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0.1 Real system, frozen systems and imaginary system

You should recall that the self-tuning regulator, regarded as the complex control unit + tuning unit, is a non-
linear and time-invariant system. However, to carry on with the analysis, it is convenient to exclude the tuning
unit from the picture; in this way, the control unit can be thought of a linear time-varying system.

Assumption 0.1.1

The plant is deterministic, and there exists a “true” model in the model class that describes it perfectly.
In other words, there exists a parameter θ̄ that explains the measures exactly:

yt = ϕ>t θ̄ for all t.

(The final result holds true under fairly general conditions, mutatis mutandis, also if a process noise is
present, if the regressors are random, and so on.)

To fix ideas, we assume that the plant is an ARX(3, 3) model; the generalization to ARX(n,m) is
immediate. Hence, here is the “true” system:

y(t) = ā1y(t− 1) + ā2y(t− 2) + ā3y(t− 3) + b̄1u(t− 1) + b̄2u(t− 2) + b̄3u(t− 3)

= ϕ>t θ̄,

where

ϕ>t =
[
y(t− 1) y(t− 2) y(t− 3) u(t− 1) u(t− 2) u(t− 3)

]
,

θ̄ =
[
ā1 ā2 ā3 b̄1 b̄2 b̄3

]>
.

Therefore, the tuning unit and the control unit are both targeted at the model class ARX(3, 3), and in

particular the “true parameter” θ̄, the regressors ϕτ fed to the tuning unit, and the estimates θ̂t that it
produces, all belong to R6.

As noted above, for the analysis it is convenient to consider the estimates θ̂t as “coming from outside” even if
they truly are state variables of the self-tuning regulator, and to think at the closed loop without the tuning
unit but with a time-varying controller depending on θ̂t. This is the picture:

Real system Σ(θ̂t, θ̄)

C(z; θ̂t) W (z; θ̄)
r(t) e(t) u(t) y(t)

−
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Here, the controller depends on θ̂t and the plant depends (by assumption) on the unknown θ̄. At this point,
we enlarge the picture by considering different, purely hypothetical systems with the same structure, but where
both the controller and the plant depend on the same parameter. If we let both the controller and the plant
depend on an arbitrary, fixed parameter θ we obtain a so-called frozen system:

System frozen at θ: Σ(θ, θ)

C(z; θ) W (z; θ)
r(t) e(t) u(t) y(t)

−

In particular, we may “freeze” the system at the fixed parameter θ = θ̂∞ (we know that this limit exists!):

System frozen at infinity: Σ(θ̂∞, θ̂∞)

C(z; θ̂∞) W (z; θ̂∞)
r(t) e(t) u(t) y(t)

−

Any “frozen” system is, by definition, linear and time-invariant. But at this point nothing prevents us from
plugging in the estimate θ̂t, both in the controller and in the plant; we obtain the so-called “imaginary” system:

Imaginary system: Σ(θ̂t, θ̂t)

C(z; θ̂t) W (z; θ̂t)
r(t) e(t) u(t) y(t)

−

0.2 The imaginary system behaves like the system frozen at infinity

Assumption 0.2.1

1. The controller design procedure attains internal stability and reference tracking for the system
frozen at infinity Σ(θ̂∞, θ̂∞). This is fairly general, because the design procedures that we have
seen do the job for all θ except for pathological cases (e.g. if the plant “frozen at infinity” has zeros
on the unit circumference).

2. The controller design procedure is “continuous”, meaning that if θ → θ̂∞ the corresponding inputs
and outputs in the closed loop satisfy

uθ(t)→ u∞(t)

yθ(t)→ y∞(t)

for all t. (The subscript ∞ in y∞(t) means “corresponding to θ̂∞; is is short for yθ̂∞(t).) This is
also fairly general and you can give it for granted.

3. The reference signal {r(t)} is bounded, i.e. there exists K ∈ R such that |r(t)| ≤ K for all t. This
may seem limiting, because we have seen how to design polynomial controllers in order to track
correctly ramps, quadratics and so on; but really, no signal in practical use is really unbounded,
is it? “Tracking ramps” really means, in practice, tracking decently signals that behave locally
like ramps, for example triangular waves. (On the other hand, of course, constant references and
sinusoids are OK.)
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Under the above assumption we show that the imaginary system Σ(θ̂t, θ̂t) behaves, asymptotically, as the system
frozen at infinity.

To do this, first let me rewrite the models of the controller and of the plant as functions of z−1 instead of z. I
mean this:

W (z; θ) =
b(z; θ)

a(z; θ)
=

b1z
2 + b2z + b3

z3 − a1z2 − a2z − a3
(divide above and below by z3)

=
b1z
−1 + b2z

−2 + b3z
−3

1− a1z−1 − a2z−2 − a3z−3
:=

β(z−1; θ)

α(z−1; θ)

We do the same for the plant and the controller of the imaginary system:

W (z; θ̂t) =
b(z; θ̂t)

a(z; θ̂t)
=
β(z−1; θ̂t)

α(z−1; θ̂t)
;

C(z; θ̂t) =
q(z; θ̂t)

p(z; θ̂t)
=
ρ(z−1; θ̂t)

π(z−1; θ̂t)
.

With this notation, the imaginary system reads:

Σ(θ̂t, θ̂t) :


α(z−1; θ̂t)y(t) = β(z−1; θ̂t)u(t)

π(z−1; θ̂t)y(t) = ρ(z−1; θ̂t)(r(t)− y(t)︸ ︷︷ ︸
e(t)

)

:



y(t) = (1− α(z−1; θ̂t))y(t) + β(z−1; θ̂t)u(t)
= a1(t)y(t− 1) + a2(t)y(t− 2) + a3(t)y(t− 3) + b1(t)u(t− 1) + b2(t)u(t− 2) + b3(t)u(t− 3)

= ϕ>t θ̂t
u(t) = (1− π(z−1; θ̂t))u(t)− ρ(z−1; θ̂t)y(t) + ρ(z−1; θ̂t)r(t)︸ ︷︷ ︸

:=r∗(t)

Note: since r(t) is bounded, the (moving average) signal

r∗(t) := ρ(z−1; θ̂t)r(t) = (b1(t)z
−1 + b2(t)z

−2 + b3(t)z
−3)r(t)

= b1(t)r(t− 1) + b2(t)r(t− 2) + b3(t)r(t− 3)

is also bounded, because b1(t), b2(t), b3(t) are some components of the vector θ̂t, that converges (a convergent
sequence is always bounded).

Let’s rewrite Σ(θ̂t, θ̂t) in compact form, denoting yim(t), uim(t) the signals to avoid confusion later:

Σ(θ̂t, θ̂t) :

{[
yim(t)

uim(t)

]
=

[
1− α(z−1; θ̂t) β(z−1; θ̂t)

−ρ(z−1; θ̂t) 1− π(z−1; θ̂t)

][
yim(t)

uim(t)

]
+

[
0

r∗(t)

]

This is a multi-input multi-output (MIMO) system written in transfer function form; we haven’t coped with
such systems in the course, so please rely on your intuition. All that matters, here, is that the above one is a
causal, linear, time-varying system that can be realized, in some way, also in state-space form:

Σ(θ̂t, θ̂t) :


ξ(t+ 1) = Atξ(t) +Bt

[
0

r∗(t)

]
[
yim(t)

uim(t)

]
= Ctξ(t) +Dt

[
0

r∗(t)

] (1)

where ξ(t) is a state vector with suitable dimension, and At, Bt, Ct, Dt are the matrices of the state-space real-

ization; they depend on t because they are functions of θ̂t. Please don’t bother, for the moment, if I keep the
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zero as a “fake” first component of the input: it is there for future use.

Fact 0.2.2

It is not true, in general, that if the system matrices At = A(θ̂t) have eigenvalues inside the unit circle,
as the controller manages to attain, the time-varying system

ξ(t+ 1) = At ξ(t)

is asymptotically stable. However, it is true in this case because At has an “asymptotically stable” limit:

lim
t→∞

At = lim
t→∞

A(θ̂t) = A(θ̂∞) = A∞.

(Recall the assumption: the system frozen at infinity is internally stable.)

Moreover, a stronger notion holds because of linearity. The above system is exponentially stable, which
means there exist constants c > 0 and ν, 0 < ν < 1, such that

‖ξ(t)‖ ≤ c · νt ‖ξ(0)‖ for all t.

Take-home message 0.2.3

So, asymptotically, the imaginary systems behaves like the system frozen at infinity. From the above
fact we can conclude:

• the imaginary system Σ(θ̂t, θ̂t) in (1) is BIBO-stable (because it is asymptotically stable in state-
space form);

• the signals yim(t), uim(t) are bounded (because the system is BIBO and the input r∗(t) is bounded);

• by “continuity” of the design procedure, Σ(θ̂t, θ̂t) also attains reference tracking (e.g. for constant
references and sinusoids, that are easily tracked bounded signals):

lim
t→∞

yim(t)− y∞(t) = 0.

0.3 The real system behaves like the imaginary system

It is now time to cope with the real system Σ(θ̂t, θ̄), that is the “true” plant controlled by the self-tuning
regulator.

We carry on the same analysis as before; you will spot immediately the difference:

Σ(θ̂t, θ̄) :


α(z−1; θ̄)y(t) = β(z−1; θ̄)u(t)

π(z−1; θ̂t)y(t) = ρ(z−1; θ̂t)(r(t)− y(t)︸ ︷︷ ︸
e(t)

)
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Σ(θ̂t, θ̄) :



y(t) = (1− α(z−1; θ̄))y(t) + β(z−1; θ̄)u(t)
= ā1y(t− 1) + ā2y(t− 2) + ā3y(t− 3) + b̄1u(t− 1) + b̄2u(t− 2) + b̄3u(t− 3)

= ϕ>t θ̄

= ϕ>t (θ̄ − θ̂t + θ̂t)

= ϕ>t θ̂t +
(
−ϕ>t θ̃t

)
︸ ︷︷ ︸

:=ε(t)

u(t) = (1− π(z−1; θ̂t))u(t)− ρ(z−1; θ̂t)y(t) + ρ(z−1; θ̂t)r(t)︸ ︷︷ ︸
:=r∗(t)

Σ(θ̂t, θ̄) :


ξ(t+ 1) = Atξ(t) +Bt

[
ε(t)

r∗(t)

]
[
y(t)

u(t)

]
= Ctξ(t) +Dt

[
ε(t)

r∗(t)

] (2)

The only difference with the imaginary system is the presence, in (2), of the input ε(t) := −ϕ>t θ̃t; but it is a

substantial difference, because it makes the system nonlinear (the matrices of the system do depend on θ̃t). If
we manage to prove that

• Σ(θ̂t, θ̄) is BIBO-stable, and

• limt→∞ ε(t) = 0,

then we are in good shape, because if Σ(θ̂t, θ̄) is BIBO-stable the effect of ε(t) on y(t), u(t) is just a transient.

Resuming: if we prove that Σ(θ̂t, θ̄) is BIBO-stable, and ε(t)→ 0, then

lim
t→∞

y(t)− r(t) = lim
t→∞

(y(t)− yim(t))︸ ︷︷ ︸
Σ(θ̂t, θ̄) behaves like Σ(θ̂t, θ̂t)

+ (yim(t)− y∞(t))︸ ︷︷ ︸
Σ(θ̂t, θ̂t) behaves like Σ(θ̂∞, θ̂∞)

+ (y∞(t)− r(t))︸ ︷︷ ︸
Σ(θ̂∞, θ̂∞) enforces reference tracking

= 0,

so that the real system also enforces reference tracking.

0.4 The real system is BIBO-stable and ε(t)→ 0

For a starter, note that ε(t) = −ϕ>t θ̃t is bounded. Indeed, we know from the convergence analysis of the LS
estimate that (

ϕ>t θ̃t

)2

= θ̃>t
(
ϕtϕ

>
t

)
θ̃t ≤ θ̃>t

(
λI +

t∑
τ=0

ϕτϕ
>
τ

)
θ̃t ≤ θ̃>t Rtθ̃t ≤ V0,

hence |ε(t)| ≤
√
V0.

Now recall that the autonomous system ξ(t + 1) = Atξ(t) is not just asymptotically stable, but exponentially
stable: there exist positive constants c, ν < 1 such that ‖ξ(t)‖ ≤ c · νt ‖ξ(0)‖ for all t.

Keep in mind the following elementary
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Fact 0.4.1

If 0 < ν < 1 and the sequence of numbers s(t) is bounded, then the sequence

S(t) =

t∑
τ=0

νt−τs(τ)

is also bounded. If, moreover, s(t)→ 0 as t→∞, then also S(t)→ 0.

Indeed, the above is the response of the asymptotically stable scalar system x(t+ 1) = νx(t) + s(t) to a
bounded input.

For brevity, denote

v(t) :=

[
y(t)
u(t)

]
.

Expanding the recursion from the state-space system (2), we obtain:

v(t) = Ctξ(t) +Dt

[
ε(t)
r∗(t)

]
= Ct At−1︸ ︷︷ ︸

dominated by ν

ξ(t− 1) + CtBt−1

[
ε(t− 1)
r∗(t− 1)

]
+Dt

[
ε(t)
r∗(t)

]

= Ct At−1At−2︸ ︷︷ ︸
dominated by ν2

ξ(t− 2) + Ct At−1︸ ︷︷ ︸
dominated by ν

Bt−2

[
ε(t− 2)
r∗(t− 2)

]
+ CtBt−1

[
ε(t− 1)
r∗(t− 1)

]
+Dt

[
ε(t)
r∗(t)

]
= CtAt−1At−2At−3︸ ︷︷ ︸

dominated by ν3

ξ(t− 3) + . . .

and so on. Omitting pointless details, it follows that there exist constants k1, k2 such that

‖v(t)‖ ≤ k1 + k2

t∑
τ=0

νt−τ
∥∥∥∥[ ε(τ)

r∗(τ)

]∥∥∥∥
≤ k1 + k2

t∑
τ=0

νt−τ |ε(τ)|︸ ︷︷ ︸
bounded

+ k2

t∑
τ=0

νt−τ |r∗(τ)|︸ ︷︷ ︸
bounded

.

Therefore, v(t) is bounded (and so are its components y(t) and u(t)).

Let’s expand further: let θ̃t = θ̃Et +θ̃Ut be the orthogonal decomposition of θ̃t along the excitation and unexcitation
subspaces:

‖v(t)‖ ≤ k1 + k2

t∑
τ=0

νt−τ |ϕ>τ (θ̃Eτ + θ̃Uτ )|+ k2

t∑
τ=0

νt−τ |r∗(τ)|

≤ k1 + k2

t∑
τ=0

νt−τ |ϕ>τ θ̃Eτ |+ k2

t∑
τ=0

νt−τ |ϕ>τ θ̃Uτ |+ k2

t∑
τ=0

νt−τ |r∗(τ)|

Leave the sum containing θ̃Eτ explicit and dominate everything else with a constant k3:

‖v(t)‖ ≤ k3 + k2

t∑
τ=0

νt−τ |ϕ>τ θ̃Eτ |

≤ k3 + k2

t∑
τ=0

νt−τ ‖ϕτ‖ ·
∥∥∥θ̃Eτ ∥∥∥ (Cauchy-Schwarz inequality).

(3)

6



Now consider:

‖ϕt‖ =

∥∥∥∥∥∥∥∥∥∥∥∥


y(t− 1)
y(t− 2)
y(t− 3)
u(t− 1)
u(t− 2)
u(t− 3)



∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥


y(t− 1)
u(t− 1)
y(t− 2)
u(t− 2)
y(t− 3)
u(t− 3)



∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥
 v(t− 1)
v(t− 2)
v(t− 3)

∥∥∥∥∥∥
≤ ‖v(t− 1)‖+ ‖v(t− 2)‖+ ‖v(t− 3)‖ .

(The generalization to ARX(m,n) models is obvious.) Each term in the last sum is dominated exponentially
(according to (3)) by terms up to time t− 1; therefore, omitting pointless details, there exist constants k4, k5

such that

‖ϕt‖ ≤ k4 + k5

t−1∑
τ=0

νt−τ ‖ϕτ‖ ·
∥∥∥θ̃Eτ ∥∥∥

≤ k4 +

(
max

τ=0,...,t−1
‖ϕτ‖

)
· k5

t−1∑
τ=0

νt−τ
∥∥∥θ̃Eτ ∥∥∥︸ ︷︷ ︸

tends to 0 as t→∞

.
(4)

I promise that we are close to the end.

Fact 0.4.2 (A technical lemma)

Suppose that that the sequences xt ≥ 0 and ut ≥ 0 satisfy the following inequality,

xt ≤ a+

(
max

τ=0,...,t−1
xτ

)
ut,

where a > 0 is a constant, and suppose that limt→∞ ut = 0.

Then the sequence {xt} is bounded.

To prove the technical lemma assume, for the sake of contradiction, that {xt} is not bounded. Then there exists
an index T such that:

max
τ=0,...,T

xτ ≥ 2a,

ut ≤ 1/2 for all t ≥ T.

Define C := maxτ=0,...,T xτ (so that a ≤ C/2). It follows:

xT+1 ≤
C

2
+

(
max

τ=0,...,T
xτ

)
· 1

2
≤ C

2
+
C

2
= C;

xT+2 ≤
C

2
+

(
max

τ=0,...,T+1
xτ

)
· 1

2
(because also xT+1 ≤ C)

≤ C

2
+
C

2
= C;

xT+3 ≤
C

2
+

(
max

τ=0,...,T+2
xτ

)
· 1

2
≤ C,

and so on. This contradicts the assumption (indeed xt ≤ C for all t, but it was assumed to be unbounded),
hence the sequence is bounded. �

Applying the lemma to equation (4) with xt = ‖ϕt‖, a = k4, and ut = k5

∑t−1
τ=0 ν

t−τ
∥∥∥θ̃Eτ ∥∥∥, we obtain:

‖ϕt‖ is bounded.
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We can now prove that ε(t)→ 0. We start with the component θ̃Ut along the unexcitation subspace; note that

ϕ>t θ̃
U
t = ϕ>t︸︷︷︸

bounded

(
θ̃Ut − θ̃U∞

)
︸ ︷︷ ︸
converges to 0

+ ϕ>t θ̃
U
∞;

since the first term on the right-hand side converges to 0, the limits of ϕ>t θ̃
U
t and ϕ>t θ̃

U
∞ must coincide. To

obtain the second one, recall that

lim
t→∞

t∑
τ=0

(
ϕ>τ θ̃

U
∞

)2

= lim
t→∞

(θ̃U∞)>

(
t∑

τ=0

ϕτϕ
>
τ

)
θ̃U∞

≤ lim
t→∞

(θ̃U∞)> Rt θ̃
U
∞

< +∞

because θ̃U∞ ∈ U . In other terms the series
∑∞
τ=0

(
ϕ>τ θ̃

U
∞

)2

converges; for this to happen its term must tend to

0. Therefore we have

lim
t→∞

ϕ>t θ̃
U
t = lim

t→∞
ϕ>t θ̃

U
∞ = 0.

Note: this means that in the long run ϕτ is always “almost” orthogonal to θ̃U∞; it does not mean that θ̃U∞ = 0.
Remember: only in the excitation subspace the component of the estimation error tends to 0.

Finally, apply the decomposition θ̃t = θ̃Et + θ̃Ut to ε(t):

lim
t→∞

|ε(t)| = lim
t→∞

∣∣∣ϕ>t θ̃t∣∣∣
≤ lim
t→∞

∣∣∣ϕ>t θ̃Et ∣∣∣+
∣∣∣ϕ>t θ̃Ut ∣∣∣

≤ lim
t→∞

‖ϕt‖︸︷︷︸
bounded

·
∥∥∥θ̃Et ∥∥∥︸ ︷︷ ︸
→0

+
∣∣∣ϕ>t θ̃Ut ∣∣∣︸ ︷︷ ︸
→0

= 0.

0.5 Conclusion

Take-home message 0.5.1

Looking at the closed loop from outside, r(t) is its only input, and u(t), y(t) are its outputs. We have
shown that, if r(t) is assumed to be bounded, then the vector v(t) = (y(t), u(t)) is bounded, and such
are, of course, its components y(t) and u(t). Now, this is the definition of BIBO-stability; hence,

The closed loop/real system Σ(θ̂t, θ̄) is BIBO-stable.

We have also taken a long tour to show that ε(t) → 0 (it is a transient perturbation of the imaginary
system); but in the end this allows to obtain:

lim
t→∞

y(t)− r(t) = lim
t→∞

(y(t)− yim(t))︸ ︷︷ ︸
Σ(θ̂t,θ̄)∼Σ(θ̂t,θ̂t)

+ (yim(t)− y∞(t))︸ ︷︷ ︸
Σ(θ̂t,θ̂t)∼Σ(θ̂∞,θ̂∞)

+ (y∞(t)− r(t))︸ ︷︷ ︸
Σ(θ̂∞, θ̂∞) enforces reference tracking

= 0,

that is,

The real system Σ(θ̂t, θ̄) also enforces reference tracking.
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