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Some notes on linear maps, changes of bases, and linear systems follow, that try to
clarify the relations between “abstract” vector spaces and representations using an “agile”
notation in order to avoid relying on summations. The following is not strictly rigorous
(especially regarding derivatives), these notes are meant only to support intuition.

Representation of a vector

Let V be an n-dimensional vector space over R, and {v1 · · ·vn} be a base. As we know,
every vector v ∈ V admits an unique representation

v =
n∑

i=1

vi vi

where v1 · · · vn ∈ R are called “coordinates”. To simplify formulas, in this section we will
use systematically the following notation:

v =
n∑

i=1

vi vi = {v1 · · ·vn}

 v1
...
vn


The right-hand side must be interpreted as a “symbolic dot product”, where the row is
indeed a “row of vectors”.

Representation of a linear map

Let {v1 · · ·vn} be a base of the vector space V , {w1 · · ·wm} a base of the m-dimensional
vector space W , and A : V → W a linear map. The behavior of A is captured by its
action on any base of V . Let us write it down:

A(v1) = a11w1 + a21w2 + · · ·+ am1wm = {w1 · · ·wm}

 a11
...

am1


A(v2) = a12w1 + a22w2 + · · ·+ am2wm = {w1 · · ·wm}

 a12
...

am2


...

A(vn) = a1nw1 + a2nw2 + · · ·+ amnwm = {w1 · · ·wm}

 a1n
...

amn
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Then, stacking the columns and post-multiplying by
[
v1 · · · vn

]T
, we obtain

{A(v1) · · · A(vn)}

 v1
...
vn

 = {w1 · · ·wm}

 a11 · · · a1n
...

. . .
...

am1 · · · amn


 v1

...
vn


Now we manipulate a bit the left-hand side:

{A(v1) · · · A(vn)}

 v1
...
vn

 =
n∑

i=1

A(vi)vi = A

(
n∑

i=1

vi vi

)
= A

{v1 · · ·vn}

 v1
...
vn




And finally we get, for a generic vector v:

A(v) = A

{v1 · · ·vn}

 v1
...
vn


 = {w1 · · ·wm}

 a11 · · · a1n
...

. . .
...

am1 · · · amn


 v1

...
vn


= {w1 · · ·wm}

 w1
...

wm

 = w

This tells us that, once the bases {v1 · · ·vn} and {w1 · · ·wm} are fixed, the relation
A(v) = w can be represented uniquely by a relation on the respective coordinates: a11 · · · a1n

...
. . .

...
am1 · · · amn


 v1

...
vn

 =

 w1
...

wm


or, which is the same, that every linear map A can be represented uniquely by a matrix

A =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

.

Composition of linear maps

Let us see how the composition of linear maps reflects in the multiplications of matri-
ces (exercise 1 in ex. paper 2). Let U , V , W be vector spaces with respective bases
{u1 · · ·um}, {v1 · · ·vn}, {w1 · · ·wm}, and let A : V → W , B : U → V be represented,
respectively, by the matrices A and B. This means:

A(v) = A

{v1 · · ·vn}

 v1
...
vn


 = {w1 · · ·wm}A

 v1
...
vn

 = w

B(u) = B

{u1 · · ·um}

 u1
...
um


 = {v1 · · ·vn}B

 u1
...
um

 = v
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But then,

A ◦ B(u) = A ◦ B

{u1 · · ·um}

 u1
...
um


 = A

B
{u1 · · ·um}

 u1
...
um





= A

{v1 · · ·vn}B

 u1
...
um


 = {w1 · · ·wm}A B

 u1
...
um

 = w

Thus, the relation A ◦ B(u) = w is represented by the relation on the respective coordi-
nates:

A B

 u1
...
um

 =

 w1
...

wm


or, which is the same, A ◦ B is represented by AB.

Change of base

Let X be a vector space, and {x1 · · ·xn}, {x̃1 · · · x̃n} be two bases. Hence, any vector
x ∈ X admits the distinct representations:

x = {x1 · · ·xn}

 x1
...
xn

 = {x̃1 · · · x̃n}

 x̃1
...
x̃n


How are these related? If we are given, say, coordinates x̃1 · · · x̃n with respect to the
second base, how can we obtain the corresponding coordinates with respect to the first?
Since {x1 · · ·xn} is a base, in particular every vector of {x̃1 · · · x̃n} admits a representation
with respect to it:

x̃1 = t11x1 + t21x2 + · · ·+ tn1xn = {x1 · · ·xn}

 t11
...
tn1


...

x̃n = t1nx1 + t2nx2 + · · ·+ tnnxn = {x1 · · ·xn}

 t1n
...
tnn



Stacking the columns and post-multiplying by
[
x̃1 · · · x̃n

]T
, we obtain

x = {x̃1 · · · x̃n}

 x̃1
...
x̃n

 = {x1 · · ·xn}

 t11 · · · t1n
...

. . .
...

tn1 · · · tnn


 x̃1

...
x̃n

 = {x1 · · ·xn}

 x1
...
xn
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Thus, in a change of base from {x̃1 · · · x̃n} to {x1 · · ·xn}, the coordinates of a vector x
change according to a premultiplication by a matrix T : x1

...
xn

 =

 t11 · · · t1n
...

. . .
...

tn1 · · · tnn


 x̃1

...
x̃n

 = T

 x̃1
...
x̃n


(the coordinates change, but the vector x remains the same!). It is also said that T
“represents” the change of base. Note that, in view of the previous section, T actually
represents the identity map Id : X → X, where the “first copy” of X (the domain) has
the base {x̃1 · · · x̃n}, whereas the second (the codomain) has the base {x1 · · ·xn}.

Changes of base and linear maps

Let as before V and W be vector spaces, {v1 · · ·vn}, {w1 · · ·wm} respective bases, and
A : V → W a linear map. As we know, A is represented by a matrix A which is
determined uniquely once the bases are fixed:

A

{v1 · · ·vn}

 v1
...
vn


 = {w1 · · ·wm}

 w1
...

wm

 ↔ A

 v1
...
vn

 =

 w1
...

wm


But suppose that we change both the bases to new bases {ṽ1 · · · ṽn}, {w̃1 · · · w̃n}. How
does A change accordingly? As we saw in the previous section, there exist two matrices
TV and TW that represent, respectively, the change of base from {ṽ1 · · · ṽn} to {v1 · · ·vn}
and from {w̃1 · · · w̃n} to {w1 · · ·wm}: v1

...
vn

 = TV

 ṽ1
...
ṽn


 w1

...
wm

 = TW

 w̃1
...
w̃n


Thus, the relation A(v) = w reads (remember that each vector into play remains the
same, only representations change):

A(v) = A

{ṽ1 · · · ṽn}

 ṽ1
...
ṽn


 = A

{v1 · · ·vn}TV

 ṽ1
...
ṽn




= w = {w̃1 · · · w̃n}

 w̃1
...
w̃n

 = {w1 · · ·wm}TW

 w̃1
...
w̃n


Comparing the rightmost expressions and remembering the meaning of A, we finally
obtain:

A TV

 ṽ1
...
ṽn

 = TW

 w̃1
...
w̃n
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or

T−1W A TV

 ṽ1
...
ṽn

 =

 w̃1
...
w̃n


Thus, T−1W A TV is the representation of A with respect to the new bases.

Functions of time and derivatives

We use functions like x : R+ → X, that at each “time” t associates a state x(t), to
represent curves, trajectories in the state space, solutions to differential equations etc.
Let us fix a base {x1 · · ·xn} of the state space. Then, as happens to every vector in X,
to each value assumed by the function there corresponds a set of coordinates:

x(t) = {x1 · · ·xn}

 x1(t)
...

xn(t)


In particular, we may view the coordinates as functions of time by themselves, or the

column vector

 x1(t)
...

xn(t)

 ∈ Rn as a function of time. If the function x : R+ → X is

sufficiently regular, we may form its derivative at t:

ẋ(t) =
dx(t)

dt
= lim

h→0

x(t + h)− x(t)

h

But now exploiting our symbolic notation:

ẋ(t) = lim
h→0

{x1 · · ·xn}

 x1(t + h)
...

xn(t + h)

− {x1 · · ·xn}

 x1(t)
...

xn(t)


h

= {x1 · · ·xn} lim
h→0

 x1(t + h)
...

xn(t + h)

−
 x1(t)

...
xn(t)


h

= {x1 · · ·xn}

 ẋ1(t)
...

ẋn(t)


In words, if the base is fixed and constant, the derivatives of the coordinates are the
coordinates of the derivative.
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Representation of a linear system

Now it should be clear how to deal with a linear system. Let U, Y,X be vector spaces with
respective fixed bases {u1 · · ·um}, {y1 · · ·yp}, {x1 · · ·xn}. A linear system is a differential
equation in this form:

ẋ(t) = A(x(t)) + B(u(t))

y(t) = C(x(t)) +D(u(t))

where A : X → X, B : U → X, C : X → Y , D : U → Y are linear maps. So far,
everything is in an “abstract” setting. Only since the bases have been fixed we can make
them explicit:

{x1 · · ·xn}

 ẋ1(t)
...

ẋn(t)

 = A

{x1 · · ·xn}

 x1(t)
...

xn(t)


+ B

{u1 · · ·um}

 u1(t)
...

um(t)




{y1 · · ·yp}

 y1(t)
...

yp(t)

 = C

{x1 · · ·xn}

 x1(t)
...

xn(t)


+D

{u1 · · ·um}

 u1(t)
...

um(t)




and write everything in terms of the respective representations: ẋ1(t)
...

ẋn(t)

 = A

 x1(t)
...

xn(t)

+ B

 u1(t)
...

um(t)


 y1(t)

...
yp(t)

 = C

 x1(t)
...

xn(t)

+ D

 u1(t)
...

um(t)


With respect to such representations, changes of base apply like we have seen before.
For example, if {ũ1 · · · ũn} is another base of U , we know that the change of base from
{ũ1 · · · ũn} to {u1 · · ·um} is represented by a matrix TU . Substituting accordingly into
the equations of the system we obtain:

{x1 · · ·xn}

 ẋ1(t)
...

ẋn(t)

 = A

{x1 · · ·xn}

 x1(t)
...

xn(t)


+ B

{ũ1 · · · ũn}

 ũ1(t)
...

ũn(t)




= A

{x1 · · ·xn}

 x1(t)
...

xn(t)


+ B

{u1 · · ·um}TU

 ũ1(t)
...

ũn(t)




{y1 · · ·yp}

 y1(t)
...

yp(t)

 = C

{x1 · · ·xn}

 x1(t)
...

xn(t)


+D

{ũ1 · · · ũn}

 ũ1(t)
...

ũn(t)




= C

{x1 · · ·xn}

 x1(t)
...

xn(t)


+D

{u1 · · ·um}TU

 ũ1(t)
...

ũn(t)
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which, remembering the meaning of B and D, is represented as follows: ẋ1(t)
...

ẋn(t)

 = A

 x1(t)
...

xn(t)

+ B TU

 ũ1(t)
...

ũn(t)


 y1(t)

...
yp(t)

 = C

 x1(t)
...

xn(t)

+ D TU

 ũ1(t)
...

ũn(t)


hence (A,BTU , C,DTU) is the new representation.
This said, we usually deal with linear systems written in the following notation:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp. What does it mean? One possibility is
of course that this is a representation, i.e. that x(t), u(t) and y(t) are the columns of
coordinates of some vectors x(t), u(t), y(t) belonging to “abstract” vector spaces. In this
case the above notes apply without further observations.
The most frequent case, however, is that Rn, Rm, and Rp are regarded as the “abstract”
spaces themselves. This may lead to some confusion regarding what a “change of base”
may be. Indeed, to help intuition, you should always reason in terms of representations.
You can always assume that those “columns of numbers” x(t), u(t), y(t) are also “columns
of coordinates” with respect to some base, and if such base is not mentioned at all, you can

assume without problems that it is the canonical one, i.e. {e1 =
[

1 0 · · · 0
]T

, e2 =[
0 1 · · · 0

]T
, · · · , en =

[
0 0 · · · 1

]T}.
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