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1 Least squares

1.1 Fitting data with a function

[Rephrase. We do not yet assume an explicit model for yi.]

Suppose that we have collected a sample of measures (u1, y1), . . . , (uN , yN ), where ui ∈ U and
yi ∈ R for all i = 1, . . . , N . We want to “explain” the measures y1, . . . , yN with a function
yi ' fθ(ui) that further depends on a parameter θ. The parameter θ ∈ Rp is supposed to
identify a function within a family of functions M̂ = {fθ : U → R : θ ∈ Rp} of our choice
(M̂ is our “theory” or “a priori knowledge”). This goal admits the following interpretation: the
observed quantities yi really behave according to a “true” function f∗ ∈ M̂, and such function
is properly identified by a “true” parameter θ◦; however, the quantities yi are in fact measures
corrupted by a noise term εi:

yi = f∗(ui) + εi for all i = 1, . . . N. (1)

If the family M̂ is sufficiently regular (typical example: polynomials whose coefficients are the
components of θ), a function fθ is a good approximation of f∗ when θ is close to θ◦; hence our
goal will be to find a good estimate θ̂ of θ◦. For the moment, we don’t make any assumption
on εi; later, it will be natural to model this source of uncertainty as a zero-mean random variable.

The least squares method prescribes to find an “optimal” estimate θ̂ by minimizing the sum of
squares:

θ̂ = arg min
θ∈Rp

N∑
i=1

(yi − fθ(ui))2 = arg min
θ∈Rp

N∑
i=1

ri(θ)
2. (2)

The expression ri(θ) = yi−fθ(ui) is called the i-th residual with respect to the choice of θ. More
generally, a weighted sum of squares can be minimized:

θ̂ = arg min
θ∈Rp

N∑
i=1

wi (yi − fθ(ui))2 , (3)

where wi > 0 for all i. A small wi means that the corresponding measure yi is supposed to be
more “imprecise”, i.e. more noisy (εi is likely to affect it significantly), and that therefore the
corresponding ri(θ) has to be considered “less important”. When the weights wi are all equal
(without loss of generality, suppose wi = 1 for all i), we fall back in the case (2).

1.2 Linear models

Let us introduce a fundamental simplifying hypothesis: fθ(u) is linear in the parameter θ, i.e.
it takes the form fθ(u) = ϕ(u)>θ, where ϕ : U → Rp, called regressor function, can still be
nonlinear. For notational convenience, we let ϕi = ϕ(ui). The measurement model (1) becomes

yi = ϕ>i θ + εi for all i = 1, . . . n, (4)
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and is known in literature as a linear model. The least squares problem (2) reads

θ̂ = arg min
θ∈Rp

N∑
i=1

(
yi − ϕ>i θ

)2
, (5)

and the weighted problem (3) reads

θ̂ = arg min
θ∈Rp

N∑
i=1

wi

(
yi − ϕ>i θ

)2
. (6)

Note that (5) and (6), besides yielding different results, are completely equivalent. On one hand,
(6) is a particular case of (5) where wi = 1 for all i; on the other hand, letting ȳi =

√
wi yi and

ϕ̄i =
√
wi ϕi the sum in (6) takes the same form of (5).

1.3 Normal equations

To find a solution of (6) we note that the sum of squares

Ĵ(θ) =

N∑
i=1

wi

(
yi − ϕ>i θ

)2
(7)

is a convex and differentiable function of θ.

� Tools from analysis: a characterization of convex differentiable functions

Theorem 1.1 Suppose that Ĵ : Rp → R is convex and differentiable over Rp (its gradient
∇Ĵ(θ) exists at each point θ ∈ Rp). Then

Ĵ(θ) ≥ Ĵ(θ̂) +∇Ĵ(θ̂)>(θ − θ◦)

for all θ, θ̂ ∈ Rp.

Proof. See [1, p. 70]. �

An important consequence of the theorem is that if we find a point θ̂ such that ∇Ĵ(θ̂) = 0,
then Ĵ(θ) ≥ Ĵ(θ̂) for all θ ∈ Rp, so that θ̂ is a minimum point for Ĵ .

We differentiate (7) and set the result equal to zero:

∂Ĵ(θ)

∂θ
=

N∑
i=1

wi 2
(
yi − ϕ>i θ

)(
−ϕ>i

)
= −2

N∑
i=1

wi

(
ϕ>i yi − θ>ϕiϕ>i

)
= 0.

After some algebraic manipulation, we come to the following equation, called normal equations
(usually in the plural):(

N∑
i=1

wi ϕiϕ
>
i

)
θ =

N∑
i=1

wi ϕiyi (weighted problem); (8)(
N∑
i=1

ϕiϕ
>
i

)
θ =

N∑
i=1

ϕiyi (non-weighted problem, i.e. wi ≡ 1). (9)
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We will show in the following sections that at least one solution to (8) (resp. (9)) always exists.
If, moreover, the p× p matrix

∑N
i=1wi ϕiϕ

>
i (resp.

∑N
i=1 ϕiϕ

>
i ) is invertible, then the solution

is unique and reads

θ̂ =

(
N∑
i=1

wi ϕiϕ
>
i

)−1 N∑
i=1

wi ϕiyi. (10)

1.4 Compact notation

To shorten notation, we let

Y =


y1

y2
...
yN

 , Φ =


ϕ>1
ϕ>2
...
ϕ>N

 , ε =


ε1

ε2
...
εN

 . (11)

With the compact notation (11), the measurement model (4) becomes

Y = Φθ◦ + ε (linear model), (12)

and the least squares problem (5) (without weights) reads

θ̂ = arg min
θ∈Rp

(
Y − Φ>θ

)> (
Y − Φ>θ

)
= arg min

θ∈Rp

∥∥∥Y − Φ>θ
∥∥∥2

= arg min
θ∈Rp

∥∥∥Y − Φ>θ
∥∥∥ (13)

(the last equality holds because taking a square root may change the minimum attained, but
not the minimum point). If we further define

W =


w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 0 . . . wN

 ,
then the weighted least squares problem (6) becomes

θ̂ = arg min
θ∈Rp

(
Y − Φ>θ

)>
W
(
Y − Φ>θ

)
= arg min

θ∈Rp

∥∥∥Y − Φ>θ
∥∥∥2

W
= arg min

θ∈Rp

∥∥∥Y − Φ>θ
∥∥∥
W

(14)

where the norm ‖ · ‖W is similar to the canonical Euclidean norm, but descends from the scalar
product 〈x, y〉W = x>Wy instead of the usual one 〈x, y〉 = x>y. When W = I (all wi = 1), (13)
and (14) are identical.

Finally, the normal equations (9) become(
Φ>WΦ

)
θ = Φ>WY (weighted), (15)(

Φ>Φ
)
θ = Φ>Y (non-weighted). (16)
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If the p× p matrices Φ>WΦ, resp. Φ>Φ are invertible, then (15), (16) admit a unique solution
(compare with (10)):

θ̂ =
(

Φ>WΦ
)−1

Φ>WY (weighted), (17)

θ̂ =
(

Φ>Φ
)−1

Φ>Y (non-weighted). (18)

1.5 The normal equations have at least a solution

We provide here a first, algebraic proof that the normal equations (16) do have at least one
solution (we stick to the non-weighted version, but this is just for simplicity).

� Tools from linear algebra: null space and range of the transpose

For any matrix M ∈ Rm×n,

x ∈ null M ⇒ Mx = 0 ⇒ M>Mx = 0 ⇒ x ∈ null M>M ;

x ∈ null M>M ⇒ M>Mx = 0 ⇒ x>M>Mx = 0 ⇒ ‖Mx‖2 = 0

⇒ Mx = 0 ⇒ x ∈ null M.

Hence, null M = null M>M . Moreover,

x ∈ null M ⇔ Mx = 0

⇔ v>Mx = 0 for all v ∈ Rm

⇔
(
M>v

)>
x = 0 for all v ∈ Rm

⇔ M>v ⊥ x = 0 for all v ∈ Rm

⇔ x ⊥ range M>, that is,

⇔ x ∈
(

range M>
)⊥

.

It follows, by taking another complement and simplifying (this is OK because Rn is finite-
dimensional), that

range M> = (null M)⊥ ; in the same way,

range M>M =
(

null M>M
)⊥

;

and finally, since null M = null M>M ,

range M> = range M>M.

Let M = Φ. The above result says that

range Φ> = range Φ>Φ. (19)

But since Φ>Y belongs to the left-hand subspace, it also belongs to range Φ>Φ, that is, to the
set {Φ>Φ θ for some θ ∈ Rp}; it follows that there must exist at least θ̂ that solves the normal
equations (

Φ>Φ
)
θ̂ = Φ>Y.
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Note: the dimensions of the ranges in (19) are the respective ranks:

rank Φ>Φ = rank Φ> = rank Φ.

Therefore to check the invertibility of Φ>Φ one does not need to actually compute it; it is
sufficient to check the rank of Φ (a full rank = p implies the invertibility of Φ>Φ).

1.6 Interpretation in terms of projections

The method of least squares is closely related with orthogonal projections. We start from a
classical result, characterizing the point of a subspace which is closest to another point in the
sense of the Euclidean distance:

Theorem 1.2 Let C be a closed convex set of a Hilbert space1 H, and Y ∈ H. Then there exists
a unique vector Ŷ ∈ C such that ‖Y − Ŷ ‖ ≤ ‖Y − x‖ for all x ∈ C. A necessary and sufficient

condition for Ŷ to be the unique minimizing vector is that
〈
Y − Ŷ , x− Ŷ

〉
≤ 0 for all x ∈ C.

[Insert nice figure.]

All finite-dimensional spaces like RN , endowed with the “standard” scalar product defined by
〈x, y〉 = x>y, are Hilbert spaces, so Theorem 1.2 applies naturally to the closed convex sets of
RN . Moreover, all subspaces of RN are closed convex sets, and it is possible to show that when

C is a subspace, a more stringent necessary and sufficient condition holds:
〈
Y − Ŷ , x− Ŷ

〉
= 0.

These particular cases are resumed in the following result.

Theorem 1.3 Let W be a subspace of RN , and Y ∈ RN . Then there exists a unique vector
Ŷ ∈ W such that ‖Y − Ŷ ‖ ≤ ‖Y − w‖ for all w ∈ W. A necessary and sufficient condition for
Ŷ to be the unique minimizer is that Y − Ŷ ⊥ w for all w ∈ W.

The minimizer Ŷ is called the orthogonal projection of Y on the subspace W.

[Insert nice figure.]

Let now W = range Φ. The vectors in W are precisely those with the form w = Φθ for
some θ ∈ Rp. The least squares problem asks to minimize ‖Y − Φθ‖2, but this is the same
as to minimize ‖Y − Φθ‖, which in turn is equivalent to minimize ‖Y − w‖ with respect to
w = Φθ ∈ range Φ that is, to find Ŷ = Φθ̂ such that ‖Y − Ŷ ‖ is minimal. Theorem 1.3 ensures
that such a Y exists; hence a solution θ̂ of the least squares problem also exists. The theorem
states that Ŷ is unique; this does not imply that θ̂ is also unique! Indeed, θ̂ is unique if and
only if Φ has full rank p.

Now let us apply the second part of Theorem 1.3: Ŷ = Φθ̂ is a minimizing vector, and θ̂ is
the least squares solution, if and only if Y − Φθ̂ ⊥ w for all w ∈ range Φ. Let c1, . . . , cp be
the columns of Φ (whereas the regressors are its rows). Since range Φ = span {c1, . . . , cp}, to

check the orthogonality condition it is sufficient to check that Y − Φθ̂ ⊥ ci for all the columns
ci. Explicitly,

c>i (Y − Φθ̂) = 0 for all i = 1, . . . , p. (20)

1A Hilbert space H is a complete Euclidean space, i.e. a vector space endowed with a scalar product 〈·, ·〉, with
the norm defined by ‖x‖ =

√
〈x, x〉, and with the distance defined by d(x1, x2) = ‖x1 − x2‖, and such that every

Cauchy sequence (x1, x2, x3, . . .) has a limit x̄ ∈ H.
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Stacking the rows c>i on each other we get Φ>, hence stacking the equations (20) on each other
we obtain:

Φ>(Y − Φθ̂) = 0,

which finally yields, again, the normal equations:(
Φ>Φ

)
θ̂ = Φ>Y.

Conclusion: Ŷ = Φθ̂ is the unique orthogonal projection of Y if and only if θ̂ solves the normal
equations.

If
(
Φ>Φ

)
is invertible, then θ̂ =

(
Φ>Φ

)−1
Φ>Y and Ŷ =

(
Φ
(
Φ>Φ

)−1
Φ>
)
Y = ΠΦY . The

matrix ΠΦ := Φ
(
Φ>Φ

)−1
Φ> is a so-called orthogonal projection matrix.

� Tools from linear algebra: projection matrices

A matrix Π ∈ RN×N is called symmetric if Π = Π> and idempotent if Π2 = Π. An idempotent
symmetric matrix is called an orthogonal projection matrix. Any such matrix has the form

Π = A
(
A>A

)−1
A> for some “tall”, full rank matrix A. Note that the pre-multiplication by

Π leaves A unchanged:

ΠA = A
(
A>A

)−1
A>A = A;

therefore Π leaves any column of A (and hence any linear combination of columns of A)
unchanged. On the other hand, if x is any vector orthogonal to all the columns of A, then

Πx = A
(
A>A

)−1 (
A>v

)
= 0.

Therefore the job of Π is to find the orthogonal projection of a vector on range A.

Example. To find the orthogonal projection of

Y =

 1
2
3

 on span


 4

5
6

 ,
 7

8
9

 , let A =

 4 7
5 8
6 9

 ,
then compute Π = A

(
A>A

)−1
A>, and the projection is given by Ŷ = ΠY .

Note that (I −Π) is also symmetric and idempotent, indeed

(I −Π)2 = I −Π−Π + Π2 = I −Π−Π + Π = (I −Π).

Therefore (I − Π) is another orthogonal projection matrix; if Π projects on range A, then
(I −Π) projects on (range A)⊥, and

x = Πx+ (I −Π)x = xA + x⊥

is the unique decomposition of x as the sum of a vector in range A and a vector in its
orthogonal complement.
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1.7 Constrained least squares

Sometimes, in solving a regression problem with the method of least squares, it is convenient to
restrict θ to a subspace of Rp. This is equivalent to impose a constraint of the formKθ = 0, where
the matrix K ∈ Rm×p has full rank m < p (each of its m rows imposes a constraint and reduces
by 1 the dimension of the space where θ lives, so that θ is confined to a (p −m)-dimensional
subspace). Assume that Φ has full rank and consider the following problem:

min
θ∈Rp

‖Y − Φθ‖2

subject to Kθ = 0.
(21)

Its solution may be substantially different from that of the standard, unconstrained problem
minθ∈Rp ‖Y − Φθ‖2. Before solving (21) it is good to take a little review of the fundamental tool
of constrained optimization.

� Tools from analysis: Lagrange’s lemma

The following proposition, albeit simple, is foundational in constrained optimization:

Lemma 1.1 Let F : Rn → R and Λ : Rn → R be functions, and C ⊂ Rn be any subset.
Suppose that a point x̄ ∈ C satisfies

1. Λ(x̄) ≥ Λ(x) for all x ∈ C,
i.e. x̄ = arg max

x∈C
Λ(x),

i.e. x̄ maximizes Λ over C;

2. F (x̄) + Λ(x̄) ≤ F (x) + Λ(x) for all x ∈ Rn,
i.e. x̄ = arg min

x∈Rn
F (x) + Λ(x),

i.e. x̄ miminizes F + Λ over the whole space (unconstrained minimization).

Then F (x̄) ≤ F (x) for all x ∈ C, i.e. x̄ minimizes F over C (constrained minimization), that
is x̄ = arg min

x∈C
F (x).

Proof. For all x ∈ C,

F (x̄) + Λ(x̄) ≤ F (x) + Λ(x)

≤ F (x) + Λ(x̄), and hence

F (x̄) ≤ F (x).

Curiously enough, the proof is shorter than the claim, and easier to understand. �
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� Tools from analysis: Lagrange multipliers

A particular but very useful case of Lagrange’s lemma is when Λ is constant over C: if this
is the case, any point x̄ ∈ C that satisfies just the second condition of the lemma miminizes
F over C. A typical setup is the following:

• x = (θ, λ), where θ ∈ Rp, λ ∈ Rm;

• J : Rp → R is a function to be minimized subject to constraints;

• k : Rp → Rm is a function designed to impose m constraints;

• C := {(θ, λ) : k(θ) = 0};

• F (x) := J(θ) and Λ(x) := 〈λ, k(θ)〉.

Clearly, Λ(x) ≡ 0 over C; thus, if a θ̄ satisfies k(θ̄) = 0 and attains the minimum in the
unconstrained minimization problem

min
θ∈Rp

J(θ) + 〈λ, k(θ)〉 (22)

then the same θ̄ solves the constrained minimization problem

min
θ∈Rp

J(θ)

subject to k(θ) = 0.
(23)

Note that (22) is actually a family of minimization problems depending on λ, so that its
solution θ̄ = θ̄(λ) is indeed a function of λ. Searching, among the values of this function, one
θ̄ such that k(θ̄) = 0 amounts to search for a particular λ̄: so, in a sense, the target of θ is to
attain minimality, while the “dual” target of λ is to satisfy the constraint.

The function J(θ) + 〈λ, k(θ)〉 = J(θ) + λ>k(θ) is called Lagrangian, and λ is called a vector
of Lagrangian multipliers. If J is convex and differentiable, then the search for a solution θ̄
of Problem (23) can proceed by equating to zero the derivatives of the Lagrangian both with
respect to θ and with respect to λ.

To solve (21), we form the Lagrangian ‖Y − Φθ‖2 + λ>θ, compute gradients with respect to θ
and λ, and set them equal to zero:

0 =
∂

∂θ

(
‖Y − Φθ‖2 + λ>Kθ

)
=

∂

∂θ

(
(Y − Φθ)>(Y − Φθ) + λ>Kθ

)
=

∂

∂θ

(
Y >Y − Y >Φθ − θ>Φ>Y + θ>Φ>Φθ + λ>Kθ

)
= 2θ>Φ>Φ− 2Y >Φ + λ>K, and transposing

0 = Φ>Φθ − Φ>Y +K>
λ

2
. (24)

Of course setting to zero the gradient with respect to λ we obtain the constraint Kθ = 0.
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Multiplying (24) on the left by (Φ>Φ)−1, we obtain

θ = (Φ>Φ)−1Φ>Y − (Φ>Φ)−1K>
λ

2
,

Kθ = K(Φ>Φ)−1Φ>Y −K(Φ>Φ)−1K>
λ

2
= 0,

λ

2
=
(
K(Φ>Φ)−1K>

)−1
K(Φ>Φ)−1Φ>Y

(note that K(Φ>Φ)−1K> ∈ Rm×m must have full rank), and finally

θ̂ = (Φ>Φ)−1Φ>Y − (Φ>Φ)−1K>
(
K(Φ>Φ)−1K>

)−1
K(Φ>Φ)−1Φ>Y. (25)

2 Statistical properties of the LS method

2.1 Estimators and desirable properties

2.2 Explicit model structure

2.3 Unbiasedness of the LS estimate

2.4 Consistency of the LS estimate

2.5 The Gauss-Markov theorem

Let Y , Φ, and ε be defined as in equation (11). In this section we will assume that the noise
terms εi (and consequently the measures yi) are random variables, while the regressors are
deterministic. Random quantities will be written in boldface (for example Y, ε); the linear
model (12) reads

Y = Φθ◦ + ε. (26)

Suppose that εi, i = 1, . . . , N are uncorrelated, each with mean 0 and variance σ2, so that
E [ε] = 0 and let Σ = Var [ε] = σ2I. We search for the best linear unbiased estimator (BLUE for
short) of θ◦ given Y, that is an unbiased estimator θ̂ of θ◦ having the form θ̂ = LY for some p×N
matrix L and whose variance is the minimum possible. Since E [LY] = E [LΦθ◦ + Lε] = LΦθ◦,
asking for θ̂ to be unbiased amounts to ask that L must satisfy the constraint LΦ = I. The

matrix
(
Φ>Φ

)−1
Φ> does satisfy such constraint, hence L must have the form

L =
(

Φ>Φ
)−1

Φ> +K, (27)

where KΦ = 0. Now

Var
[
θ̂
]

= Var [L (Φθ◦ + ε)] = Var [θ◦ + Lε] = E
[
(Lε) (Lε)>

]
= L

(
σ2I
)
L>

= σ2

((
Φ>Φ

)−1
Φ> +K

)((
Φ>Φ

)−1
Φ> +K

)>
= σ2

(
Φ>Φ

)−1
Φ>Φ

(
Φ>Φ

)−1

+ σ2
(

Φ>Φ
)−1

Φ>K> + σ2KΦ
(

Φ>Φ
)−1

+ σ2KK>

= σ2
(

Φ>Φ
)−1

+ σ2 KK>.

(28)
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Since the term
(
Φ>Φ

)−1
does not depend on K, the variance is minimum, in the matricial sense,

when K = 0. It is minimum also in the scalar sense, because

var
[
θ̂
]

= tr Var
[
θ̂
]

also attains its minimum for K = 0. Hence, the BLUE is the least squares estimator:

θ̂ =
(

Φ>Φ
)−1

Φ>Y, (29)

and attains the variance

Var
[
θ̂
]

= σ2
(

Φ>Φ
)−1

.

Suppose now that the noise terms εi, i = 1, . . . , n of ε are not assumed to be either uncorrelated
or with the same variance. Let however E [ε] = 0 and let Σ = Var [ε] > 0 denote the known
covariance matrix of ε; here Σij = Cov [εi, εj ], and in particular Σii = var [εi]. Then we can
substitute (27) with

L =
(

Φ>Σ−1Φ
)−1

Φ>Σ−1 +K,

where KΦ = 0, and repeat the computation (28) without substantial changes. We recover that
the BLUE is

θ̂ =
(

Φ>Σ−1Φ
)−1

Φ>Σ−1 Y, (30)

attaining the variance

Var
[
θ̂
]

=
(

Φ>Σ−1Φ
)−1

.

Particular case: if the noise terms εi have mean zero and are uncorrelated, but have different
variances σ2

i , then (30) is the solution (10) of a weighted least squares problem (8) where wi = 1
σ2
i
.

2.6 Gaussian case: the LS estimator attains maximum likelihood

[Not part of the DDSM course.]

Suppose that Y = Φθ◦ + ε, where Φ is deterministic and ε ∼ N (0,Σ), i.e. ε is Gaussian with
mean 0 and known covariance matrix Σ (assume Σ > 0); then Y ∼ N (Φθ◦,Σ). The density
function of a N (Φθ,Σ) vector is

fY(Y ; θ) =
1√

(2π)ndet Σ
exp

(
−1

2
(Y − Φθ)>Σ−1(Y − Φθ)

)
;

therefore the likelihood and the log-likelihood of θ given the observation Y are respectively

L(θ;Y ) =
1√

(2π)ndet Σ
exp

(
−1

2
(Y − Φθ)>Σ−1(Y − Φθ)

)
;

`(θ;Y ) = −N
2

log(2π)− 1

2
log det Σ− 1

2
(Y − Φθ)>Σ−1(Y − Φθ).

The maximum-likelihood estimator is obtained equating ∂`(θ;Y)
∂θ to zero, thus obtaining

∂`(θ; Y)

∂θ
= Φ>Σ−1(Y − Φθ) = 0;

θ̂ =
(

Φ>Σ−1Φ
)−1

Φ>Σ−1 Y.
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This is precisely the expression (29) of the least-squares estimator weighted with the inverse of
the covariance matrix Σ. Hence, in particular, in the Gaussian case the maximum-likelihood
estimator θ̂ happens to be linear and unbiased; but now this is coincidental property, not a
requirement like in Section 2.5.

2.7 Gaussian case: the LS estimator is efficient

[Not part of the DDSM course.]

Assume that the hypotheses of Section 2.6 hold. Fisher’s score function is then

u(θ;Y ) = −∂`(θ;Y )

∂θ
= Φ>Σ−1(Φθ − Y );

Fisher’s information matrix is defined by I(θ) := E
[
u(θ;Y )u(θ;Y )>; θ

]
; in our case,

I(θ) = E
[
Φ>Σ−1(Φθ − Y )(Φθ − Y )>Σ−1Φ; θ

]
= Φ>Σ−1E [(Φθ − Y )(Φθ − Y ); θ]Σ−1Φ

= Φ>Σ−1ΣΣ−1Φ = Φ>Σ−1Φ

(note that here I(θ) does not depend on θ); a famous result says that, given any unbiased
estimator θ̂ of θ◦, the following inequality (Cramér-Rao lower bound) holds:

Var
[
θ̂
]
≥ I(θ)−1. (31)

In words, the right-hand side of (31) is a lower bound (in the matricial sense) for the variance
of any unbiased estimator. If an estimator θ̂ attains exactly the minimum possible variance,
it is said to be efficient; and in the Gaussian case the LS estimator does attain the minimum
possible variance, precisely because it attains the Cramér-Rao lower bound:

Var
[
θ̂
]

=
(

Φ>Σ−1Φ
)−1

= I(θ)−1.

Resuming, in a linear model with Gaussian noise the maximum-likelihood estimator of the
parameter is linear and unbiased, it is the LS estimator, it reaches the Cramér-Rao lower bound,
and it has the minimum possible variance (among all the unbiased estimators, not only among
the linear ones).

2.8 Residual variance

Assume the model yi = ϕ>i θ
◦ + εi, where the noise terms εi are independent and identically

distributed with mean zero and variance σ2. In compact form it reads Y = Φθ◦ + ε, where
E
[
εε>

]
= σ2I. suppose that the regressors are deterministic and that Φ has full rank p. The

following quantity, where θ̂ is the least squares solution, is needed for future computations:

E

[
N∑
i=1

(
yi − ϕ>i θ̂

)2
]

= E

[∥∥∥Y − Φθ̂
∥∥∥2
]

(32)

Recall that

Ŷ = Φθ̂ =

(
Φ
(

Φ>Φ
)−1

Φ>
)

Y := ΠΦY.

11



The matrix ΠΦ = Φ
(
Φ>Φ

)−1
Φ> ∈ RN×N is the orthogonal projection matrix that projects on

range Φ, and (I −ΠΦ) is the orthogonal projection matrix on (range Φ)⊥. It holds

ΠΦY = ΠΦΦθ◦ + ΠΦε = Φθ◦ + ΠΦε

Y − Ŷ = (I −ΠΦ)Y = Φθ◦ + ε− Φθ◦ −ΠΦε = (I −ΠΦ)ε

Then (32) becomes

E

[∥∥∥Y − Φθ̂
∥∥∥2
]

= E

[∥∥∥Y − Ŷ
∥∥∥2
]

= E

[(
Y − Ŷ

)> (
Y − Ŷ

)]
= E

[
ε>(I −ΠΦ)>(I −ΠΦ)ε

]
= E

[
ε>(I −ΠΦ)ε

]
= E

[
tr ε>(I −ΠΦ)ε

]
= tr (I −ΠΦ)E

[
εε>

]
= tr (I −ΠΦ) σ2I

= σ2(N − tr ΠΦ)

It remains to notice that

tr ΠΦ = tr Φ
(

Φ>Φ
)−1

Φ> = tr
(

Φ>Φ
)−1

Φ>Φ = tr Ip = p,

and we find the conclusion:

E

[
N∑
i=1

(
yi − ϕ>i θ̂

)2
]

= σ2(N − p). (33)

Besides being interesting per se, (33) has an important consequence: the statistic

σ̂2 =
1

N − p

N∑
i=1

(
yi − ϕ>i θ̂

)2
(34)

is an unbiased estimator of the noise variance σ2.

Example. Suppose that y1, . . . ,yN are independent and identically distributed random variables
with mean µ and variance σ2. We estimate µ letting ϕi ≡ 1 (here p = 1) and applying the method
of least squares to the model yi = ϕiµ+ εi, where εi has mean 0 and variance σ2. Solving the
normal equations (

∑N
i=1 1 ·1)µ̂ =

∑N
i=1 1 ·yi we find that the least squares estimate is the sample

average

µ̂ =
1

N

N∑
i=1

yi.

We already know that µ̂ is an unbiased estimator of µ; the result that we have just proven allows
us to add that the corrected sample variance

σ̂2 =
1

N − 1

N∑
i=1

(yi − µ̂)2

is an unbiased estimator of σ2.
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2.9 Bias-variance tradeoff and FPE

Theorems 1.2-1.3 can be adapted to the case of subspaces of the space H of square-summable
random variables.

Theorem 2.1 Let W be a closed subspace of the Hilbert space H of square-summable random
variables, and let Y ∈ H. Then there exists a unique random variable Ŷ ∈ W such that
‖Y−Ŷ‖ ≤ ‖Y−w‖ for all w ∈ W. A necessary and sufficient condition for Ŷ to be the unique
minimizing random variable is that Y − Ŷ ⊥ w for all w ∈ W.

Note: with the scalar product defined as 〈w,Y〉 = E [wY],

• the minimality claim translates to E
[
(Y − Ŷ)2

]
≤ E

[
(Y −w)2

]
for all w ∈ W;

• the orthogonality condition reads E
[
(Y − Ŷ)w

]
= 0 for all w ∈ W.

Assume the predictive model class

M̂ = {ŷi(θ) = ϕ(ui)
>θ : θ ∈ Rp} (35)

The optimal predictor in M̂ is the predictor ŷi(θ
◦) = ϕ(ui)

>θ◦ corresponding to the parameter
θ◦ that solves

θ◦ = arg min
θ∈Rp

J̄(θ),

where J̄ is the cost function defined as follows:

J̄(θ) = E
[
(yi − ŷi(θ))

2
]
.

Under mild assumption on ϕ(·) (ϕ(ui) must have finite second order moment), we let W = M̂;
in fact this is a closed subspace of the space of square-summable variables. Then Theorem 2.1
asserts that ŷ(θ◦) exists and is unique, hence an optimal parameter θ◦ exists and is unique. The
orthogonality condition says that

yi = ϕ(ui)
>θ◦ + εi,

where εi is orthogonal (i.e. uncorrelated) to ϕ(ui). Consequences:

1. E
[
(yi − ŷi(θ

◦))2
]

= E
[
ε2
i

]
. For the sake of brevity, denote σ2

ε = E
[
ε2
i

]
, whether or not εi

has mean 0.

2. If εi has mean 0 (this is the case, for example, if the regressor function ϕ(·) contains the
component 1), then the least squares estimate θ̂ is unbiased:

E
[
θ̂
]

= E
[
θ◦ + (Φ>Φ)−1Φ>ε

]
= θ◦ + E

[
(Φ>Φ)−1Φ>

]
E [ε] = θ◦,

and its variance is

Var
[
θ̂
]

= σ2
ε E
[
(Φ>Φ)−1

]
= σ2

ε E

( N∑
i=1

ϕ(ui)ϕ(ui)
>

)−1


=
σ2
ε

N
E

( 1

N

N∑
i=1

ϕ(ui)ϕ(ui)
>

)−1
,

where σ2
ε is the variance of εi.
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For a fixed θ,

J̄(θ) = E
[
(yi − ŷi(θ))

2
]

= E
[
(yi − ŷi(θ

◦) + ŷi(θ
◦)− ŷi(θ))

2
]

= E
[
(yi − ŷi(θ

◦))2
]

+ E
[
(ŷi(θ

◦)− ŷi(θ))
2
]
− 2E [(yi − ŷi(θ

◦))(ŷi(θ
◦)− ŷi(θ))]

= σ2
ε + E

[
(ϕ(ui)

>(θ◦ − θ))2
]
− 2E

(yi − ϕ(ui)
>θ◦) ϕ(ui)

>(θ◦ − θ)︸ ︷︷ ︸
w∈W


(the last term vanishes due to Theorem (2.1))

= σ2
ε + E

[
(ϕ(ui)

>(θ◦ − θ))2
]

= σ2
ε + (θ◦ − θ)>E

[
ϕ(ui)ϕ(ui)

>
]
(θ◦ − θ)

(denote E
[
ϕ(ui)ϕ(ui)

>
]

= Σ)

= σ2
ε + (θ◦ − θ)>Σ(θ◦ − θ).

If we plug in the least squares estimate θ̂ we get

J̄(θ̂) = E
[
(yi − ŷi(θ

◦))2
]

+ (θ̂ − θ◦)>Σ(θ̂ − θ◦)
= σ2

ε + (θ̂ − θ◦)>Σ(θ̂ − θ◦),

that is a random variable (depending on the observations (ϕi,yi), i = 1, . . . , N). The expected
cost is

E
[
J̄(θ̂)

]
= E

[
(yi − ŷi(θ

◦))2
]

+ E
[
(θ̂ − θ◦)>Σ(θ̂ − θ◦)

]
= σ2

ε + E
[
(θ̂ − θ◦)>Σ(θ̂ − θ◦)

]
= σ2

ε + E
[
tr (θ̂ − θ◦)>Σ(θ̂ − θ◦)

]
= σ2

ε + tr E
[
(θ̂ − θ◦)(θ̂ − θ◦)>

]
Σ.

(36)

We can provide an approximation of this quantity. On one hand, for big N ,

E
[
J̄(θ̂)

]
= σ2

ε +
σ2
ε

N
tr E

( 1

N

N∑
i=1

ϕ(ui)ϕ(ui)
>

)−1
Σ

' σ2
ε +

σ2
ε

N
tr Σ−1Σ = σ2

ε +
σ2
ε

N
tr Ip

=
N + p

N
σ2
ε,

(37)

because we know that 1
N

∑N
i=1 ϕ(ui)ϕ(ui)

> → Σ almost surely for the strong law of large
numbers; on the other hand, we know an unbiased estimate of σ2

ε:

σ̂2
ε =

1

N − p

N∑
i=1

(
yi − ϕ(ui)

>θ̂
)2
,

and hence we consider

E
[
J̄(θ̂)

]
' N + p

N − p

(
1

N

N∑
i=1

(
yi − ϕ(ui)

>θ̂
)2
)

=
N + p

N − p
Ĵ(θ̂),

(38)
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which is a readily computable from data. The estimator (38) of the expected cost is called the
Final Prediction Error (FPE).

Now suppose that the measures yi, i = 1, . . . , N , are generated by the following model:

yi = f∗(ui) + ηi,

where ηi are independent random variables with mean 0 and variance σ2
η, and ηi is independent

of ϕi. We do not assume that f∗(·), the “true” function, belongs to M̂ defined in (35), i.e. we do
not assume that f∗(·) has the form f∗(·) = ϕ(·)>θ for any θ ∈ Rp; therefore the optimal predictor
ŷi(θ

◦) = ϕ(ui)
>θ◦ is not necessarily the best possible one, which is instead ŷ∗i = f∗(ui). In this

case the first term of (36) can be decomposed:

E
[
J̄(θ̂)

]
= E

[
(yi − ŷi(θ

◦))2
]

+ tr Var
[
θ̂
]
Σ

= E
[
(ηi + f∗(ui)− ŷi(θ

◦))2
]

+ tr Var
[
θ̂
]
Σ

= σ2
η︸︷︷︸

“noise”

+E
[
(f∗(ui)− ŷi(θ

◦))2
]︸ ︷︷ ︸

“bias2”

+ tr Var
[
θ̂
]
Σ︸ ︷︷ ︸

“variance”

This is the so-called “bias-variance” decomposition. If f∗ ∈ M̂, then the second term vanishes
and the noise term σ2

η coincides with σ2
ε. In any case, we can provide a similar approximation

as in (37):

E
[
J̄(θ̂)

]
' N + p

N
σ2
ε =

N + p

N

(
σ2
η + E

[
(f∗(ui)− ŷi(θ

◦))2
])
.

2.10 Choice of model order

2.11 Regularization
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