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ABSTRACT
Probabilistic Computation Tree Logic (PCTL) is a well-
known modal logic which has become a standard for ex-
pressing temporal properties of finite-state Markov chains
in the context of automated model checking. In this paper,
we consider PCTL for noncountable-space Markov chains,
and we show that there is a substantial affinity between
certain of its operators and problems of Dynamic Program-
ming. We prove some basic properties of the solutions to
the latter. We also provide two examples and demonstrate
how recovery strategies in practical applications, which are
naturally stated as reach-avoid problems, can be viewed as
particular cases of PCTL formulas.

Categories and Subject Descriptors
I.6.4 [Simulation and modeling]: Model Validation and
Analysis

General Terms
Theory

Keywords
PCTL, dynamic programming, Markov processes, integral
equation

1. INTRODUCTION
Reachability analysis of deterministic dynamical systems

constitutes a practically important and intensely researched
area in control theory. Over the years, a wide variety of tools
and methods have been developed to verify the dynamic
properties of these systems, for examples see [30, 10, 1, 2,
3, 31]. In particular, in [30, 31] the reachability problems
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considered are solved via dynamic programming (DP). As
a result, a large number of exact and approximate methods
for solving the central Bellman equation in DP [6, 7, 5, 36]
can be exploited for the solution of verification problems of
deterministic dynamical systems.
Recently, reachability analysis of stochastic Markovian

processes has gained significant interest, and mechanisms
for the verification of safety and performance properties have
been explored. An example of such a problem is to find the
probability, starting from a certain state x, of reaching a
target set within a certain number of time-steps, where the
state x could be labelled “almost safe” if such probability is
greater than, say, 1− ε. A related problem, which has been
studied recently by some of the authors, is that of maximiz-
ing the probability of reaching a target set, while avoiding a
“bad” set [40, 13]. This problem arose as a remedy for the
impossibility of imposing hard state constraints in stochastic
model predictive control. In general, if one considers an infi-
nite trajectory of a stochastic system subject to unbounded
noise, every compact state-constraint set is almost surely
going to be violated at some time. Thus, a good course of
action when this happens is to devise a recovery strategy to
drive the controlled system from the “bad” states back to
the target set.
If a control variable is unavailable or a control policy has

been predetermined, the verification of the stochastic sys-
tem reduces to calculating the likelihood of the occurance
of certain events. In this manner, the above problem is
directly related to stochastic model checking of finite-state
Markov models in that the analysis involves both reachabil-
ity and likelihood computations. Therefore, it is reasonable
to consider an extension of Probabilistic Computation Tree
Logic (PCTL), a modal logic developed for finite-state Mar-
kov chains, which forms the foundation for the automated
verification tools for finite-state Markov models, to general
state-space Markov chains.
Algorithms for stochastic model checking finite-state Mar-

kov models come from standard deterministic model check-
ing, linear algebra, and the analysis of Markov chains. Finite
state model checkers include the software tools PRISM [24],
SMART [14], E � MC2 [22], and MRMC [26], and have
been used to solve various problems over the last few years.
In the area of systems biology, probabilistic model checking
has been used in the analysis of biological pathways [21, 28]
and signalling events [33]. Additional examples of the use of
stochastic model checking include the probabilistic verifica-
tion of security protocols [4], dynamic power management
[39], and residual risks in safety-critical systems [19].
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In this paper, we consider the verification of general state-
space Markov chains through an extension of the standard
grammar and semantics of PCTL to noncountable-state Mar-
kov chains. The reader can find a similar extension in [25].
Readers interested in different modal logics that generalize
to general Markov processes may also see [18, 16].
As with the finite case, the evaluation of a PCTL formula

can be recursively reduced to the truth of atomic propo-
sitions by employing computations dictated by the PCTL
semantics. In this process of reduction, certain rules of the
semantics simply stipulate unions or intersections of sets,
while others involve the computation of integrals. It is in the
computation of the integrals where the bulk of the algorith-
mic methodology is contained. We show that the “bounded
until” operator, which considers the property of hitting a
target set starting from another set over a finite time hori-
zon, can be evaluated through a dynamic recursion. Ad-
ditionally, we prove that the “unbounded until” operator,
which considers the property of hitting a target set starting
from another set at some point in time, can be evaluated via
a DP-like Bellman equation. Further, we emphasize that,
while in the numerical examples provided we grid the state
space in order to solve the integral equations, any method
in the literature for the numerical computation of a DP can
be exploited for this problem.
Outline of the work: In section 2 we review the standard

grammar and semantics of PCTL for finite-state Markov
chains. In section 3 we extend the grammar and semantics
of PCTL to general state-space Markov chains. The unique-
ness of a certain function associated with the “unbounded
until” property is considered in section 4. Finally, section 5
concludes the paper with some applications and numerical
examples.

2. PROBABILISTIC COMPUTATION TREE
LOGIC

In this section we quickly review the definition and seman-
tics of PCTL for finite-state Markov chains. The reader is
referred to the original paper [20] or to the excellent survey
[29] for a detailed exposition.

2.1 Labelled Markov chains

Definition 1. A homogeneous, discrete-time, finite-state
Markov Chain is a triple (X,x,Q), where:
◦ X is a finite set of states;
◦ x is the initial state;
◦ Q is a transition probability matrix, which assigns to each
pair of states (xi, xj) the probability Qxi,xj of going from
the state xi to the state xj at a given time.

Consider the sample space Ω :=
∏∞
i=0 X, containing the

possible trajectories ω = (x0, x1, ..., xt, ...) of the chain, and
the product σ-algebra F on Ω. For a given trajectory ω =
(x0, x1, ..., xt, ...), let ω(t) := xt. It can be shown [9, pp. 90-
91] that there exists a unique probability measure on (Ω,F),
denoted by Px(·), such that Px(X0 = x) = 1 and Px(Xt+1 =
xt+1 | Xt = xt, Xt−1 = xt−1, ..., X0 = x) = Qxt,xt+1 .

Definition 2. Let A be a finite set of atomic proposi-
tions. A labelled Markov Chain is a quadruple (X,x,Q,L),
where:

◦ (X,x,Q) is a finite-state Markov chain;

◦ L : X → 2A is a set-valued function that assigns to each
state x ∈ X the set L(x) ⊂ A of all those atomic proposi-
tions that are true in the state.

2.2 Grammar and semantics of PCTL
The grammar of PCTL is as follows:
◦ T is a formula (meaning “true”).

◦ Each atomic proposition in A ∈ A is a formula.

◦ If Φ and Ψ are formulas, then ¬Φ and Φ∧Ψ are formulas.

◦ If φ is a “path formula” (see below) and p ∈ [0, 1], then
P∼p [φ] is a (state) formula. Here and throughout the rest
of the paper, ∼ is just shortand for one of the relations <,
6, >, or >. For example, P>0.9 [φ] is one such formula,
where “∼” ≡ “>” and p = 0.9.

The above grammar defines state formulas, that is, formu-
las whose truth can be decided for each state x ∈ X. The
meaning of the formulas in the first three points is the usual
one in the standard logic of propositions. The other stan-
dard formulas and operators can be obtained by means of
combinations of the above ones. For example, F (“false”)
can be defined as ¬T, Φ∨Ψ (“inclusive or”) as ¬(¬Φ∧¬Ψ),
and Φ→ Ψ (formal implication) as ¬Φ ∨Ψ).
The last kind of formula is what makes PCTL a modal

logic, since it allows to express the fact that, with probability
contained in some range, something will happen in time. It
relies on the definition of path formulas, that is, formulas
whose truth is decided for paths ω ∈ Ω. A formula like
P>0.9 [φ] means, intuitively, that the probability of taking a
path that satisfies φ is at least 0.9. If Φ and Ψ are state
formulas, we define the following to be path formulas:
◦ XΦ (“next”);

◦ Φ U6k Ψ (“bounded until”);

◦ Φ U Ψ (“unbounded until”).
Intuitively, XΦ means that next state will satisfy Φ; Φ U6k Ψ
means that at some time i, within k steps, Ψ will become
true, and until that time Φ will remain true; and Φ U Ψ
means that at some arbitrarily large time i, Ψ will become
true, Φ being true until then. (See the semantics below for
a precise definition.)
For example, the statement x � P>0.9

[
Φ U610 Ψ

]
means:

With probability at least 0.9, starting from the state x,
within 10 steps Ψ will become true, and until then Φ will
remain true. In a sense, the formula P>0.9

[
Φ U610 Ψ

]
it-

self denotes the set of all states ξ such that, starting from ξ,
with probability at least 0.9, etc. The above statement is of
course equivalent to x being a member of such a set.
Let A denote an atomic proposition, Φ and Ψ denote two

state formulas, and φ denote a path formula. The semantics
of PCTL is defined as follows:

x � T for all x ∈ X
x � A ⇔ A ∈ L(x)
x � ¬Φ ⇔ x 2 Φ

x � Φ ∧Ψ ⇔ x � Φ and x � Ψ
x � P∼p [φ] ⇔ Px ({φ}) ∼ p

With loose notation, {φ} stands for the set of all the paths
ω that satisfy a given path formula φ. Here is the related
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semantics:
ω � XΦ⇔ω(1) � Φ

ω � Φ U6k Ψ⇔∃i 6 k : ω(i) � Ψ and ∀j < i, ω(j) � Φ
ω � Φ U Ψ⇔∃i ∈ N0 : ω(i) � Ψ and ∀j < i, ω(j) � Φ

(2.1)

Due to the latter definitions, if φ is a path formula then
{φ} ≡ {ω : ω � φ} is always an event, that is, it always
belongs to F.
The two “until” operators allow us to define other oper-

ators which are standard in any temporal logic. For ex-
ample, given a state formula Φ, the path formula ♦6k Φ,
which means that eventually, within k steps, Φ will hap-
pen, can be defined as T U6k Φ, and the path formula
♦ Φ, which means that eventually, at some time, Φ will
happen, can be defined as T U Φ. Formulas containing
the standard “always” operator � can also be defined, al-
though not in the straightforward way one may expect at
first sight. The definition �Φ := ¬♦¬Φ is not correct, be-
cause PCTL does not allow for the negation of path formu-
las, but since path formulas can only appear within a P∼p [·]
formula, one can consider that Px ({Φ is always true}) =
1−Px ({eventually Φ becomes false}), and consequently de-
fine, for instance, x � P>p [�Φ] ⇔ x � P<(1−p) [♦¬Φ]. See
[29] for details.
The great relevance of PCTL for finite Markov chains lies,

above all, in the fact that the validity of arbitrarily complex
formulas at a given state can be decided exactly and in finite
time. In particular, dealing with the common operators ¬,
∧, ∨ etc. requires just the parsing of a tree of sub-formulas;
a “bounded until” formula can be decided recursively; and
an “unbounded until” formula requires the solution of a sys-
tem of linear equations. For these matters the reader is
referred to [20] and [29]. We shall not delve into details
here, because the relatively easy methods available for fi-
nite Markov chains cannot be easily extended to the case of
noncountable-space Markov processes, with respect to which
the decision of PCTL formulas will be a matter of computing
integrals recursively, or solving integral equations.

3. PCTL FOR GENERAL MARKOV PRO-
CESSES

In what follows we define PCTL grammar and semantics
on a noncountable space X in terms of a stochastic kernel
Q and a probability measure Px defined on the space of
trajectories of the process. The reader is also referred to
[25] for an abstract extension of PCTL to general Markov
chains.
Given a nonempty Borel set X (i.e., a Borel subset of a

Polish space), its Borel σ-algebra is denoted by B(X). By
convention, when referring to sets or functions, “measur-
able” means “Borel-measurable.” If X is a nonempty Borel
space, a stochastic kernel on X is a map Q : X ×B(X) →
[0, 1] such that Q(x, ·) is a probability measure on X for each
fixed x ∈ X, and Q(·, B) is a measurable function on X for
each fixed B ∈ B(X).
LetX be a nonempty Borel set, and letQ(·, ·) be a stochas-

tic kernel onX. For each t = 0, 1, . . . , we define the spaceHt
of admissible histories up to time t asHt :=

∏t

i=0 X, t ∈ N0.
A generic element ht of Ht, called an admissible t-history
is a vector of the form ht = (x0, x1, . . . , xt), with xj ∈ X
for j = 0, . . . , t. Hereafter we let the σ-algebra generated by

the history ht be denoted by Ft, t ∈ N0. Suppose the ini-
tial state x is given, and let δx denote the Dirac measure at
{x}. We consider the canonical sample space Ω :=

∏∞
i=0 X

and the product σ-algebra F on Ω. By a standard result
of Ionescu-Tulcea [37, Chapter 4, §3, Theorem 5] there ex-
ists a unique probability measure, denoted by Px(·) on the
measurable space (Ω,F) such that Px(X0 ∈ B) = δx(B) and
Px(Xt+1 ∈ B | ht) = Q(xt, B) for B ∈ B(X).

3.1 Grammar and semantics
The “labelling” function L is introduced in [20] and [29] as

a means to specify which states satisfy which atomic propo-
sitions. In other words, it is just a particular way to look at
the relation “x satisfies A”. It should be clear that an equally
legitimate way to accomplish the same is to substitute from
the beginning the “labelling” function L : X → 2A with a
function S : A → 2X , that assigns to each atomic proposi-
tion A the set S(A) of all those states that satisfy A. The
semantics can be redefined accordingly in a straightforward
way:

x � A ⇔ x ∈ S(A)

But since there is no substantial difference between saying
that a state x ∈ X satisfies a given property, and stating
that x belongs to a subset of X, namely the set of all the
states that satisfy that property, it is easily seen that pro-
ceeding along this way one may simply drop the distinction
between formulas and sets of states satisfying them. In the
following, we shall follow this idea consistently (mainly for
ease of notation). Thus, from now on, we shall assume that
the properties expressed by formulas are actually encoded
by measurable sets Φ ⊂ X, we will use the letters A,Φ,Ψ, ...
for both the formulas (or atomic propositions) and the sets
that encode them, and we will use the notations x � Φ and
x ∈ Φ somewhat interchangeably. In the same fashion, we
will drop the distinction between path formulas and events
in the process’s probability space.
Let us denote the family of atomic propositions with a

family of Borel measurable sets A ⊂ B(X), where X ∈ A.
The grammar of PCTL is defined exactly as before:
◦ T is a formula (encoded by the whole space X).

◦ Each atomic proposition A ∈ A is a formula.

◦ If Φ and Ψ are formulas, then ¬Φ and Φ∧Ψ are formulas.

◦ If φ is a path formula and p ∈ [0, 1], then P∼p [φ] is a
(state) formula.

The following are path formulas: XΦ, Φ U6k Ψ, and Φ U Ψ.
Now we define the semantics of PCTL formulas for each

possible initial state x ∈ X. Let A denote an atomic propo-
sition and Φ and Ψ denote formulas (measurable sets). We
define:

x � T for all x ∈ X
x � A ⇔ x ∈ A

x � ¬Φ ⇔ x ∈ ΦC

x � Φ ∧Ψ ⇔ x ∈ Φ ∩Ψ
x � P∼p [φ] ⇔ Px ({φ}) ∼ p

As in the finite state case, we can also define F := ¬T,
Φ ∨ Ψ := ¬(¬Φ ∧ ¬Ψ), and Φ → Ψ := ¬Φ ∨ Ψ), and of
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course we have
x � Φ ∨Ψ ⇔ x ∈ Φ ∪Ψ

x � Φ→ Ψ ⇔ x ∈ ΦC ∪Ψ

Note that all the formulas obtainable from atomic proposi-
tions by means of the operators ¬,∧,∨,→ are encoded by
sets that belong to σ(A). The semantics of path formulas is
defined exactly as in equation (2.1).

3.2 “Next”
We will now examine the state formulas derived from the

three path formulas in greater detail. The formula arising
from the “next” operator is trivial. Indeed,

Px (XΦ) = Px ({ω : ω(1) ∈ Φ}) = Px (X1 ∈ Φ) = Q(x,Φ)

Hence,

x � P∼p [XΦ] ⇔ Q(x,Φ) ∼ p

Note that P∼p [XΦ] is a measurable set in its own right. For
example, P60.5 [XΦ] is the 0.5-sub-level set of the measur-
able function Q(·,Φ). Indeed, for each Φ ∈ B(X), the set
{x : Q(x,Φ) ∼ p} belongs to B(X) by the measurability of
Q(·,Φ).

3.3 “Bounded until”
Suppose that the process starts from x0 = x. On the prob-

ability space of our Markov process we define the following
event:{

Φ U6k Ψ
}

:= {x ∈ Ψ} ∪ {x ∈ Φ, x1 ∈ Ψ}∪
{x, x1 ∈ Φ, x2 ∈ Ψ} ∪ ... ∪ {x, x1, ..., xk−1 ∈ Φ, xk ∈ Ψ}

= {x ∈ Ψ} t {x ∈ Φ\Ψ, x1 ∈ Ψ} t {x, x1 ∈ Φ\Ψ, x2 ∈ Ψ}
t ... t {x, x1, ..., xk−1 ∈ Φ\Ψ, xk ∈ Ψ}

(3.1)
where t denotes a disjoint union. The probability of the set{

Φ U6k Ψ
}
can be computed directly using the additivity

of Px:

Px
(
Φ U6k Ψ

)
=

1 if x ∈ Ψ
Px(x1 ∈ Ψ) + Px(x1 ∈ Φ\Ψ, x2 ∈ Ψ) + · · · if x ∈ Φ\Ψ
· · ·+ Px(x1, ..., xk−1 ∈ Φ\Ψ, xk ∈ Ψ)

0 otherwise
(3.2)

By the Markov property, all the latter probabilities can be
expressed in terms of Q. For instance:

Px (x1, ..., xk−1 ∈ Φ\Ψ, xk ∈ Ψ)

=
∫

Φ\Ψ
Q(x,dξ1) · · ·

∫
Φ\Ψ

Q(ξk−3, dξk−2)·∫
Φ\Ψ

Q(ξk−2,dξk−1)Q(ξk−1,Ψ).

Nevertheless, Px
(
Φ U6k Ψ

)
can be computed more ex-

pressively in a recursive fashion, namely as successive iter-
ates of a certain linear operator in a functional space. The
fixed points of such operator will also play a key role in the
next sections. Let therefore Mb(X) be the set of all the
measurable and bounded functions defined over X. Mb(X)
is a Banach space with the norm ‖f‖∞ := supx∈X f(x). For

fixed Φ and Ψ, let the operator L : Mb(X) → Mb(X) be
defined as follows:

L[W ](x) := 1Ψ(x) + 1Φ\Ψ(x)
∫
X

Q(x,dξ)W (ξ) (3.3)

Given Φ and Ψ, let M01
b (Φ,Ψ) ⊂ Mb(X) be the set of

functions W such that:
◦ for all x ∈ X, 0 6W (x) 6 1;
◦ for all x ∈ Ψ, W (x) = 1;
◦ for all x ∈ X\(Φ ∪Ψ), W (x) = 0.

Lemma 3. The set M01
b (Φ,Ψ) is closed in Mb(X), and

L mapsM01
b (Φ,Ψ) into itself.

Proof. The closedness of M01
b (Φ,Ψ) is trivial, because

all of its three defining properties are preserved even by
pointwise convergence. Let W ∈ M01

b (Φ,Ψ). The measur-
ability of L[W ] follows from the fact that if Q is a stochas-
tic kernel, and W is a measurable bounded function, then
the function x 7→

∫
X
Q(x, dξ)W (ξ) is also measurable and

bounded (see for instance [23, Appendix C]). The bounds
0 6 L[W ](x) 6 1 are obvious, since the same bounds hold
for the integral, Q(x, ·) being a probability on X. The fact
that L[W ](x) = 1 ∀x ∈ Ψ and L[W ](x) = 0 ∀x ∈ X\(Φ∪Ψ)
is also obvious due to the indicator functions in the defini-
tion of L.

For fixed Φ and Ψ, let us now define recursively:
V0 := 1Ψ

Vk+1 := L[Vk]
(3.4)

Lemma 4. For all k > 0, Vk(x) ≡ Px
(
Φ U6k Ψ

)
. More-

over, for all x, the sequence {Vk(x)} is nondecreasing.
Proof. Substituting recursively V1 into V2, V2 into V3

and so on, we obtain

V2(x) = 1Ψ(x) + 1Φ\Ψ(x)Q(x,Ψ)

+ 1Φ\Ψ(x)
∫

Φ\Ψ
Q(x, dξ1)Q(ξ1,Ψ),

V3(x) = 1Ψ(x) + 1Φ\Ψ(x)Q(x,Ψ)

+ 1Φ\Ψ(x)
∫

Φ\Ψ
Q(x, dξ1)Q(ξ1,Ψ)

+ 1Φ\Ψ(x)
∫

Φ\Ψ
Q(x, dξ1)

∫
Φ\Ψ

Q(ξ1, dξ2)Q(ξ2,Ψ)

...

Vk(x) = 1Ψ(x) + 1Φ\Ψ(x)·

k∑
i=1

i−1 times︷ ︸︸ ︷∫
Φ\Ψ

Q(x, dξ1) · · ·
∫

Φ\Ψ
Q(ξi−2, dξi−1)Q(ξi−1,Ψ).

Then, by the Markov property,

Vk(x) = 1Ψ(x) + 1Φ\Ψ(x)
k∑
i=1

Px(x1, ..., xi−1 ∈ Φ\Ψ, xi ∈ Ψ)

= Px (x ∈ Ψ) +
k∑
i=1

Px (x, x1, ..., xi−1 ∈ Φ\Ψ, xi ∈ Ψ)

= Px ({x ∈ Ψ} t ... t {x, x1, ..., xk−1 ∈ Φ\Ψ, xk ∈ Ψ})

= Px
(
Φ U6k Ψ

)
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The first assertion is proved. The second one is easily proved
by induction. Obviously V1(x)−V0(x) = 1Φ\Ψ(x)Q(x,Ψ) >
0. Suppose now that Vk+1(x)− Vk(x) > 0. Then Vk+2(x)−
Vk+1(x) = 1Φ\Ψ(x)

∫
X
Q(x,dξ) (Vk+1(ξ)− Vk(ξ)) > 0. It

follows by induction that for all k > 0 and all x ∈ X we
have Vk+1(x) > Vk(x).

The semantics of the “bounded until” PCTL operator is
now easy to explain. In view of Lemma 4, given Φ and Ψ
we have:

x � P∼p
[
Φ U6k Ψ

]
⇔ Vk(x) ∼ p

Since Vk is Borel measurable, any super- or sub-level set of
the kind P∼p

[
Φ U6k Ψ

]
is a Borel subset of X.

3.4 “Unbounded until”
Finally, we develop the “unbounded until” PCTL formula

in detail. Suppose, as before, that the process starts from
x0 = x. In the process’s probability space we consider the
event
{Φ U Ψ} = {∃τ ∈ N0 : x, x1, ..., xτ−1 ∈ Φ, xτ ∈ Ψ}

= {x ∈ Ψ} ∪ ... ∪ {x, x1, ..., xk−1 ∈ Φ, xk ∈ Ψ} ∪ ...
= {x ∈ Ψ} t ... t {x, x1, ..., xk−1 ∈ Φ\Ψ, xk ∈ Ψ} t ...

(3.5)

Its probability is as follows:

Px (Φ U Ψ) =
1 if x ∈ Ψ,∑+∞

k=1 Px(x1, ..., xk−1 ∈ Φ\Ψ, xk ∈ Ψ) if x ∈ Φ\Ψ,
0 otherwise.

(3.6)
Notice, however, that the “unbounded until” event is indeed
the limit of the nondecreasing sequence of “bounded until”
events we have considered above, i.e.,

{Φ U Ψ} =
+∞⋃
k=0

{
Φ U6k Ψ

}
Consequently, for all x its probability can be obtained as the
following limit:

Px (Φ U Ψ) = lim
k→+∞

Px
(
Φ U6k Ψ

)
= lim
k→+∞

Vk(x)

(This limit is also a supremum, since the Vk form a nonde-
creasing sequence.) We define

V (x) := lim
k→+∞

Vk(x) (3.7)

Lemma 5. The function V defined in (3.7) belongs to
M01

b (Φ,Ψ) and satisfies the following integral equation:

V (x) = 1Ψ(x) + 1Φ\Ψ(x)
∫
X

Q(x,dξ)V (ξ) (3.8)

(In other words, it is a fixed point for L.)

Proof. The three properties required for the belonging
toM01

b (Φ,Ψ) are immediate, for they hold for all the Vk’s.
Consider again the recursive definition (3.4):

Vk+1(x) = 1Ψ(x) + 1Φ\Ψ(x)
∫
X

Q(x,dξ)Vk(ξ) (3.9)

From Lemmas 3 and 4, the Vk’s are Borel measurable and
non-negative, and they form a nondecreasing sequence. By
definition of V , they converge pointwise to V . Therefore,
by the monotone convergence theorem (see for instance [37,
Theorem 1, p. 13]) for all x we have

lim
k→+∞

∫
X

Q(x,dξ)Vk(ξ) =
∫
X

Q(x,dξ)V (ξ)

Hence, letting k → +∞ in both sides of (3.9), we obtain
(3.8).

The semantics of the “unbounded until” PCTL operator
is now obvious. For given Φ and Ψ, we have:

x � P∼p [Φ U Ψ] ⇔ V (x) ∼ p

Since V is the limit of measurable functions, it is measurable
itself, hence its super- or sub-level sets P∼p [Φ U Ψ] are again
Borel subsets of X.

3.5 Notes on equation (3.8)
First of all, note that the function V defined in (3.7) is

indeed a solution to equation (3.8), but it is by no means
guaranteed to be its unique solution. As a counterexample,
let us consider the operator ♦ we have mentioned in the
finite case. Let Ψ be a formula (set). The path formula
♦Ψ (“eventually Ψ”) is defined as T U Ψ. Its probability
V (x) = Px (T U Ψ) must therefore satisfy:

V (x) = 1Ψ(x) + 1ΨC (x)
∫
X

Q(x,dξ)V (ξ) (3.10)

Suppose that the set ΨC is absorbing (that is, Q(x,Ψ) = 0
for all x ∈ ΨC). Then, it is easy to see that both V (x) ≡
1Ψ(x) and V (x) ≡ 1 are solutions of (3.10) (the meaningful
one being the former). As another limit example, consider
the event ♦F (“eventually, false will hold true”!). Its proba-
bility, both by immediate intuition and by calculation, must
be zero for all x. Nevertheless, any constant function V is a
solution to the corresponding equation:

V (x) = 1∅(x) + 1X(x)
∫
X

Q(x, dξ)V (ξ) =
∫
X

Q(x,dξ)V (ξ)

(irrespective of the structure of Q).
We can get around this issue with a characterization of V

among the solutions of (3.8). We have the following result:

Lemma 6. Let {Wα} be the family of all the non-negative
solutions to (3.8), i.e.,

Wα(x) = 1Ψ(x) + 1Φ\Ψ(x)
∫
X

Q(x,dξ)Wα(ξ)

Then, for all x

V (x) = inf
α
Wα(x) ≡ min

α
Wα(x)

Proof. First, we show that, for any Vk defined in (3.4)
and for any non-negative solutionW to (3.8), it holds Vk(x) 6
W (x). Define V−1(x) ≡ 0 on X. Then we have L[V−1] = V0.
Now, for all x ∈ X, W (x)− V−1(x) = W (x) > 0 by hypoth-
esis. Assume that W (x)− Vk(x) > 0 for all x. Then

W (x)− Vk+1(x) = L[W ](x)− L[Vk](x)

= 1Φ\Ψ(x)
∫
X

Q(x,dξ) (W (ξ)− Vk(ξ)) > 0.
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It follows by induction that Vk(x) 6 W (x) for all x ∈ X
and for all k ∈ N0. Since the above inequality holds for
all of the Vk’s, it also holds for their supremum V , that is,
V (x) 6W (x) for any non-negative solutionW to (3.8). The
assertion follows since, by Lemma 5, V is itself a solution to
(3.8).

4. UNIQUENESS OF V

This section treats the issue of uniqueness of solutions to
the integral equation (3.8). We approach the problem from
two different directions, the first is functional analytic:

Proposition 7. Suppose that

sup
x∈Φ\Ψ

Q(x,Φ\Ψ) < 1.

Then

(1) L is a contraction onM01
b (Φ,Ψ);

(2) equation 3.8 has a unique solution V ;

(3) the elements Vk defined in 3.4 converge to V in the ‖·‖∞
norm, that is uniformly in X.

Proof. Let α = supx∈Φ\Ψ Q(x,Φ\Ψ). Let W1,W2 ∈
M01

b (Φ,Ψ). For all x ∈ Ψ ∪ ΦC |L[W1](x)− L[W2](x)| = 0,
whereas for all x ∈ Φ\Ψ, we have

|L[W1](x)− L[W2](x)|

=
∣∣∣∣∫
X

Q(x,dξ)W1(ξ)−
∫
X

Q(x,dξ)W2(ξ)
∣∣∣∣

6

∫
X

Q(x,dξ) |W1(ξ)−W2(ξ)|

=
∫

Φ\Ψ
Q(x,dξ) |W1(ξ)−W2(ξ)|

6

∫
Φ\Ψ

Q(x,dξ) ‖W1 −W2‖∞

= Q(x,Φ\Ψ) ‖W1 −W2‖∞
6 α ‖W1 −W2‖∞

Since the above bound holds for each x, it holds also for the
supremum over Φ\Ψ, and consequently for the supremum
over X:

‖L[W1]− L[W2]‖∞ = sup
x∈X
|L[W1](x)− L[W2](x)|

6 α ‖W1 −W2‖∞
This concludes the proof of claim (1). Claims (2) and (3)

follow by the Contraction Mapping Theorem [38, Theorem
9.23] sinceM01

b (Φ,Ψ) is closed.

Corollary 8. Suppose that supx∈Φ\Ψ Q(x,Φ\Ψ) < 1.
Suppose moreover that Q satisfies the strong Feller (or strong
continuity) property1. Then the restriction of V to Φ\Ψ is
continuous.
1A stochastic kernel Q(·, ·) is said to be strongly Feller if,
for any bounded Borel-measurable function f : X → R, the
function F : X → R defined as F (x) =

∫
X
Q(x,dξ)f(ξ) is

continuous and bounded. See [23, Appendix C] for details.

Proof. Let V̄ and V̄k denote the restriction to Φ\Ψ of
V and Vk respectively. In particular, we have

V̄0(x) = 0

V̄k+1(x) =
∫
X

Q(x,dξ)Vk(ξ)

=
∫

Φ\Ψ
Q(x, dξ)V̄k(ξ) +Q(x,Ψ)

(4.1)

Obviously V̄0 is continuous. Due to the strong Feller prop-
erty, x 7→ Q(x,Ψ) is continuous, and if V̄k is measurable
then x 7→

∫
Φ\Ψ Q(x,dξ)V̄k(ξ) and therefore V̄k+1 are con-

tinuous. By induction, all the V̄k are continuous. Hence,
{V̄k} is a sequence of continuous functions that converges
uniformly to V̄ . Thus, V̄ is also continuous.

The second direction is probabilistic: Let us define two
random times

τ := inf
{
t ∈ N0

∣∣Xt ∈ Ψ
}

and

τ ′ := inf
{
t ∈ N0

∣∣Xt ∈ X \ (Φ ∪Ψ)
}
.

(4.2)

It is not difficult to see that τ and τ ′ are stopping times with
respect to the filtration (Ft)t∈N0 . Also observe that

Px
(
ΦUΨ

)
= Px(τ < τ ′, τ <∞),

V (x) = Px(τ < τ ′, τ <∞) = Ex

[
τ∧τ ′∑
t=0

1Ψ(Xt)

]
.

Proposition 9. Assume that τ ∧ τ ′ < ∞ almost surely.
Then, for u ∈M01

b (Φ,Ψ) we have

(i) u 6 V whenever u satisfies the functional inequality
u 6 L[u], and

(ii) u > V whenever u satisfies u > L[u],

where all inequalities are interpreted pointwise on X. In
particular, V is the unique solution to the equation u = L[u]
on the setM01

b (Φ,Ψ).

Proof. We prove (i) first. Fix u ∈ M01
b (Φ,Ψ) and x ∈

X. From Lemma 4 it follows readily that L is a monotone
operator on Mb. Iterating the inequality u 6 L[u] n-times
we arrive at

u(x) 6 L[u](x)

6 L[L[u]](x) 6 · · · 6

n−times︷ ︸︸ ︷
L[L[· · ·L[u] · · · ]]

= 1Ψ(x) + 1Φ\Ψ(x)
∫

Φ∪Ψ
Q(x, dξ1)

(
1Ψ(ξ1)+

1Φ\Ψ(ξ1)
∫

Φ∪Ψ
Q(ξ1, dξ2)

(
· · ·+ · · ·

(
1Ψ(ξn−1)+

1Φ\Ψ(ξn−1)
∫

Φ∪Ψ
Q(ξn−1, dξn)u(ξn)

)))
=

(
1Ψ(x) + 1Φ\Ψ(x)

∫
Φ∪Ψ

Q(x,dξ1)
(

1Ψ(ξ1)+

1Φ\Ψ(ξ1)
∫

Φ∪Ψ
Q(ξ1, dξ2)

(
· · ·+ · · ·

(
1Ψ(ξn−2)+
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1Φ\Ψ(ξn−2)
∫

Φ∪Ψ
Q(ξn−2, dξn−1)1Ψ(ξn−1)

)
· · ·
)))

+

(
1Φ\Ψ(x)

∫
Φ\Ψ

Q(x,dξ1) · · ·
∫

Φ\Ψ
Q(ξn−2, dξn−1)·

∫
Φ∪Ψ

Q(ξn−1, dξn)u(ξn)

)

= Ex

[(n−1)∧τ∧τ ′∑
t=0

1Ψ(Xt)

]
+

Ex
[
1Φ\Ψ(X(n−1)∧τ∧τ ′)(1Φ∪Ψ · u)(Xn∧τ∧τ ′)1{τ∧τ ′<∞}

]
.

The left-hand side above is independent of n, and since τ ∧
τ ′ <∞ almost surely, taking limits we get

u(x) 6 lim
n→∞

Ex

[(n−1)∧τ∧τ ′∑
t=0

1Ψ(Xt)

]
+

lim
n→∞

Ex
[
1Φ\Ψ(X(n−1)∧τ∧τ ′)·

(1Φ∪Ψ · u)(Xn∧τ∧τ ′)1{τ∧τ ′<∞}
]

= Ex

[
τ∧τ ′∑
t=0

1Ψ(Xt)

]
+

Ex
[
1Φ\Ψ(Xτ∧τ ′)(1Φ∪Ψ · u)(Xτ∧τ ′)1{τ∧τ ′<∞}

]
= V (x) + 0.

To justify the interchange of integration and limit above
we have employed the monotone and the dominated con-
vergence theorems for the first and the second terms, re-
spectively, and since Xτ∧τ ′ 6∈ Φ \ Ψ by definition, the last
expectation vanishes. Since u ∈ M01

b (Φ,Ψ) and x ∈ X are
arbitrary, we see that u 6 L[u] implies u 6 V whenever
u ∈ M01

b (Φ,Ψ). The proof of (ii) follows exactly the same
arguments as above, with “>” replacing every “6” every-
where in the above steps; we omit the details. Uniqueness
of V as a solution of the functional equation u = L[u] on
the setM01

b (Φ,Ψ) follows at once from (i) and (ii).

5. EXAMPLES
We demonstrate the effectiveness of the PCTL verifica-

tion methodology on two simple problems with potentially
important implications. The first example comes from the
literature on fishery management, where multiple recovery
strategies for a single species fishery are considered. The
second example comes from the finance literature, where the
problem of early retirement is explored. In both examples,
the problems are solved numerically by gridding the state
space.

5.1 Recovery Strategies in Fishery Manage-
ment

Overexploitation can lead to both a decrease in the fish
stock to a level below which maximum sustainable yield
(MSY) cannot be supported and/or a decrease in fish stock
to a level where net revenue has been driven to zero [15].
When the fish stock drops below this level, appropriate re-
covery strategies are necessary to recover the fish stock while
minimizing economic loss. In this example, we use the PCTL

framework to evaluate the effectiveness of various recovery
strategies (or non-strategies) over a finite time horizon for
the recovery of a fish population.
We consider a discrete time Markov model of a single

species fishery motivated by [35]. For a time horizon k =
0, 1, . . . N , the evolution of the fish biomass within a fishable
area is given by the stochastic difference equation [35]

xk+1 = (1− νk)xk + γkR(xk)− δkC(xk),

where xk is the fish biomass at time k, R(·) is a function
representing the recruitment (e.g., addition through birth)
of fish, C(·) is the catch function, νk is a random variable
that represents fish mortality during stage k, γk is a random
variable representing the variability in the recruitment of the
fish population, and δk is a random variable representing the
variability in the catch. The species recruitment function is
given by

R(xk) = max
{
rxk

(
1− xk

2K

)
, 0
}
,

where r ∈ [0, 1] is the per-capita recruitment at time step k
and K is equal to half the biomass limit (i.e., upper bound
on the fish population) for the fishable area.
We consider three different recovery strategies implemented

through the target catch function. In the first, we apply a
constant target catch according to the deterministic MSY
[27], i.e.

C(xk) = CMSY = K(r − µ)2

2r ,

where µ is the deterministic mortality rate. The second re-
covery strategy is given by the Harvest Control Rule (HCR)

C(xk) =
{
CMSY

xk
K

if xk < K,

CMSY otherwise.

Lastly, we consider the strategy C(xk) = 0.
Following [35], we assign the values K = 200, r = 1,

and µ = 0.2, and take all random variables to be i.i.d.
according to the following distributions ν ∼ N (µ, 0.12),
γ ∼ N (1, 0.62), and δ ∼ N (1.1, 0.22). Using the MSY as
a measure of safety for the system, we assign the target op-
erating region for the fishery to be K = [150, 400] and the
safe operating region to be K′ = ]0, 400].
For the verification of the control strategies, we consider

the set of initial states (i.e., fish biomass at k = 0) that
satisfy

P>0.9
[
K′U65K

]
.

That is, we are interested in the set of states that, with a
probability greater than 90 percent, will enter the target op-
erating region K within N = 5 time steps while remaining
in K′ until then. The functions satisfying the dynamic re-
cursion (3.9) for the three different recovery strategies are
shown in Figure 1. According to the computational results,
the sets that satisfy the bounded until operator are approxi-
mately ∅, [65, 400], and [45, 400] for the three policies respec-
tively. It is interesting to note that under the deterministic
MSY quota policy the solution is the empty set, meaning
that there are no initial states which result in recovery with
90 percent certainty over the short time horizon. Further,
the gain in reliable recovery between the HCR strategy and
a complete fishing stop is minimal, indicating that it may

259



0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

V
N

(x
)

(a) Value Function

0 50 100 150
0

0.2

0.4

0.6

0.8

1

x

V
N

(x
)

(b) Value Function

0 50 100 150
0

0.2

0.4

0.6

0.8

1

x

V
N

(x
)

(c) Value Function

Figure 1: Results for the Recovery Problem at time k = 0. The function VN (·) for different recovery policies
are given in (a) MSY, (b) HCR, and (c) Fishing Stop.

be in the economic interest of the fishery to use the HCR
policy in the region.

5.2 A Problem of Early Retirement
Recently, increased attention has been given to stochastic

risk models with investment income in the discrete time set-
ting [11, 17, 42, 32, 41, 12, 43]. In most cases the probability
of ruin over a finite or infinite time horizon is the main area
of interest, with the infinite horizon case being mathemat-
ically easier and thus more popular in the literature [34].
Interestingly enough, personal retirement funds fall into the
same category as basic ruin models, and therefore can be
modeled as such. Further, the individual is often as con-
cerned with the short term financial gain (e.g., achieving a
financial target for the fund) as with the risk of losing the
investment (i.e., ruin).
Motivated by [8], we consider a discrete time Markov

model of an individual retirement fund. Based on [34], the
evolution of the retirement fund xk over a finite horizon
k = 0, 1, . . . , N is given according to the stochastic differ-
ence equation

xk+1 = axk(1 + Sk) + bxk(1 +Rk) + cxk + uk,

where xk is the value of the retirement fund and uk is the
yearly individual contribution to the fund. Sk and Rk are
i.i.d. random variables representing the average rates of re-
turn for a safe investment and a risky investment over one
year, a is the percentage of capital invested in the safe as-
set, b is the percentage of capital invested in the risky asset,
and c is the percentage capital not invested at all. Note the
restriction that a+ b+ c = 1.
For simplicity, all random variables are assumed to be

i.i.d. with Sk ∼ N (0.03, 0.0052) and Rk ∼ N (0.1, 0.22) for
all k = 0, 1, . . . , N . We consider three different investment
strategies (i) a = 0.4, b = 0.4, and c = 0.2, (ii) a = 0.8,
b = 0.2, and c = 0, and (iii) a = 0.2, b = 0.8, and c = 0.
For each strategy, the yearly contribution is uk = 2500 for
all k = 0, 1, . . . , N .
Consider the target setK = [200000,+∞[ and the safe set

K′ = ]0,+∞[. Over a finite time horizon of N = 20 years,
we would like to identify the set of all initial investments
x0 ∈ R such that the retirement fund hits the target set K
(i.e., surpasses 200000) while avoiding total financial ruin
with a probability greater than 85 percent. To this end, we

consider the PCTL formula

P>0.85
[
K′U620K

]
. (5.1)

For each investment strategy, the function satisfying the
dynamic recursion (3.9) at time k = 0 is shown in Figure 2.
According to the computational results, the set that satisfies
the bounded until operator for each strategy is given by (i)
[70000,+∞[, (ii) [66500,+∞[, and (iii) [51500,+∞[. Thus,
with an initial investment of more than 51500 swiss francs,
yearly contributions in the amount of 2500 swiss francs, and
investment strategy (iii), an individual has an 85 percent
chance of retiring within 20 years. However, if we were to
consider an increasing probability of success, at some point
the strategy with the largest set satisfying the bounded until
operator would switch from (iii) to (ii).

6. CONCLUSION AND FUTURE WORK
In this paper, we have extended the grammar and seman-

tics of PCTL for finite-state Markov chains for the verifica-
tion of general state-space Markov chains. We have shown
that the bulk of the computational methodology is in the
evaluation of the “bounded until” and “unbounded until”
operators. And that the evaluation of these operators re-
duces to the computation of DP-like integral equations, for
which there is a rich numerical history.
In the future, extensions to the language to capture addi-

tional trajectories will be explored which maintain the DP-
like structure. Also, numerical methods for the efficient and
accurate evaluation of the DP integral equations are being
evaluated and applied to various sample problems.
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