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Hellinger Versus Kullback–Leibler Multivariable
Spectrum Approximation

Augusto Ferrante, Michele Pavon, and Federico Ramponi

Abstract—In this paper, we study a matricial version of a gen-
eralized moment problem with degree constraint. We introduce
a new metric on multivariable spectral densities induced by the
family of their spectral factors, which, in the scalar case, reduces
to the Hellinger distance. We solve the corresponding constrained
optimization problem via duality theory. A highly nontrivial exis-
tence theorem for the dual problem is established in the Byrnes–
Lindquist spirit. A matricial Newton-type algorithm is finally pro-
vided for the numerical solution of the dual problem. Simulation
indicates that the algorithm performs effectively and reliably.

Index Terms—Approximation of multivariable power spectra,
convex optimization, Hellinger distance, Kullback–Leibler index,
matricial descent method.

I. INTRODUCTION

IN the past ten years, building on their previous work, Byrnes,
Georgiou, Lindquist, and collaborators have developed a

broad program on generalized analytic interpolation and gen-
eralized moment problems that arise in spectral estimation and
robust control [3], [6]–[11], [17], [21]–[27], [42]. While we re-
fer the reader to the cited literature for better motivation, we
recall that many problems of H∞ control, signal processing,
and maximal power transfer in circuit theory may be reduced to
a Nevanlinna–Pick interpolation problem [6], [16], [52]. In all
of these applications, it is crucial to put a bound on the degree
of the interpolant so that the controller, filter, etc., has lim-
ited complexity. As is well known, while the Nevanlinna–Pick
theory features a simple criterion in terms of the Pick matrix
for the existence of solutions and beautiful iterative techniques
(Schur-type algorithms) to produce solutions when they exist,
the degree specification on the interpolant is much harder to cap-
ture in this framework. The overcoming of this difficulty by the
Byrnes, Georgiou, and Lindquist school has opened the way to
several new applications in speech processing, bioengineering,
and robust control [5], [32], [43]. Notice that [3], [25], and [27]
deal with the more difficult multidimensional case.

One of the central steps, in these authors’ approach, is the
formulation of a convex optimization problem that includes as
a (very) special case maximum entropy problems. The smooth
parametrization of the complete class of interpolants occurs in
the optimization setting, where it is crucial to the dependence
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of the criterion on certain a priori parameters, cf. e.g., Remark
3.2 discussed later. It should be observed that, as in all of the
previously mentioned applications, the primal problem is infi-
nite dimensional, while the dual problem is finite dimensional.
Hence, it is natural to seek the (unique) solution to the primal
problem via duality theory.

In [31], Georgiou and Lindquist have applied this convex opti-
mization approach to constrained spectrum approximation. The
basic ingredients of the optimization problem are the following:
An a priori power spectral density Ψ is given. Then, new data
become available in the form of asymptotic state-covariance
statistics for a bank of filters. The latter induces a linear con-
straint on the family of spectral densities. It is then necessary to
find a spectrum Φ that satisfies the constraint and is as close as
possible to Ψ in a prescribed metric.

In [31], a Kullback–Leibler criterion was employed, where
minimization is performed with respect to the second argument.
This unusual choice was dictated by two considerations: 1) the
desire to have maximum entropy as a special case (Ψ = I); 2)
the simple form of the optimal solution belonging to a para-
metric family of “rational” densities. The latter class, as well as
another parametric class of “exponential type” [26, p. 3], were
recognized from the start [7], [9] to be critical points of loga-
rithmic entropy-like functionals. In [26] and in [27], homotopy
like methods were proposed as an effective tool to solve a class
of scalar and multidimensional generalized moment problems.

In this paper, we investigate constrained approximation of
spectral density functions in a different metric, also originating
in mathematical statistics, namely the Hellinger distance [14],
[35], [39], [40]. The main reason for this choice is that, as for
the Kullback–Leibler case, this approximation leads to solutions
of bounded degree, but, differently from the Kullback–Leibler
method, it generalizes nicely to the multivariable case. The cru-
cial observation is that the Hellinger distance between two scalar
spectra amounts to the minimum L2 distance between corre-
sponding spectral factors. This leads us to a natural extension of
the Hellinger distance to multivariable spectra (Theorem 6.1).
We then attack the corresponding multivariable problem and
obtain an explicit form for the optimal solution (see Theorem
7.2). We also establish an existence theorem for the dual prob-
lem (Theorem 7.7) that parallels a corresponding fundamental
result due to Byrnes and Lindquist [11]. We finally investigate
iterative numerical methods to solve the dual problem. Although
the dual problem is an unconstrained convex finite-dimensional
problem, the numerics is nontrivial. As observed in [3, Sec. VI]
and [31, Sec. VII], the dual functional has an unbounded gradi-
ent at the boundary. Reformulation of the problem to avoid this
difficulty may lead to loss of global convexity, requiring initial-
ization of any descent method close to the minimum [3], [6],
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[17], [42]. As in [45] for the Kullback–Leibler case, we prefer
to employ matricial descent methods. A number of nontrivial
difficulties in the algorithms are overcome by resorting to ideas
and results from spectral factorization theory. In our simulation,
these iterative schemes (particularly a Newton-type method with
backtracking line search) appear to perform effectively and re-
liably. This method is further analyzed and developed in [47].
There, a global convergence theorem is established. In [47],
moreover, the spectrum approximation procedure introduced in
this paper is applied to multivariate spectral estimation.

The paper is outlined as follows. Section II is devoted to
the formulation of a generalized moment problem in the sense
of Byrnes–Georgiou–Lindquist, and to the corresponding ex-
istence question. In Section III, two approximation problems
for scalar spectral densities are introduced. The first employs a
Kullback–Leibler-type criterion while the second features the
Hellinger distance. Optimality conditions for these two prob-
lems are presented in Section IV. The multivariable version of
the two approximation problems, and the corresponding diffi-
culties in the variational analysis, are discussed in Section V.
Section VI is devoted to the introduction of a new metric on mul-
tivariable spectral densities induced by the corresponding spec-
tral factors. The multivariable spectrum approximation prob-
lem with respect to the distance of Section VI is solved in
Section VII. Finally, Section VIII deals with the numerical so-
lution of the dual problem.

II. GENERALIZED MOMENT PROBLEM

We consider the following basic setup patterned after [25],
[27], [31]. Let Sm×m

+ (T) be the family of bounded, coercive,
C

m×m -valued spectral density functions on the unit circle. Thus,
a measurable, bounded matrix-valued function Φ belongs to
Sm×m

+ (T) if it satisfies the following properties:
1) the values of Φ are m × m, Hermitian, nonnegative defi-

nite matrices;
2) there exists a positive constant cΦ such that Φ(eiϑ ) − cΦI

is positive definite a.e. on T.
Notice that Φ ∈ Sm×m

+ (T) if and only if Φ−1 ∈ Sm×m
+ (T).

Let Ψ ∈ Sm×m
+ (T) represent an a priori estimate of the spec-

trum of an underlying zero-mean, wide-sense stationary m-
dimensional stochastic process {y(n), n ∈ Z}. We consider a
rational transfer function

G(z) = (zI − A)−1B, A ∈ C
n×n ,B ∈ C

n×m (1)

where A has all its eigenvalues in the open unit disk, B is full
column rank, and (A,B) is a reachable pair. Here G models
a bank of filters. We consider the situation where new data
become available in the form of an asymptotic estimate Σ > 0
of the state covariance of the system with transfer function G
and input the unknown process y. In other words, we suppose
we can estimate the covariance of the n- dimensional stationary
process {xk ; k ∈ Z} satisfying

xk+1 = Axk + Byk , k ∈ Z. (2)

In general, Ψ is not consistent with Σ, and it is necessary to find
Φ in Sm×m

+ (T) that is closest to Ψ in a suitable sense among

spectra consistent with Σ, namely satisfying∫
GΦG∗ = Σ (3)

where a star denotes transposition plus conjugation. Here, and
throughout the paper, integration takes place on [−π, π] with re-
spect to the normalized Lebesgue measure dϑ/2π. The question
of existence of Φ ∈ Sm×m

+ (T) satisfying (3) and, when exis-
tence is granted, the parametrization of all solutions to (3), may
be viewed as a generalized moment problem. For instance, in the
case m = 1, take G(z) with kth component Gk (z) = zk−n−1 .
Take moreover

A =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...

0 0 0 . . . 1
0 0 0 . . . 0




, B =




0
0
...
0
1


 ,

Σ =




c0 c1 c2 . . . cn−1

c̄1 c0 c1
. . . cn−2

c̄2
. . .

. . .
. . .

. . .
...

. . .
. . .

. . .
. . .

c̄n−1 c̄n−2
. . .

. . . c0




(4)

where ck := E{y(n)ȳ(n + k)}. This is the covariance exten-
sion problem, where the information available on the process
y is the finite sequence of covariance lags c0 , c1 , . . . , cn−1 . It
is known that the set of densities consistent with the data is
nonempty if Σ ≥ 0 and contains infinitely many elements if
Σ > 0 [33] (see also [9], [10], [21], and [22].

Existence of Φ ∈ Sm×m
+ (T) satisfying constraint (3) is a non-

trivial issue. It was shown in [23] and [24] that such a family is
nonempty if and only if there exists H ∈ C

m×n such that

Σ − AΣA∗ = BH + H∗B∗ (5)

or, equivalently, the following rank condition holds

rank
(

Σ − AΣA∗ B

B∗ 0

)
= 2m. (6)

We wish to give an alternative formulation of this existence
result. First of all, notice that, without loss of generality, we can
take Σ = I . Indeed, if Σ �= I , it suffices to replace G with G′ :=
Σ−1/2G and (A,B) with (A′ = Σ−1/2AΣ1/2 , B′ = Σ−1/2B).
Thus, constraint (3) from now on reads∫

GΦG∗ = I. (7)

Let ΠB = B(B∗B)−1B∗ denote the orthogonal projection onto
Range(B).

Proposition 2.1: A necessary and sufficient condition for the
existence of spectra in Sm×m

+ (T) satisfying (7) is that the fol-
lowing relation holds

(I − ΠB ) (I − AA∗) (I − ΠB ) = 0. (8)
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When (8) is satisfied, there exists Φ ∈ Sm×m
+ (T) satisfying (7)

of McMillan degree less than or equal to 2n.
Proof: Necessity: Suppose there exists y m-dimensional,

wide-sense stationary with spectral density Φ ∈ Sm×m
+ (T)

satisfying (7). Let x be defined by (2). Taking covariances on
both sides of (2), we get

I = AA∗ + AE{xky∗
k}B∗ + BE{ykx∗

k}A∗ + BE{yky∗
k}B∗.

Now taking AA∗ to the left-hand side of the equation, and pre-
and postmultiplying each side by (I − ΠB ), we obtain (8).

Sufficiency: We adapt the argument in [25, p. 1814]. For a
given purely nondeterministic m-dimensional process y with
spectrum Φ, define the process w as the output of the linear
stable system

xk+1 = Axk + Byk , (9)

wk = (B∗B)−1B∗xk+1 . (10)

Inverting the system (9)–(10), we get

xk+1 = (I − ΠB )Axk + Bwk (11)

yk = −(B∗B)−1B∗Axk + wk . (12)

Write (8) as a Lyapunov identity

I = (I − ΠB ) AA∗ (I − ΠB ) + ΠB . (13)

Since (A,B) is controllable, so is the pair ((I − ΠB )A,
B(B∗B)−1/2). It now follows from (13) that (I − ΠB )A has all
eigenvalues in the open unit disc D. Thus, system (11)–(12) is
stable, (B∗B)−1B∗G(z) is minimum phase, and the processes
y and w are causally equivalent. It follows that if we choose w to
be a white noise sequence with intensity E{wkw∗

k} = (B∗B)−1

and y to be defined by (11) and (12), then: 1) (11) and (12) are
the innovation representations of y; 2) the state covariance of
the steady-state Kalman filter (11), (12) satisfies the Lyapunov
equation (13), and is, therefore, the identity; and 3) the spectral
density of y is given by

Φy = W (z)(B∗B)−1W (z)∗ (14)

where

W (z) = I − (B∗B)−1B∗A (zI − (I − ΠB )A)−1 B

is the transfer function of (11) and (12). We conclude that if we
feed G in (9) with such a process y, the filter state x will have the
required covariance, namely the identity matrix, and (7) will be
satisfied. Moreover, Φy is rational of McMillan degree at most
2n and it belongs to Sm×m

+ (T) since its values and the values
of Φ−1

y on T are positive-definite matrices. �
The geometric condition (8) seems more amenable to gen-

eralization than (6). The spectrum (14) has been shown in [25,
Sec. III] to be the maximum entropy spectrum among those
satisfying (7). This is accomplished there in a clever way: by
relating the constrained maximum entropy problem to a special
one-step-ahead prediction problem.

III. CONSTRAINED SPECTRUM APPROXIMATION:
THE SCALAR CASE

A. Kullback–Leibler Criterion

In [31], the Kullback–Leibler measure of distance for spectra
in S+(T) := S1×1

+ (T) was introduced

D(Ψ‖Φ) =
∫

Ψ log
(

Ψ
Φ

)
.

As is well known, this pseudodistance originates in hypothesis
testing, where it represents the mean information for observation
for discrimination of an underlying probability density from
another [38, p. 6]. It also plays a central role in information
theory, identification, stochastic processes, etc.; see, e.g., [2],
[12], [13], [15], [20], [36], [46], [50], and references therein.
It is also known in these fields as divergence, relative entropy,
information distance. etc. If∫

Φ =
∫

Ψ

we have D(Ψ‖Φ) ≥ 0. The choice of D(Ψ‖Φ) as a distance
measure, even for spectra that have different zeroth moments, is
discussed in [31, Sec. III]. It is observed there that the constraint
(3) often fixes the zeroth Fourier coefficient of feasible spectra
(this happens for sure when A is singular). In that case, rescaling
Ψ, we are guaranteed that the index is nonnegative and equal to
zero if and only if the two spectra are equal. T. Georgiou has
kindly informed us [28] that even when A is nonsingular, under
a rather mild assumption, it is possible to modify the index so
that all Φ satisfying the constraint have the same zeroth moment.
In any case, the method entails a rescaling of the a priori density
Ψ, so that the optimization problem amounts to approximating
the “shape” of the a priori spectrum. This is, of course, sensible
to pursue in several engineering applications such as speech
processing.

We mention, for the benefit of the reader, that in the same
spirit, Georgiou has very recently investigated other distances
for power spectra, [29], [30]. Motivated by classical prediction
theory, where the optimal one-step-ahead predictor does not de-
pend on the L1 norm of the spectrum, he seeks natural distances
between rays of spectral densities. Considering the degradation
of performance when an optimal predictor for one stochastic
process is employed to predict a different stochastic process, he
is naturally led to introduce a certain metric on rays.

As observed in the introduction, minimizing Φ → D(Ψ‖Φ)
rather than Φ → D(Φ‖Ψ) is unusual with respect to the
statistics-probability-information theory world. Besides leading
to a more tractable form of the optimal solution, however, it also
includes as special case (Ψ ≡ 1) maximization of entropy [25].
In [31], the following problem is considered.

Problem 3.1 (Approximation problem 1): Given Ψ ∈ S+(T),
find Φ̂K L that solves

minimize D(Ψ‖Φ) (15)

over
{

Φ ∈ S+(T) |
∫

GΦG∗ = I

}
. (16)
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Remark 3.2: In the context of the covariance extension prob-
lem (4), the minimizers in Problem 3.1, when Ψ ranges over
positive trigonometric polynomials of degree n, are precisely
the coercive spectra consistent with the first n covariance lags
and of degree at most 2n, [9], [10], [21], [22]. This illustrates the
role of the “a priori parameter” Ψ in obtaining a description of
all solutions to the moment problem of prescribed complexity.

B. Hellinger Criterion

In this paper, we consider a different metric on spectral density
functions. Given Φ and Ψ in S+(T), the Hellinger distance is
defined by

dH (Φ,Ψ) :=

[∫ π

−π

(√
Φ(eiϑ ) −

√
Ψ(eiϑ )

)2
dϑ

2π

]1/2

.

It is a bona fide distance on S+(T). Moreover, it satisfies the
following properties.

Proposition 3.3: Consider Φ,Ψ ∈ S+(T). Then
1) dH (Φ,Ψ) ≤

√
‖Φ‖1 + ‖Ψ‖1 ;

2) dH (Φ,Ψ)2 ≤ ‖Φ − Ψ‖1 ;
3) ‖Φ − Ψ‖1 ≤ (

√
‖Φ‖1 +

√
‖Ψ‖1)dH (Φ,Ψ).

These extend well-known properties of the Hellinger distance
in the case of probability density functions. The straightforward
proof may be found in [19].

Remark. On a finite-dimensional statistical manifold, en-
dowed with the Fisher information as the metric tensor, both the
Hellinger distance and the Kullback–Leibler pseudodistance can
be viewed as instances of the broader concept of α-divergences
between two points, which arise from the so-called Amari con-
nections. In particular, the 0-divergence, which indeed is the
Hellinger distance, arises from the Levi–Civita connection. See
[1, p. 66 and following].

We consider the following approximation problem.
Problem 3.4: (Approximation problem 2) Given Ψ ∈

S+(T), find Φ̂H that solves

minimize d2
H (Φ,Ψ) (17)

over
{

Φ ∈ S+(T) |
∫

GΦG∗ = I

}
. (18)

IV. OPTIMALITY CONDITIONS

A. Kullback–Leibler Approximation

Consider first Problem 3.1. The variational analysis in [31]
is outlined as follows (see also [45]). For Λ ∈ C

n×n Hermi-
tian satisfying G∗ΛG > 0 on all of T, consider the Lagrangian
function

L(Φ,Λ) = D(Ψ‖Φ) + tr
(

Λ
(∫

GΦG∗ − I

))

= D(Ψ‖Φ) +
∫

G∗ΛGΦ − tr(Λ) (19)

where “tr” denotes the trace operator. Consider the uncon-
strained minimization of the strictly convex functional L(Φ,Λ)

minimize{L(Φ,Λ)|Φ ∈ S+(T)}. (20)

This is a convex optimization problem. The variational analysis
yields the following result.

Theorem 4.1: The unique solution Φ̂K L to problem (20) is
given by

Φ̂K L =
Ψ

G∗ΛG
. (21)

Moreover, suppose Λ̂ = Λ̂∗ is such that

G∗Λ̂G > 0, ∀eiϑ ∈ T, (22)∫
G

Ψ
G∗Λ̂G

G∗ = I. (23)

Then, Φ̂K L given by

Φ̂K L =
Ψ

G∗Λ̂G
(24)

is the unique solution of the approximation Problem (3.1).
Thus, the original Problem 3.1 is now reduced to finding Λ̂

satisfying (22) and (23). This is accomplished via duality theory.
Consider the dual functional

Λ → inf{L(Φ,Λ) |Φ ∈ S+(T)}.

For Λ satisfying (22), the dual functional takes the form

Λ → L

(
Ψ

G∗ΛG
,Λ
)

=
∫

Ψ log G∗ΛG − tr(Λ) +
∫

Ψ.

(25)
Consider now the maximization of the dual functional (25) over
the set

LK L := {Λ = Λ∗ |G∗ΛG > 0,∀eiϑ ∈ T}. (26)

Let, as in [31],

JΨ(Λ) := −
∫

Ψ log G∗ΛG + tr(Λ).

The dual problem is then equivalent to

minimize {JΨ(Λ). |Λ ∈ LK L}. (27)

The dual problem is also a convex optimization problem. In [31],
Λ is further restricted to belong to the range of the operator
Γ defined on the set CH (T) of Hermitian-valued continuous
functions defined on T by

Γ(Φ) =
∫

GΦG∗, Φ ∈ CH (T). (28)

As mentioned in Section II (5)

Range(Γ) = {Σ = Σ∗ : ∃H ∈ C
m×n

s.t. Σ − AΣA∗ = BH + H∗B∗}. (29)

The problem then becomes

minimize
{
JΨ(Λ) |Λ ∈ LK L

Γ
}
, LK L

Γ = LK L ∩ Range(Γ).
(30)

The reason is that the orthogonal complement of Range(Γ) is
given by

Range(Γ)⊥ = {M = M ∗ |G∗MG ≡ 0 on T}. (31)
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This follows from the fact that M ∈ Range(Γ)⊥ iff ∀Φ ∈
CH (T)

0 = tr
(∫

GΦG∗M

)
=
∫

G∗MGΦ.

The dual functional is shown in [31] to be strictly convex on the
restricted domain LK L

Γ . It is also shown in [11] that JΨ has a
unique minimum point in LK L

Γ . This result implies that, under
assumption (6), there exists a (unique) Λ̂ in LK L

Γ satisfying
(23). Such a Λ̂ then provides the optimal solution of the primal
problem (15) and (16) via (24).

B. Hellinger Approximation

The variational analysis for Problem 3.4 is very similar (see
[19] for details). We state without proof the following result: It
will be proven in Section VII in the (more general) multivariable
case.

Theorem 4.2: Assume that Problem 3.4 is feasible, namely
that condition (6) (or, equivalently, condition (8)) is satisfied.
Then, there exists Λ̂ = Λ̂∗ ∈ C

n×n such that

1 + G∗Λ̂G > 0, ∀eiϑ ∈ T,

∫
G

Ψ
(1 + G∗Λ̂G)2

G∗ = I.

(32)
In this case, Problem 3.4 admits a unique solution which is given
by

Φ̂H =
Ψ

(1 + G∗Λ̂G)2
. (33)

Remark 4.3: Suppose the a priori density Ψ is rational. Then,
the solution in (33) has, in general, degree 2n higher than the
solution in (24).

V. GENERALIZING TO THE MULTIVARIABLE CASE:
FIRST RESULTS AND DIFFICULTIES

In this section, we state and derive some results on multivari-
able spectrum approximation where a “natural” generalization
of the scalar Kullback–Leibler and Hellinger distance, respec-
tively, is employed. We also point out the difficulties involved
in these approaches that bring to a sudden stop the variational
analysis.

A. Kullback–Leibler Approximation

Multivariable Kullback–Leibler approximation has been in-
vestigated in [25] and [27], whereas [3] deals with the multivari-
ate Nevanlinna–Pick problem. In statistical quantum mechanics,
the state of an n-level system is represented by a density matrix
ρ, namely a Hermitian, positive-semidefinite matrix in C

n×n

with unit trace [49]. The convex set of density matrices has as
extreme points the 1-D projections. The latter can be identified
with the pure states of the system |ψ〉, where ψ is a unit vector
in C

n , via ρ = 〈ψ, ·〉ψ. Quantum analogs of entropy-like func-
tionals have been considered since the early days of quantum
mechanics [51]. Recently, renewed interest has originated in
quantum information applications [44]. The quantum relative

entropy between two density matrices is defined by

D(ρ||σ) := tr(ρ(log ρ − log σ)). (34)

Klein’s inequality yields that D(ρ||σ) ≥ 0, and D(ρ||σ) = 0
if and only if ρ = σ. Moreover, as in the classical case, the
quantum relative entropy is jointly convex in its arguments.
We are then led to the following definition: Given Φ and Ψ in
Sm×m

+ (T), the relative entropy D(Ψ||Φ) is given by

D(Ψ||Φ) =
∫

tr (Ψ(log Ψ − log Φ)) . (35)

First of all, we need to worry about nonnegativity of D(Ψ||Φ)
and whether it is zero iff Ψ = Φ.

Proposition 5.1: Let Φ,Ψ ∈ Sm×m
+ (T). Define Ψ1 = Ψ/trΨ

and Φ1 = Φ/trΦ. Then

D(Ψ||Φ)=D(trΨ||trΦ)+
∫

(trΨ)tr (Ψ1(log Ψ1−log Φ1)) .

(36)
It follows that when

∫
trΨ =

∫
trΦ, then D(Ψ||Φ) ≥ 0. More-

over, D(Ψ||Φ) = 0 if and only if the two spectra coincide.
Proof:

D(Ψ||Φ) = tr
∫

Ψ (log Ψ − log Φ)

= tr
∫

tr(Ψ)Ψ1 (log tr(Ψ)Ψ1 − log tr(Φ)Φ1)

= tr
∫

tr(Ψ)Ψ1 ((log tr(Ψ))I + log Ψ1

− (log tr(Φ))I − log Φ1)

= tr
∫

tr(Ψ)Ψ1 (log Ψ1 − log Φ1)

+ tr
∫

tr(Ψ)Ψ1 ((log tr(Ψ))−(log tr(Φ))) I

=
∫

tr(Ψ)tr (Ψ1 (log Ψ1 − log Φ1))

+
∫

tr(Ψ1)trΨ log
trΨ
trΦ

=
∫

tr(Ψ)tr (Ψ1 (log Ψ1 − log Φ1))

+ D(trΨ||trΦ).

Since trΨ1(eiϑ ) = trΦ1(eiϑ ) = 1,∀ϑ ∈ [−π, π], it follows
from Klein’s inequality that

trΨ1(eiϑ )
(
log Ψ1(eiϑ ) − log Φ1(eiϑ )

)
≥ 0 ∀ϑ.

The latter implies that∫
(trΨ)tr (Ψ1 (log Ψ1 − log Φ1)) ≥ 0.

When
∫

trΨ =
∫

trΦ, we also have D(trΨ||trΦ) ≥ 0. Thus,
when

∫
trΨ =

∫
trΦ, D(Ψ||Φ) is the sum of two nonnegative

terms and the conclusion follows. �
Consider now the multivariable version of Problem 3.1.
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Problem 5.2 (Approximation problem 1): For Ψ ∈ Sm×m
+ (T)

minimize D(Ψ‖Φ) (37)

over
{

Φ ∈ Sm×m
+ (T) |

∫
GΦG∗ = I

}
(38)

where D(Ψ‖Φ) is defined by (35). As in the scalar case, an a
posteriori rescaling of the prior density is, in general, necessary.
In the light of Proposition 5.1, if Φ̂ is the solution of (5.2), the
new prior is

Ψ̂ =
∫

trΦ̂∫
trΨ

Ψ.

For Λ ∈ C
n×n Hermitian such that G∗ΛG is positive definite

on all of T, define again the Lagrangian

L(Φ,Λ) = D(Ψ‖Φ) + tr
(

Λ
(∫

GΦG∗ − I

))

= D(Ψ‖Φ) + tr
∫

G∗ΛGΦ − tr(Λ). (39)

The following step, entailing the unconstrained minimization
of the strictly convex functional L(Φ,Λ) on Ψ ∈ Sm×m

+ (T), is
a stumbling block. The optimality condition reads [27, Sec. IV]∫ ∞

0
(Φ̂K L + τI)−1Ψ(Φ̂K L + τI)−1dτ = G∗ΛG. (40)

In general, an explicit expression for Φ̂K L in terms of Ψ and Λ
cannot be obtained, and the variational analysis ends here. We
mention that the minimization with respect to the first argument
of the relative entropy can, instead, be carried out explicitly,
leading to a solution of the exponential form

Φo = c exp(log Ψ − G∗ΛG)

see [27, Sec. IV]). Homotopy-like methods are described in [27]
to find Λ, when it exists, such that Φo satisfies the constraint.

B. Hellinger Approximation

Recall that, for a positive semidefinite Hermitian ma-
trix M , M 1/2 is the square root of M , namely the
unique positive semidefinite Hermitian matrix whose square
is M . If V is a unitary matrix that diagonalizes M
so that M = V ∗diag(α2

1 , . . . , α
2
m )V , then simply M 1/2 =

V ∗diag(|α1 |, . . . , |αm |)V . Motivated by the analogy with the
Kullback–Leibler case, and by the scalar case, we define the
Hellinger distance for Φ and Ψ in Sm×m

+ (T) to be

d2
H (Φ,Ψ) :=

∫ π

−π

tr
[
Φ1/2(eiϑ ) − Ψ1/2(eiϑ )

]2 dϑ

2π
. (41)

Notice that (41) appears also as the natural generalization of the
Hellinger distance for density operators of statistical quantum
physics introduced in [41]. Consider again the strictly convex
Problem 3.4

minimize d2
H (Φ,Ψ) (42)

over
{

Φ ∈ Sm×m
+ (T) |

∫
GΦG∗ = I

}
(43)

where d2
H (Φ,Ψ) is now given by (41). Define LH by

LH := {Λ ∈ C
n×n |Λ = Λ∗, I + G∗ΛG > 0 a.e.onT}. (44)

For Λ ∈ LH , consider the Lagrangian

LH (Φ,Λ) = d2
H (Φ,Ψ) + tr

(
Λ
(∫

GΦG∗ − I

))
.

The unconstrained minimization of the strictly convex func-
tional LH over Φ ∈ Sm×m

+ (T), however, leads to an optimality
condition (expressing the unique optimum Φ̂H in terms of Ψ
and Λ) that does not appear to be useful.

To obtain such an optimality condition, we first need an
expression for the directional derivative of the matrix square
root. More precisely, given P = P ∗ > 0 let S(P ) := P 1/2 and
δP = δP ∗, we want to compute

δS(P, δP ) := lim
ε→0

(P + εδP )1/2 − P 1/2

ε
.

Employing the chain rule, it is easy to see that

δS(P, δP )P 1/2 + P 1/2δS(P, δP ) = δP

so that

δS(P, δP ) =
∫ ∞

0
exp(−P 1/2t)δP exp(−P 1/2t) dt. (45)

Taking (45) into account, we get the optimality condition∫ ∞

0

[
exp(−Φ̂1/2

H t)
(
Φ̂1/2

H − Ψ1/2) exp(−Φ̂1/2
H t)

]
dt+

+
1
2
G∗ΛG = 0. (46)

The integral in (45) is the unique solution of the Lyapunov
equation

Φ̂1/2X + XΦ̂1/2 = Φ̂1/2 − Ψ1/2 . (47)

Equations (46) and (47) now yield

−1
2
Φ̂1/2(G∗ΛG) − 1

2
(G∗ΛG)Φ̂1/2 = Φ̂1/2 − Ψ1/2

which, in turn, gives

Φ̂1/2 (I + G∗ΛG) + (I + G∗ΛG) Φ̂1/2 = 2Ψ1/2 . (48)

Since I + G∗ΛG > 0 almost everywhere on T, we finally get

Φ̂1/2

= 2
∫ ∞

0
exp [−(I + G∗ΛG)t] Ψ1/2 exp [−(I + G∗ΛG)t] dt.

(49)

The maximization of the dual functional Λ → LH (Φ̂,Λ), how-
ever, appears quite problematic.

We show in the next section that, differently from the
Kullback–Leibler case, it is possible to define a sensible
Hellinger distance for matricial functions that leads to a full
unraveling of the optimization problem. This will be accom-
plished by connecting this problem to a most classical topic at
the hearth of systems and control theory, namely the spectral
factorization problem.
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VI. HELLINGER DISTANCE AND SPECTRAL FACTORIZATION

Let F be a measurable function defined on the unit circle
T and taking values in C

m×p . Then, F belongs to the Hilbert
space Lm×p

2 if it satisfies
∫

tr(FF ∗) < ∞. For F,G in Lm×p
2 ,

the scalar product is defined by

〈F,G〉2 =
∫

tr(FG∗)

so that ‖F‖2
2 =

∫
tr(FF ∗). Let Φ ∈ Sm×m

+ (T). Then, a mea-
surable C

m×p -valued function W is called a spectral factor of
Φ if it satisfies

W (eiϑ )W (eiϑ )∗ = Φ(eiϑ ), a.e. on T.

Notice that necessarily p ≥ m and W (eiϑ ) is a.e. full row rank.
Moreover, W is bounded on T, and therefore, it belongs to
Lm×p

2 . When p = m, W−1 is also bounded, and consequently,
W−1 ∈ Lm×m

2 . Any Φ ∈ Sm×m
+ (T) satisfies the Szegö condi-

tion ∫ π

−π

log det Φ(eiϑ )
dϑ

2π
> −∞

and admits therefore spectral factors W in Hm×m
2 , namely the

Hardy space of functions in Lm×m
2 that possess an analytic

extension in |z| > 1 (see, e.g., [34] and [48]).
Let W1 and W2 be spectral factors of the same Φ ∈ Sm×m

+ (T)
with W1 square. Then, trivially U := W−1

1 W2 is an m × p all-
pass function, i.e

U(eiϑ )U(eiϑ )∗ = I ∀eiϑ ∈ T.

For Φ,Ψ ∈ Sm×m
+ (T), consider the following function

d̃H (Φ,Ψ) =
[
inf
{
‖WΨ − WΦ‖2

2 : WΨ ,WΦ ∈ Lm×m
2

WΨW ∗
Ψ = Ψ, WΦW ∗

Φ = Φ}]1/2 . (50)

Theorem 6.1: The following facts hold true:
1) For any square spectral factor W̄Ψ of Ψ, we have

d̃H (Φ,Ψ) =
[
inf
{
‖W̄Ψ − WΦ‖2

2 : WΦ ∈ Lm×m
2

WΦW ∗
Φ = Φ}]1/2 . (51)

2) The infimum in the aforesaid equation is a minimum:
Indeed, the unique spectral factor of Φ minimizing (51) is
given by

ŴΦ := Φ1/2
(
Φ1/2ΨΦ1/2

)−1/2
Φ1/2W̄Ψ .

3) d̃H is a bona fide distance function.
4) d̃H coincides with the Hellinger distance in the scalar case.
Proof:
1) First of all, observe that, once fixed the spectral factor

W̄Ψ , any square spectral factor WΨ of Ψ can be written
as WΨ = W̄ΨU , where U is an m × m all-pass. Hence∫

tr(WΨ − WΦ)(WΨ − WΦ)∗dϑ

=
∫

tr(W̄Ψ − WΦU ∗)(W̄Ψ − WΦU ∗)∗dϑ.

Observe, moreover, that WΦU ∗ is a square spectral factor
of Φ, so that (51) holds.

2) To show that the infimum in (51) is a minimum, notice
that (51) may be rewritten in the form

d̃H (Φ,Ψ)2= inf
{∫

tr(W̄Ψ−Φ1/2V )(W̄Ψ−Φ1/2V )∗dϑ :

V ∈ Lm×m
∞ , V V ∗ = I

}
. (52)

We shall solve this problem by unconstrained minimiza-
tion of the Lagrangian

L=
∫

tr[(W̄Ψ−Φ1/2V )(W̄Ψ−Φ1/2V )∗ + ∆(V V ∗ − I)]

where ∆ = ∆∗ > 0. The first variation of the Lagrangian
(at V in direction δV ∈ Lm×m

∞ ) is

δL(V ; δV ) =
∫

tr[(∆V − Φ1/2WΨ)δV ∗

+ δV (∆V −Φ1/2WΨ)∗].

The second variation of the Lagrangian is

δ2L(V ; δv)=2
∫

tr[Φ1/2δV δV ∗Φ1/2+∆1/2δV δV ∗∆1/2 ].

Hence, L is strictly convex, and therefore, V is a minimizer
of the unconstrained minimization problem if and only if

δL(V ; δV ) = 0, ∀ δV. (53)

Condition (53) is clearly equivalent to ∆V − Φ1/2WΨ =
0 or to

V = ∆−1Φ1/2WΨ .

Thus, if there exists ∆ = ∆∗ > 0 such that

V V ∗ = ∆−1Φ1/2ΨΦ1/2∆−1 = I

then V minimizes (52). Such a ∆ is readily seen to be
given by

∆ = [Φ1/2ΨΦ1/2 ]1/2 .

In conclusion, the infimum in (51) is a minimum and

ŴΦ = Φ1/2 V̂ = Φ1/2 [Φ1/2ΨΦ1/2 ]−1/2Φ1/2W̄Ψ

is the unique minimizer.
3) The distance properties of d̃H are easy to check: (i) Sym-

metry is an immediate consequence of the definition of
d̃H . (ii) It is clear that d̃H (Φ,Φ) = 0. Conversely, if
d̃H (Φ,Ψ) = 0, then Φ and Ψ share a.e. a common spectral
factor, and are, therefore, a.e. the same spectral density.
(iii) The triangular inequality is inherited by the definition
of d̃H as the infimum of the L2 distance among spectral
factors. Thus, given Φ, Ψ, and Υ and choosing an arbitrary
square spectral factor WΥ of Υ, we have

d̃H (Φ,Ψ) = inf
WΦ ,WΨ

‖WΦ − WΨ‖2

≤ inf
WΦ ,WΨ

[‖WΦ − WΥ‖2 + ‖WΨ − WΥ‖2 ]
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= inf
WΦ

‖WΦ − WΥ‖2 + inf
WΨ

‖WΨ − WΥ‖2

= d̃H (Φ,Υ) + d̃H (Ψ,Υ)

where the last equality is a consequence of point 1).
4) By choosing W̄Ψ = Ψ1/2 , it is immediate to check that in

the scalar case (m = 1) V̂ ≡ 1, and hence, d̃H coincides
with the Hellinger distance dH . �

VII. d̃H -OPTIMAL MULTIVARIABLE SPECTRUM

APPROXIMATION

Theorem 6.1 shows that d̃H is a natural extension to the
multivariable case of the Hellinger distance. The corresponding
multivariable version of Problem 3.4 is the following.

Problem 7.1: Given Ψ ∈ Sm×m
+ (T), find Φ̂ ∈ Sm×m

+ (T) that
solves

minimize d̃2
H (Φ,Ψ) (54)

subject to
∫

GΦG∗ = I. (55)

It is in this form that the optimization problem is amenable to
the variational analysis even in multivariable version. Let

LH := {Λ ∈ C
n×n |Λ = Λ∗, I + G∗ΛG > 0 ∀eiϑ ∈ T} (56)

and

LH
Γ := LH ∩ Range(Γ) (57)

where Γ was defined in (28). The following is our main result.
Theorem 7.2: Assume condition (6) [or, equivalently, condi-

tion (8)] is satisfied. Then, there exists a unique Λ̂ ∈ LH
Γ such

that ∫
G(I + G∗Λ̂G)−1Ψ(I + G∗Λ̂G)−1G∗ = I. (58)

The unique solution of the constrained approximation Problem
7 is then given by

Φ̂H := (I + G∗Λ̂G)−1Ψ(I + G∗Λ̂G)−1 . (59)

Remark 7.3: Let Ψ0 ∈ S+(T) and suppose Ψ = Ψ0I has the
form of a scalar matrix. Then, a simple calculation shows that
(49) and (59) give the same form for the optimal solution Φ̂.

We break the proof of Theorem 7.2 into two parts: First, by
unconstrained minimization of the Lagrangian function, we ob-
tain an expression for a spectral factor of the optimal Φ depend-
ing on the Lagrange multiplier matrix Λ (Lemma 7.4). Second,
we establish the existence of a unique Λ ∈ LH

Γ satisfying (58)
(Theorem 7.7).

For Λ ∈ LH , WΨ a spectral factor of Ψ, and W,W−1 ∈
Lm×m
∞ (T), form the Lagrangian function

L(W,Λ) = tr
∫

(W − WΨ) (W − WΨ)∗

+ trΛ
(∫

GWW ∗G∗ − I

)
. (60)

Consider the unconstrained minimization problem

min
W

{
L(W,Λ) |W,W−1 ∈ Lm×m

∞ (T)
}

. (61)

Lemma 7.4: The unique solution to problem (61) is given by

Ŵ = (I + G∗ΛG)−1WΨ . (62)

Proof: Let δW ∈ Lm×m
∞ (T). The first variation of the La-

grangian is:

δL(W,Λ; δW ) =tr
∫

[δW (W−WΨ)∗+(W−WΨ) δW ∗

+ Λ (GδWW ∗G∗ + GWδW ∗G∗)]

= tr
∫

(W − WΨ + G∗ΛGW ) δW ∗

+
(

tr
∫

(W − WΨ + G∗ΛGW ) δW ∗
)∗

.

By taking into account the cyclic property of the trace operator,
the second variation of the Lagrangian is easily seen to be given
by

δ2L(W,Λ; δW ) = 2tr
∫

δW ∗ (I + G∗ΛG) δW (63)

which is clearly positive for any Λ ∈ LH and δW �= 0. Hence
L is strictly convex with respect to W . Moreover, the set LH is
open and convex. To find the minimum point of L, we impose
δL(W,Λ; δW ) = 0 in each direction δW . This yields (62). We
now consider the question of existence of a matrix Λ̂ ∈ LH

satisfying (58). To this end, we introduce the dual functional

L(Ŵ ,Λ) = tr
∫ (

(I + G∗ΛG)−1WΨ − WΨ
)

×
(
(I + G∗ΛG)−1WΨ − WΨ

)∗
+ tr

[
Λ
(∫

G(I + G∗ΛG)−1WΨ

× W ∗
Ψ(I + G∗ΛG)−1G∗ − I

)]
= tr

∫
Ψ − (I + G∗ΛG)−1Ψ − trΛ, Λ ∈ LH .

(64)

Instead of maximizing (64), we consider the equivalent problem
of minimizing the functional

JΨ(Λ) := −L(Ŵ ,Λ) + tr
∫

Ψ

= tr
∫

(I + G∗ΛG)−1Ψ + trΛ, Λ ∈ LH . (65)

Lemma 7.5: The functional (65) is convex and its restriction
to LH

Γ [defined in (57)] is strictly convex.
Proof: First of all, observe that LH is an open, convex subset

of the Hermitian matrices in C
n×n . For δΛ ∈ C

n×n Hermitian,
we compute the directional derivative
δJΨ(Λ; δΛ)

= −tr
∫

(I + G∗ΛG)−1G∗δΛG(I + G∗ΛG)−1Ψ + trδΛ

= tr
[(

I −
∫

G(I + G∗ΛG)−1Ψ(I + G∗ΛG)−1G∗
)

δΛ
]

.

(66)
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The second variation is then given by

δ2JΨ(Λ; δΛ) = 2tr
∫

W ∗
Ψ(I + G∗ΛG)−1G∗δΛG×

× (I + G∗ΛG)−1G∗δΛG(I + G∗ΛG)−1WΨ

(67)

which is clearly a nonnegative quantity. Hence, JΨ is convex
on LH . In view of (31), we have that δ2JΨ(Λ; δΛ) is strictly
positive for any nonzero δΛ ∈ Range(Γ), and consequently, JΨ
is strictly convex on LH

Γ . As an immediate consequence of the
aforesaid lemma, we have the following corollary.

Corollary 7.6: The dual problem

Find Λ ∈ LH
Γ minizing JΨ(Λ) (68)

admits at most one solution. Moreover, (58) is necessary and
sufficient for Λ̂ to solve the dual problem (68).

We now tackle the existence issue for the dual problem. Al-
though this is a finite-dimensional, convex optimization prob-
lem, the existence question is quite delicate since the set LH

Γ
is open and unbounded. The proof of the following theorem is
partially inspired by the proof of the corresponding result for
the scalar, Kullback–Leibler case in [Sec. 2] [11].

Theorem 7.7: If Problem 7.1 is feasible, i.e., (6) [or, equiva-
lently, condition (8)] is satisfied, then the dual functional (65)
has a unique minimum point in LH

Γ .
Proof : In view of Corollary 7.6, we only need to show

that JΨ takes a minimum value on LH
Γ . First, we observe

that JΨ is continuous on its domain. Second, we show that
JΨ is bounded below on LH

Γ . Indeed, by feasibility, there ex-
ists a Φ̄ ∈ Sm×m

+ (T) such that
∫

GΦ̄G∗ = I . Hence, for all
M ∈ C

n×n ,
∫

GΦ̄G∗M = M , which implies

trM = tr
∫

Φ̄1/2G∗MGΦ̄1/2 . (69)

Recalling that, for Λ ∈ LH
Γ , I + G∗(eiϑ )ΛG(eiϑ ) is positive

definite for all ϑ ∈ [0, 2π), and using the monotonicity property
of the trace, we get

trΛ = tr
∫

Φ̄1/2G∗ΛGΦ̄1/2 > −tr
∫

Φ̄, ∀Λ ∈ LH
Γ . (70)

Define f̄ := −tr
∫

Φ̄ < 0. We get

JΨ(Λ) := tr
∫

(I + G∗ΛG)−1Ψ + trΛ

= tr
∫

Ψ1/2(I + G∗ΛG)−1Ψ1/2 + trΛ

> f̄, ∀Λ ∈ LH
Γ (71)

where we have used tr
∫

Ψ1/2(I + G∗ΛG)−1Ψ1/2 > 0 on LH
Γ .

Finally, we show that JΨ is inf-compact, i.e., the sublevel
sets J−1

Ψ (−∞, r] are compact. This implies existence of a min-
imum point. Indeed, observing that JΨ(0) = tr

∫
Ψ, we can

then restrict the search for a minimum point to the compact set
J−1

Ψ (−∞, tr
∫

Ψ]. Existence for the latter problem then follows
from a version of Weierstrass Theorem since an inf-compact

function has closed level sets, and is therefore, lower semicon-
tinuous [37, p. 56]. To prove inf-compactness of JΨ , we proceed
to show that

1)

lim
Λ→∂LH

Γ

JΨ(Λ) = +∞

where ∂LH
Γ denotes the boundary of LH

Γ
2)

lim
‖Λ‖→∞

JΨ(Λ) = +∞.

To prove property 1), notice that ∂LH
Γ is the set of Λ in

Range(Γ) for which: i) I + G∗ΛG is positive semidefinite on T

and ii) ∃ϑ̄ s.t. I + G∗(eiϑ̄ )ΛG(eiϑ̄ ) is singular. Thus, for Λ →
∂LH

Γ , all the eigenvalues of [I + G∗ΛG]−1 are positive on T and
at least one of them has a pole tending to the unit circle ([I +
G∗ΛG] and [I + G∗ΛG]−1 are rational matrix functions). Since
Ψ is fixed and coercive, then also Ψ1/2 [I + G∗ΛG]−1Ψ1/2 has
all eigenvalues positive on T and at least one of them with a
pole tending to the unit circle as Λ → ∂LH

Γ . Rewrite now JΨ ,
as in (71), in the form JΨ = tr

∫
Ψ1/2(I + G∗ΛG)−1Ψ1/2 +

trΛ. Since trΛ is bounded below in view of (70), we get the
conclusion.

Point 2) is more delicate. Let Λk ∈ LH
Γ be a sequence such

that limk→∞ ‖Λk‖ = ∞. Let Λ0
k := Λk

‖Λk ‖ . It is easy to see that

if Λ ∈ LH
Γ , then αΛ ∈ LH

Γ for all α ∈ [0, 1]. Hence, for suffi-
ciently large k, we have Λ0

k ∈ LH
Γ .

Let η = lim inf trΛ0
k . We want to show that η is strictly pos-

itive. We first observe that η ≥ 0. In fact, trΛ0
k = 1

‖Λk ‖ trΛk >
1

‖Λk ‖ f̄ → 0, where we have used (70).

Consider a subsequence of Λ0
k such that the limit of its trace is

η. Since this subsequence remains on the surface of the unit ball
∂B := {Λ = Λ∗ : ‖Λ‖ = 1}, which is compact, it has a subsub-
sequence converging in ∂B. Let Λ0

ki
be such a subsubsequence,

and let Λ∞ ∈ ∂B be its limit. Clearly,

lim
i→∞

trΛ0
ki

= trΛ∞ = η. (72)

We now prove that Λ∞ ∈ LH
Γ . To this aim, notice that Λ∞ is

the limit of a sequence in the finite-dimensional linear space
Range(Γ), and hence, it belongs to the same space Range(Γ).
It remains to show that (I + G∗Λ∞G) is positive definite on T.
Indeed, since (the unnormalized subsequence) Λki

belongs to
LH

Γ , we have that (I + G∗Λki
G) is positive definite on T so

that ( 1
‖Λk i

‖I + G∗Λ0
ki

G) is also positive definite on T for each

i. Taking the limit for i → ∞, we get that G∗Λ∞G is positive
semidefinite on T so that (I + G∗Λ∞G) is strictly positive def-
inite on T. This proves that Λ∞ ∈ LH

Γ . The latter, together with
(69) yields

trΛ∞ = tr
∫

Φ̄1/2G∗Λ∞GΦ̄1/2 . (73)

As seen before, G∗Λ∞G is positive semidefinite on T. More-
over, G∗Λ∞G is not identically zero since Λ∞ ∈ Range(Γ) [see
(31)], and Λ∞ �= 0 (it is not the zero matrix) since Λ∞ ∈ ∂B .
We conclude, in view of (72) and (73), that η = trΛ∞ > 0.
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Finally, we have

JΨ(Λk )=tr
∫

Ψ1/2(I + G∗ΛkG)−1Ψ1/2 +trΛk ≥ ‖Λk‖trΛ0
k .

(74)
Since ‖Λk‖ → ∞ and lim inf trΛ0

k > 0, we get

lim
k→∞

JΨ(Λk ) = +∞. (75)

�
Let Λ̂ ∈ LH

Γ be the unique solution of the dual problem whose
existence has just been proven in Theorem 7.7. We show below
that it also provides via (59) the unique solution to the primal
problem 7.1.

Proof of Theorem 7.2: Let WΨ be any spectral factor of
Ψ. Let Ŵ = (I + G∗ΛG)−1WΨ as in (62). Let W , belonging
toLm×m

∞ (T) together with its inverse, satisfy the constraint∫
GWW ∗G∗ = I. (76)

By Lemma (7.4), and by the strict convexity of the functional
L(·, Λ̂), we get

‖Ŵ − WΨ‖2
2 = L(Ŵ , Λ̂) < L(W, Λ̂) = ‖W − WΨ‖2

2 .

Thus, Ŵ minimizes the L2 distance to WΨ among W belonging
to Lm×m

∞ (T) together with their inverse and satisfying constraint
(76). Theorem 6.1 now shows that Φ̂H = ŴŴ ∗ [coinciding
with Φ̂H in (59)], is the unique solution to the multivariate
approximation Problem 7.1. �

Remark 7.8 Consider the important covariance extension
problem when, as it is often the case, the process y is real-
valued. Then A and B are real matrices and Ψ is a real spectral
density, i.e., Ψ(z) is real (and symmetric) for all z ∈ T. In this
case, Λ̂ is a real symmetric matrix.

VIII. NUMERICAL SOLUTION OF THE DUAL PROBLEM

A. Matricial Newton-Type Algorithm

We now show how to efficiently implement a modified New-
ton algorithm with backtracking (see, e.g., [4, Ch. 9]) for the
computation of Λ̂ (convergence of the algorithm, however, will
be discussed elsewhere). This task requires some care because
we are working in a matricial space and vectorization does not
appear to be convenient. The road map is the following. We have
to find the minimum of the functional (65) that is strictly con-
vex on LH

Γ . This is then equivalent to finding a matrix Λ̂ ∈ LH
Γ

that annihilates the derivative of JΨ(Λ), i.e., such that (58) is
satisfied. According to the abstract version of the Newton algo-
rithm, Λ̂ may be found as the limit of the sequence obtained by
iterating the following steps:

1) Choose an initial estimate Λ0 ∈ LH
Γ of Λ̂ (the simplest

choice being Λ0 = 0).
2) Let Λi be the current estimate of Λ̂. Compute the direc-

tional derivative δJΨ(Λi ; δΛ) at the point Λi in direction
δΛ, as in (66).

3) Compute the “Hessian” (second directional derivative)
δ2JΨ(Λi ; δΛ1 , δΛ2) at the point Λi in directions δΛ1 and
δΛ2 . This may be done in the same way in which we
computed δ2JΨ(Λi ; δΛ) in (67). Indeed, the latter may

be viewed as the “diagonal” part of the Hessian, i.e.,
δ2JΨ(Λi ; δΛ) = δ2JΨ(Λi ; δΛ, δΛ). We get

δ2JΨ(Λi ; δΛ1 , δΛ2)

= tr
∫

GQ−1
i

[(
G∗δΛ2GQ−1

i Ψ
)

+
(
G∗δΛ2GQ−1

i Ψ
)∗]

Q−1
i G∗δΛ1 (77)

where Qi := (I + G∗ΛiG).
4) Solve the following equation for X such that (Λi + X) ∈

LH
Γ

δ2JΨ(Λi ; δΛ,X) = −δJΨ(Λi ; δΛ) ∀ δΛ (78)

and set the (i + 1)th estimate of Λ̂ to the value Λi+1 =
Λi + X .

5) Let ε be a suitably small number. If∥∥∥∥
∫

G(I + G∗Λi+1G)−1Ψ(I + G∗Λi+1G)−1G∗ − I

∥∥∥∥>ε

(79)
then go to Step 2). Otherwise, set Λ̂ = Λi+1 .

There are some very delicate points to be addressed. First of
all, we need to worry about the existence of solutions for (78).

Proposition 8.1: Assume condition (6) [or, equivalently, con-
dition (8)] is satisfied. There exists a unique X ∈ Range(Γ)
solving (78).

Proof: Equation (78) may be rewritten as∫
GQ−1

i

[(
G∗XGQ−1

i Ψ
)

+
(
G∗XGQ−1

i Ψ
)∗]

Q−1
i G∗

=
∫

GQ−1
i ΨQ−1

i G∗ − I (80)

where we have eliminated δΛ. Notice that the map ϕ associating
to X ∈ Range(Γ) the matrix

ϕ(X) :=
∫

GQ−1
i

[(
G∗XGQ−1

i Ψ
)

+
(
G∗XGQ−1

i Ψ
)∗]

Q−1
i G∗

defines a linear transformation of Range(Γ) into itself. In fact,
clearly

Q−1
i

[ (
G∗XGQ−1

i Ψ
)

+
(
G∗XGQ−1

i Ψ
)∗ ]

Q−1
i

=
[
Q−1

i

[ (
G∗XGQ−1

i Ψ
)

+
(
G∗XGQ−1

i Ψ
)∗ ]

Q−1
i

]∗
(81)

so that by definition ϕ(X) ∈ Range(Γ). The linear map ϕ has
trivial kernel. In fact, if for some X ∈ Range(Γ), ϕ(X) = 0,
then

0 = tr[ϕ(X)X] = δ2JΨ(Λi ;X,X).

Taking into account the positive definiteness of δ2JΨ(Λi ;X,X)
on Range(Γ), this implies X = 0. As a consequence, the image
of ϕ is the whole linear space Range(Γ). It only remains to
observe that

[∫
GQ−1

i ΨQ−1
i G∗ − I

]
∈ Range(Γ). Indeed, I ∈

Range(Γ) and
∫

GQ−1
i ΨQ−1

i G∗ ∈ Range(Γ) by definition of
Range(Γ). �
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Proposition 8.1 does not guarantee that the solution X of
(78) satisfies (Λi + X) ∈ LH

Γ , as requested in Step 4). To over-
come this problem, we design a variant of the Newton method
with backtracking. In this variant, the following substeps are
employed in place of Step 4):

4.1) Solve equation (78) for X ∈ Range(Γ).
4.2) Let k = 1 and double k until both conditions(

Λi +
1
k

X

)
∈ LH

Γ (82)

‖Vi,k‖ < ‖Vi‖ (83)

are satisfied, where

Vi :=
∫

G(I + G∗ΛiG)−1Ψ(I + G∗ΛiG)−1G∗ − I

and

Vi,k :=
∫

G

(
I + G∗

(
Λi +

1
k

X

)
G

)−1

Ψ

×
(

I + G∗
(

Λi +
1
k

X

)
G

)−1

G∗ − I.

4.3) Set the (i+1)th estimate of Λ̂ to the value
Λi+1=Λi+ 1

k X .
This procedure guarantees that each Λi ∈ LH

Γ even when
X �∈ LH

Γ . Notice that, by convexity of the problem, X is a
descent direction so that, for sufficiently large k, (83) is certainly
satisfied. Moreover, sinceLH

Γ is an open set, (82) is also satisfied
for sufficiently large k.

B. Computation of the Solution of (80)

The next point that needs to be addressed is the computation
of X (Step 4.1). In fact, although (80) is a linear equation, it is
not obvious how to solve it in a numerically efficient way. To
simplify notation, we drop the subscript “i” in Λi and Qi :=
(I + G∗ΛiG). Consider the following equation∫

GQ−1[ (G∗XGQ−1Ψ
)

+
(
G∗XGQ−1Ψ

)∗ ]
Q−1G∗

=
∫

GQ−1ΨQ−1G∗ − I. (84)

We propose the following procedure.
1) Choose a set {Xi} of linearly independent matrices such

that span{Xi} = Range(Γ).
2) Compute the quantities

Yi :=
∫

GQ−1[ (G∗XiGQ−1Ψ
)

+
(
G∗XiGQ−1Ψ

)∗ ]
Q−1G∗ (85)

Y :=
∫

GQ−1ΨQ−1G∗ − I. (86)

3) Solve for the scalar unknowns yi equation∑
i

yiYi = Y.

4) Set

X =
∑

i

yiXi.

Steps 3) and 4) do not present any difficulty. Concerning point
1), employing the characterization (29) of Range(Γ), we simply
have to solve the following Lyapunov equations

Σ − AΣA∗ = BHh,k + H∗
h,kB∗

h = 1, 2, . . . ,m; k = 1, 2, . . . , n (87)

where Hh,k ∈ R
m×n is the matrix in which the entry in po-

sition (h, k) is 1 and all the other entries are zero. As k and
h vary in their respective range, (87) yields n × m equations
whose solutions are n × m square matrices. Such matrices span
Range(Γ), but are not linearly independent. It is easy, however,
to employ the singular value decomposition algorithm (which is
very stable and robust) and reduce to a basis {Xi} of Range(Γ).

Concerning point 2), in the case when Ψ is a rational matrix
function, we can compute the integrals in (85) and (86) very
efficiently and precisely. We first describe in detail the com-
putation of Y . To compute

∫
GQ−1ΨQ−1G∗, we observe that

χ := GQ−1ΨQ−1G∗ is a spectral density. Let Wχ be an analytic
spectral factor of χ (namely a function Wχ analytic outside the
unit disk and such that χ = WχW ∗

χ ). Then,
∫

χ is the steady-
state covariance of the output of a filter with transfer function
Wχ fed by normalized white noise. To compute a realization of
Wχ , we implement the following steps:
2a) Compute a coanalytic square spectral factor W ∗

Ψ of Ψ
(namely Ψ = W ∗

ΨWΨ , WΨ being square and analytic out-
side the unit disk). This requires (see, e.g., [18]):
– decomposing Ψ as Ψ = Z + Z∗ with Z being analytic
inside the unit disk: This may be done by partial fraction
expansion.
– solving an algebraic Riccati equation of dimension equal
to the McMillan degree of Z.

2b) Factorize Q = (I + G∗ΛG) as Q = ∆∗∆, with ∆ being
square and analytic together with its inverse outside the
unit disk. This can be done by computing the stabilizing
solution Xs of the following algebraic Riccati equation:

X = A∗XA − A∗XB(I + B∗XB)−1B∗XA + Λ.
(88)

We have the following realization for ∆−1 :

∆−1 = (I + B∗XsB)−1/2

− (I + B∗XsB)−1B∗XsA(zI − Γs)−1

× B(I + B∗XsB)−1/2 (89)

with Γs := A − B(I + B∗XsB)−1B∗XsA having all its
eigenvalues inside the unit circle.

2c) Compute a realization of H∗ := ∆−∗W ∗
Ψ . Notice that H∗

is a coanalytic spectral factor of ∆−∗Ψ∆−1 .
2d) From H∗, compute an analytic spectral factor H1 of

∆−∗Ψ∆−1 using the procedure detailed in Lemma A.1
in the Appendix.

2e) Compute a minimal realization of Wχ := G∆−1H1

Wχ = Cχ(zI − Aχ)−1Bχ.
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We get∫
GQ−1ΨQ−1G∗ =

∫
WχW ∗

χ = CχΣχC∗
χ (90)

with Σχ being the solution of the Lyapunov equation

Σχ − AχΣχA∗
χ = BχB∗

χ . (91)

For the computation of the integrals Yi in (85), we employ
the same technique. The main difference is that the integrand of
(85) is not a spectral density. Nevertheless, we observe that, by
factoring Q as Q = ∆∗∆ [exactly as we have done in point 2b)
earlier] and by defining the functions Φ1 ,Φ2 ∈ CH (T) as

Φ1 := ∆−∗G∗XG∆−1 , Φ2 := ∆−∗Ψ∆−1 (92)

we may rewrite such an integrand in the form

G∆−1 [Φ1Φ2 + Φ2Φ1]∆−∗G∗

= G∆−1 [(Φ1 + Φ2)(Φ1 + Φ2)∗ − Φ1Φ∗
1 − Φ2Φ∗

2 ]∆
−∗G∗.

(93)

It is therefore clear that the integrand of (85) is a difference of
spectral densities. Hence, the integral (85) may be computed by
resorting to the same technique detailed earlier for the compu-
tation of Y .

C. Simulation Results

We have applied the procedure described in Section VIII-A
to many different examples and it performed very well even in
the case of large values of n and m (recall that B ∈ C

n×m ). In
the scalar case (m = 1), some examples are discussed in [19]
for the case of the Hellinger distance, and in [45], for the case
of the KL pseudodistance. In the following we discuss a simple
multivariable example (n = 3, m = 2). Choose

A =




1/3 0 0
0 1/2 0
0 0 1/4


 , B =




1 0
1 1
0 1




Σ =




9/4 12/5 0
12/5 16/3 16/7

0 16/7 32/15


 .

A,B and Σ satisfy the feasibility condition (6). After renormal-
izing so that Σ = I , we get

A �




0.2309 −0.3657 −0.2046
0.1368 0.7935 0.2434
−0.0886 −0.4086 0.0590




B �




0.6191 −0.0471
0.2697 0.2711
−0.0458 0.6393


 .

Finally, we have chosen the reference spectral density Ψ to be
identically equal to I (the identity). In this case, the Kullback–
Leibler approximation has the interpretation of maximum en-

Fig. 1. First picture: Graphics of Φ̂(1 ,1)
H (eiϑ ) (bold line) and Φ̂(1 ,1)

K L (eiϑ )

(thin line) as functions of ϑ. Second picture: Graphics of Φ̂(2 ,2)
H (eiϑ ) (bold

line) and Φ̂(2 ,2)
K L (eiϑ ) (thin line) as functions of ϑ. Third picture: Graphics

of �[Φ̂(1 ,2)
H (eiϑ )] (bold line) and �[Φ̂(1 ,2)

K L (eiϑ )] (thin line) as functions of

ϑ. Fourth picture: Graphics of �[Φ̂(1 ,2)
H (eiϑ )] (bold line) and �[Φ̂(1 ,2)

K L (eiϑ )]
(thin line) as functions of ϑ. The prior here is simply given by Ψ = I (Ψ(1 ,1) ≡
Ψ(2 ,2) ≡ 1 and Ψ(1 ,2) ≡ Ψ(2 ,1) ≡ 0), and is therefore not depicted.

tropy solution and may be obtained in closed form [25]

Φ̂K L =
[
G∗B(B∗B)−1B∗G

]−1
. (94)

For the computation of the Hellinger approximation, we have
set in (79) ε := exp(−12). Our procedure converged in 12 steps
of the Newton algorithm with backtracking (less than 10 s) to
the matrix

Λ̂H �



−0.4267 −0.0621 0.0005
−0.0621 −0.1007 −0.0269
0.0005 −0.0269 −0.4690


 .

Let Φ̂H be the corresponding Hellinger approximation com-
puted as in (59). Let Φ̂(i,j )

H be the entry in row i and column j

of Φ̂H , and similarly define Φ̂(i,j )
K L . In Fig. 1, Φ̂(1,1)

H , Φ̂(2,2)
H , and

the real and imaginary parts of Φ̂(1,2)
H are depicted together with

the corresponding entries of Φ̂K L .
It may be worthwhile to observe that, with respect to the

L1 distance1, the Hellinger approximation is, in this example,
closer to the prior than the Kullback–Leibler approximation.
More precisely, we have

tr
∫ {[(

Φ̂H − I
)2
]1/2

}
� 1.6982

tr
∫ {[(

Φ̂K L − I
)2
]1/2

}
� 2.5079.

1For a matrix function M : T → C
h×k , the L1 norm here considered is

tr
∫
{[M ∗M ]1/2}.
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APPENDIX

SPECTRAL FACTORIZATION RESULT

In this appendix, we collect a side result connecting left- and
right-spectral factors of a rational spectral density.

Lemma A.1: Let A be a stability matrix and H(z) = C(zI −
A)−1B + D be a minimal realization. Let P be the solution of
the Lyapunov equation

P − A∗PA = C∗C. (95)

Let

[
K
J

]
be an orthonormal basis of ker [ A∗P 1/2 C∗ ], i.e.,

[ A∗P 1/2 C∗ ]
[

K
J

]
= 0, [ K∗ J∗ ]

[
K
J

]
= I. (96)

Let G := P−1/2K and

H1(z) := (D∗C + B∗PA)(zI − A)−1G + B∗PG + D∗J.
(97)

Then, H∗H = H1H
∗
1 .

Proof: Let Q := C(zI − A)−1G + J . We first show that
QQ∗ = I , so that Q is inner. We then prove that Q∗H = H∗

1 ,
concluding the proof. We have

Q∗Q = G∗(z−1I − A∗)−1C∗C(zI − A)−1G

+ G∗(z−1I − A∗)−1C∗J + J∗C(zI − A)−1G + J∗J.

(98)

Now let P > 0 be the solution of the Lyapunov equation (95).
Then,

C∗C = −(z−1I − A∗)P (zI − A)

+ (z−1I − A∗)Pz + z−1P (zI − A). (99)

Substituting (99) into (98) we obtain
Q∗Q = −G∗PG + G∗Pz(zI − A)−1G

+ G∗(z−1I − A∗)−1z−1PG

+ G∗(z−1I − A∗)−1C∗J

+ J∗C(zI − A)−1G + J∗J. (100)

Moreover,
z(zI − A)−1 = I + A(zI − A)−1 and

(z−1I − A∗)−1z−1 = I + (z−1I − A∗)−1A∗ (101)

so that
Q∗Q = (J∗C + G∗PA)(zI − A)−1G

+
(
(J∗C + G∗PA)(zI − A)−1G

)∗
+ G∗PG + J∗J. (102)

Taking (96) into account, it is easy to see that Q∗Q = I . There-
fore, H∗H = H∗QQ∗H . Recalling (99) and (101), we eventu-
ally get

Q∗H =

= (G∗(z−1I − A∗)−1C∗ + J∗)(C(zI − A)−1B + D)

= −G∗(z−1I − A∗)−1(z−1I − A∗)P (zI−A)(zI − A)−1B

+ G∗(z−1I − A∗)−1(z−1I − A∗)Pz(zI − A)−1B

+ G∗(z−1I − A∗)−1z−1P (zI − A)(zI − A)−1B

+ G∗(z−1I − A∗)−1C∗D + J∗C(zI − A)−1B + J∗D

= −G∗PB + G∗Pz(zI − A)−1B

+ G∗(z−1I − A∗)−1z−1PB

+ G∗(z−1I − A∗)−1C∗D + J∗C(zI − A)−1B + J∗D

= −G∗PB + G∗P
(
I + A(zI − A)−1)B

+ G∗ (I + (z−1I − A∗)−1A∗)PB

+ G∗(z−1I − A∗)−1C∗D + J∗C(zI − A)−1B + J∗D

= G∗PB + G∗PA(zI − A)−1B

+ G∗(z−1I − A∗)−1A∗PB

+ G∗(z−1I − A∗)−1C∗D + J∗C(zI − A)−1B + J∗D

= G∗(z−1I − A∗)−1(C∗D + A∗PB)

+ (G∗PA + J∗C)(zI − A)−1B + G∗PB + J∗D

= G∗(z−1I − A∗)−1(C∗D + A∗PB) + G∗PB + J∗D

= H∗
1 .
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