt = R−1
t , t ∈ N, are also positive definite, and they form a monotone non-

increasing sequence

. . . ≥ Pt−1 ≥ Pt ≥ Pt+1 ≥ . . .

bounded from below by P̄ = 0;

• so, the sequence . . . , Pt, Pt+1, . . . converges, i.e. limt→∞ Pt = P∞ exists. (The limit can be a singular
matrix, or even the zero matrix.)
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Recall an intermediate step in the derivation of the RLS algorithm (equation (1)):

θ̂t+1 = θ̂t + Pt+1ϕt+1

(
yt+1 − ϕ>t+1θ̂t

)
= θ̂t + Pt+1ϕt+1

(
ϕ>t+1θ̄ − ϕ>t+1θ̂t

)
= θ̂t − Pt+1ϕt+1ϕ

>
t+1

(
θ̂t − θ̄

)
.

(2)

Now define the estimation error θ̃t := θ̂t − θ̄. Substituting it into (2) and subtracting θ̄ from each side we get:

θ̂t+1 − θ̄ = θ̂t − θ̄ − Pt+1ϕt+1ϕ
>
t+1θ̃t;

θ̃t+1 = θ̃t − Pt+1ϕt+1ϕ
>
t+1θ̃t; (3)

Rt+1θ̃t+1 = Rt+1θ̃t − ϕt+1ϕ
>
t+1θ̃t =

(
Rt+1 − ϕt+1ϕ

>
t+1

)
θ̃t = Rtθ̃t. (4)

Conclusion: repeating the argument (4) at subsequent times one can derive Rtθ̃t = Rt+1θ̃t+1 = Rt+2θ̃t+2 =
Rt+3θ̃t+3 = . . ., and hence the vector Rtθ̃t is constant as a function of t. (Now it would be a good time to
review the tank example from the beginning of the course, because this is exactly the same line of reasoning.)
Consequently:

lim
t→∞

θ̃t = lim
t→∞

(
Pt ·Rtθ̃t

)
=
(

lim
t→∞

Pt

)
·
(

lim
t→∞

Rtθ̃t

)
= (a limit that exists) · (the limit of a constant) ;

(5)

both the limits within parentheses exist finite, the second one being the constant in (4), and hence:

Take-home message 0.1.5

The limit of θ̃t exists finite; of course it follows that the limit of θ̂t = θ̃t + θ̄ also exists.
We will denote them, respectively,

θ̃∞ := lim
t→∞

θ̃t, θ̂∞ := lim
t→∞

θ̂t.

Note: although in the spirit of the Least Squares method one wishes that θ̂∞ = θ̄, in general θ̂∞ 6= θ̄.
The limit of θ̂t depends both on the “true” parameter and on the sequence of regressor vectors; a
particular sequence of regressors can drive the estimate to any “true” parameter only if Rt “diverges in

all directions” and consequently if Pt = R−1
t tends to 0;a when this happens we say that the LS estimate

is consistent. But we will not yet assume that this is the case: indeed the rest of the document contains
an analysis of the general case when θ̂t is not consistent.

aSee equation (5): if Pt → 0, then θ̃t → 0 and θ̂t → θ̄.

0.2 Non-weighted least squares: properties of the limit estimate

The following is a somewhat tedious, but otherwise straightforward computation to make an important point
about the limit θ̃∞ (see the take-home message 0.2.1 below). Always keep in mind that the matrices Rt, Pt ∈
Rp×p are the inverses of each other, and that the quantity Rtθ̃t is constant with respect to t (therefore, so is its
transpose θ̃>t Rt). Here is an intermediate step in the derivation of the RLS algorithm (update of Pt) and the
update of θ̃t (equation (3)):

Pt+1 = Pt −
Ptϕt+1ϕ

>
t+1Pt

1 + ϕ>t+1Ptϕt+1
; (6)

θ̃t+1 = θ̃t − Pt+1ϕt+1ϕ
>
t+1θ̃t (substitute Pt+1)

= θ̃t − Ptϕt+1ϕ
>
t+1θ̃t +

Ptϕt+1ϕ
>
t+1Ptϕt+1ϕ

>
t+1θ̃t

1 + ϕ>t+1Ptϕt+1
. (7)
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It follows:

θ̃>t+1Rt+1θ̃t+1 = θ̃>t Rtθ̃t+1 (because θ̃>t Rt is constant; now substitute (7))

= θ̃>t Rt

(
θ̃t − Ptϕt+1ϕ

>
t+1θ̃t +

Ptϕt+1ϕ
>
t+1Ptϕt+1ϕ

>
t+1θ̃t

1 + ϕ>t+1Ptϕt+1

)

= θ̃>t Rtθ̃t − θ̃>t RtPtϕt+1ϕ
>
t+1θ̃t +

θ̃>t RtPtϕt+1ϕ
>
t+1Ptϕt+1ϕ

>
t+1θ̃t

1 + ϕ>t+1Ptϕt+1

= θ̃>t Rtθ̃t − θ̃>t ϕt+1ϕ
>
t+1θ̃t +

θ̃>t ϕt+1

(
ϕ>t+1Ptϕt+1

)
ϕ>t+1θ̃t

1 + ϕ>t+1Ptϕt+1
(note: ϕ>t+1Ptϕt+1 is scalar)

= θ̃>t Rtθ̃t −
(
θ̃>t ϕt+1

)(
ϕ>t+1θ̃t

)
·
(

1−
ϕ>t+1Ptϕt+1

1 + ϕ>t+1Ptϕt+1

)

= θ̃>t Rtθ̃t −

(
ϕ>t+1θ̃t

)2

1 + ϕ>t+1Ptϕt+1

≤ θ̃>t Rtθ̃t, because the second term in the previous expression is negative or null.

Since this inequality is valid for all t, we have

. . . ≤ θ̃>t+1Rt+1θ̃t+1 ≤ θ̃>t Rtθ̃t ≤ θ̃>t−1Rt−1θ̃t−1 ≤ . . . ≤ θ̃>1 R1θ̃1 ≤ θ̃>0 R0θ̃0 := V0,

where the number V0 = θ̃>0 R0θ̃0 = θ̃>0
(
λI + ϕ0ϕ

>
0

)
θ̃0 is unknown, because we don’t know the initial estimation

error θ̃0; however, we know that V0 is a finite number. Therefore, the sequence θ̃>t Rtθ̃t is bounded as a function
of t:

θ̃>t Rtθ̃t ≤ V0 for all t. (8)

Now recall: . . . , Rt, Rt+1, . . . is a non-decreasing sequence of matrices. This means that, for all θ ∈ Rp, the
following is a non-decreasing sequence of numbers:

. . . ≤ θ>Rtθ ≤ θ>Rt+1θ ≤ . . . ≤ θ>Rt+kθ ≤ . . .

In particular, this is true for θ = θ̃t+k:

θ̃>t+kRtθ̃t+k ≤ θ̃>t+kRt+kθ̃t+k for all t and k, because the sequence . . . Rt . . . is non decreasing

≤ V0 because of (8).

Letting k (but not t) tend to infinity, we recover:

θ̃>∞Rtθ̃∞ = lim
k→∞

θ̃>t+kRtθ̃t+k ≤ V0 for all t

and finally, since the sequence of numbers θ̃>∞Rtθ̃∞, t ∈ N, is non-decreasing and bounded from above by V0, it
has a finite limit.

Take-home message 0.2.1

The quantity θ̃>∞Rtθ̃∞ = θ̃>∞

(
λI +

t∑
τ=0

ϕτϕ
>
τ

)
θ̃∞ has a finite limit as t→∞.

The above take-home message paves the ground for the following definition:

Definition 0.2.2 (Unexcitation subspace)

The set U ⊆ Rp defined as follows,

U =
{
θ ∈ Rp : lim

t→∞
θ>Rtθ < +∞

}
,

is called the unexcitation subspace.

5



In order to show that the set U ⊆ Rp is indeed a subspace of Rp we need to recall a fundamental fact of
Euclidean spaces:

Tools from linear algebra 0.2.3 (Cauchy-Schwarz inequality)

Let 〈·, ·〉 denote any scalar producta in a vector space V, and define the function ‖ · ‖ as ‖x‖ :=
√
〈x, x〉.

For all x, y ∈ V it holds

| 〈x, y〉 | ≤ ‖x‖ ‖y‖.

For the proof see e.g. Luenberger, Optimization by vector space methods. An immediate consequence of
this fundamental inequality is that ‖ · ‖ is a norm:

‖x+ y‖2 = 〈x+ y, x+ y〉

= ‖x‖2 + ‖y‖2 + 2 〈x, y〉

≤ ‖x‖2 + ‖y‖2 + 2 ‖x‖ ‖y‖

= (‖x‖+ ‖y‖)2
. (9)

Taking square roots we get the triangular inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖, the key property of a norm.

aExamples: in Rn the canonical scalar product is 〈x, y〉 = x>y; but another totally legitimate scalar product is 〈x, y〉 =

x>Py, where P is an arbitrary symmetric and positive definite matrix. In a space of functions: 〈x, y〉 =
∫+∞
−∞ x(t)y(t)dt;

etc.

Since Rt is a positive definite symmetric matrix for all t (indeed Rt ≥ λI > 0), it defines a scalar product

〈θ1, θ2〉 = 〈θ1, θ2〉Rt
:= θ>1 Rtθ2 and a norm ‖θ‖ =

√
〈θ, θ〉Rt

over Rp. Now let θ1, θ2 ∈ U ; we have

(θ1 + θ2)>Rt(θ1 + θ2) = ‖θ1 + θ2‖2

≤ (‖θ1‖+ ‖θ2‖)2
(see (9))

=
(
θ>1 Rtθ1 + θ>2 Rtθ2

)2
.

Since both θ1 and θ2 belong to U , taking limits as t → ∞ the last expression converges to a finite quantity;
therefore, so does the first expression in the chain of (in)equalities. This proves that if θ1, θ2 ∈ U then θ1+θ2 ∈ U ;
the proof for the multiplication by a scalar is trivial.

Definition 0.2.4 (Excitation subspace)

The orthogonal complement of U in Rp with respect to the standard scalar product 〈θ1, θ2〉 = θ>1 θ2,

E = U⊥,

is called the excitation subspace. It is indeed a subspace of Rp due to the properties of orthogonal
complements. Note that, by this very definition, for any vector θ ∈ E , θ 6= 0, the quantity θ>Rtθ
diverges as t→∞.

As you know, any vector in Rp admits a unique decomposition as the sum of a vector in a subspace and a vector
in the orthogonal complement of that subspace:

θ = θE + θU . (10)

(Think at θE and θU as the orthogonal projections of θ on E and U respectively.)

The entire point of the definition of E and U is that if the component θE ∈ E is not zero or, stated another way,
if θ does not belong to U , then θ>Rtθ must diverge as t→∞.
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To formally prove this, we rely on another immediate consequence of the Cauchy-Schwarz inequality. Fix any
scalar product 〈·, ·〉 and its induced norm ‖ · ‖ in Rp. It holds

‖θ1 + θ2‖2 = ‖θ1‖2 + ‖θ2‖2 + 2 〈θ1, θ2〉
≥ ‖θ1‖2 + ‖θ2‖2 − 2‖θ1‖‖θ2‖ (Cauchy-Schwarz inequality)

= (‖θ1‖ − ‖θ2‖)2
.

(11)

Now: consider again the decomposition (10), but apply to it the scalar product and norm defined by

〈θ1, θ2〉 := θ>1 Rtθ2, ‖θ‖ :=
√
〈θ, θ〉 =

√
θ>Rtθ. (12)

I know, I know: switching back and forth from a scalar product to another may lead to some confusion, but I
promise that this actually simplifies computations a lot. Let me stress again that the one in (12) is a totally
legitimate scalar product in Rp because we have assumed the presence of the regularization term λI > 0 from
the beginning, hence Rt is always positive definite. We obtain:

θ>Rtθ = ‖θ‖2 =
∥∥θE + θU

∥∥2

≥
(
‖θE‖ − ‖θU‖

)2
(see equation (11))

=

√(θE)>RtθE︸ ︷︷ ︸
diverges as t→∞

−
√

(θU )>RtθU︸ ︷︷ ︸
converges as t→∞


2

.

This proves the claim: if the component θE ∈ E is not 0, the last expression diverges as t → ∞, and so does
θ>Rtθ. (It is now OK to forget about (12) and return to the standard scalar product 〈θ1, θ2〉 = θ>1 θ2 of Eu-
clidean geometry, i.e. the one used in the definition of E .)

So what? What’s the point of this mess?

Read again: for any θ ∈ Rp, if θE 6= 0 then limt→∞ θ>Rtθ = +∞.

Now have another look at the take-home message 0.2.1...

Take-home message 0.2.5 (Limit of the projection on E)

The point becomes clear if we apply the above discussion to the vector θ = θ̃∞, because we know already
that θ̃>∞Rtθ̃∞ does, instead, converge as t → ∞. Therefore, the only possibility is that the component

of θ̃∞ in the subspace E is 0:

• if θ̃Et and θ̃E∞ are, respectively, the projections of θ̃t and θ̃∞ on the excitation subspace, then

lim
t→∞

θ̃Et = θ̃E∞ = 0;

• if θ̂Et and θ̄E are, respectively, the projections of θ̂t and θ̄ on the excitation subspace, then

lim
t→∞

θ̂Et = θ̄E .

In words: the component of the LS estimate in the excitation subspace converges, as t tends to infinity,
to the component of the “true” parameter on the excitation subspace.

The intuition behind all this analysis is that, as time goes on, the regressor vectors ϕt keep “adding energy”
and “exploring”, consistently, along some directions, but possibly not along others: the directions along which
the regressor vectors “keep exploring” span the excitation subspace E , and along this subspace the LS estimate
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is, in the long run, exact.

In general, we cannot say anything about what happens along directions orthogonal to E , that is, we cannot
say anything about the component of the estimate in the unexcitation subspace U , other that it converges to
a finite (possibly wrong) vector θ̂U∞ 6= θ̄U , because in U the regressors do not “explore” enough. On the other
hand sometimes, if some stringent condition holds on the actual sequence of regressors, we can prove that the
unexcitation subspace is trivial, i.e. U = {0} or, which is the same thing, that the excitation subspace E is the
whole Rp. When this is the case, the LS estimate is, in the long run, always exact, and we call it consistent.

Definition 0.2.6 (Consistency)

The LS estimate θ̂t is called consistent if U = {0} and E = Rp. When this is the case it holds

lim
t→∞

θ̂t = θ̄,

whatever the actual “true” parameter θ̄ happens to be.

For example, here is such a consistency condition. If the limit

lim
t→∞

1

t+ 1

t∑
τ=0

ϕτϕ
>
τ = Σ

exists and is a positive definite matrix, then E = Rp and limt→∞ θ̂t = θ̄. Indeed, for all θ ∈ Rp, θ 6= 0,

lim
t→∞

θ>Rtθ = lim
t→∞

θ>

(
λI +

t∑
τ=0

ϕτϕ
>
τ

)
θ

= lim
t→∞

λ ‖θ‖2 + θ>

(
t∑

τ=0

ϕτϕ
>
τ

)
θ

= λ ‖θ‖2︸ ︷︷ ︸
constant

+ lim
t→∞

(t+ 1)︸ ︷︷ ︸
diverges

· lim
t→∞

θ>

(
1

t+ 1

t∑
τ=0

ϕτϕ
>
τ

)
θ︸ ︷︷ ︸

converges to the number θ>Σθ>0

= +∞,

therefore all non-zero vectors in Rp belong to E , which proves the claim.

In system identification a hypothesis of this kind, that here is stated as a condition on the regressors, depends
ultimately on the information carried by the input signal; such a condition is typically called persistent excitation
(of the input), and an experimenter identifying a plant needs it to guarantee that the “true” parameter of the
plant is identified correctly in the long run. However, when dealing with self-tuning regulators such condition
may be desirable but is not needed: we can show that, under fairly general conditions, internal stability of
the closed loop and reference tracking for the desired class of reference signals are ensured even if complete
identifiability of the plant is not there.

Take-home message 0.2.7 (Recall the tank example)

The tank example from the beginning of the course adopts the RLS algorithm regularized with λ = 1. To
keep things simple, the example is 1-dimensional (p = 1), hence the regressor ϕτ = x(τ) is just a number.

The example is indeed simple because R1 has only two subspaces: the trivial subspace {0}, and R1 itself.
Then there are only two possibilities: either Rt = 1 +

∑t
τ=0 x(τ)2 diverges as t → ∞ (the term 1+ is

irrelevant here), and in this case E = R1 and the estimate is consistent; or Rt converges, and in this case
U = R1, E = {0} and the limit estimate may be wrong. Nevertheless, the self-tuning regulator achieves
internal stability and reference tracking in both cases.
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