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Attaining Mean Square Boundedness of a Marginally
Stable Stochastic Linear System With

a Bounded Control Input

Federico Ramponi, Debasish Chatterjee, Andreas Milias-Argeitis,
Peter Hokayem, and John Lygeros

Abstract—We construct control policies that ensure bounded variance of
a noisy marginally stable linear system in closed-loop. It is assumed that
the noise sequence is a mutually independent sequence of random vectors,
enters the dynamics affinely, and has bounded fourth moment. The magni-
tude of the control is required to be of the order of the first moment of the
noise, and the policies we obtain are simple and computable.

Index Terms—Bounded controls, linear systems, stochastic stability.

I. INTRODUCTION

Stabilization of stochastic linear systems with bounded control
inputs has attracted considerable attention over the years. This is due
to the fact that incorporating bounds on the control is of paramount
importance in practical applications; suboptimal control strategies
such as receding-horizon control [1], [2], and rollout algorithms [3],
among others, were designed to incorporate such constraints with
relative ease, and have become widespread in applications. However,
the following question remains open: when is a linear system with
possibly unbounded additive stochastic noise globally stabilizable
with bounded controls? In this article, we provide sufficient conditions
that give a positive answer to this question.

Bounded input control has a rich and important history in the control
literature [4]–[8]. The deterministic version of the bounded input sta-
bilization problem was solved completely in a series of articles [4], [5]
culminating in [6]. It was demonstrated in [6] that global asymptotic
stabilization of a discrete-time linear system

���� � ��� ���� ���

with bounded feedback controls is possible if and only if the transition
matrix has spectral radius at most 1, and the pair ����� is stabilizable
with arbitrary controls. Extensions to the output feedback case have
appeared in [9], [10]. In the presence of affine stochastic noise the linear
system ��� becomes

���� � ��� ���� � �� ����

where ������ is a collection of independent (but not necessarily
identically distributed) random vectors with possibly inter-dependent
components at each time �. In this setting one fundamental question of
closed-loop stability is the following: Does there exist a control policy
such that, given an arbitrary initial state ��, the sequence �����

��
��

generated by the closed-loop system is bounded in expectation?
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Ensuring mean-square boundedness of ���� is clearly not possible
in the presence of an arbitrary noise; it is necessary to assume, at least,
that the noise has bounded variance.1 Going beyond this necessary con-
dition and using standard Foster–Lyapunov techniques [11], it is not
difficult to establish mean-square boundedness of such a system with
bounded controls under the assumption that � is Schur stable, i.e., all
eigenvalues of � are contained in the interior of the unit disk. It is also
not difficult to see that ensuring a mean-square bound in closed-loop
with the aid of bounded controls is not possible if � is unstable. How-
ever, to the best of our knowledge, there is no conclusive proof that
a closed-loop mean-square bound can be ensured with a marginally
stable �. Results in this direction were reported in [8] and [12], where
the authors proposed a controller comprising a variable gain linear
feedback followed by a fixed saturation and an argument that for low
enough values of the gain this controller leads to bounded state vari-
ance for marginally stable linear systems. Here we propose a different
control scheme derived from a fixed gain linear controller followed by
saturation. The saturation function utilized in the construction of our
controller is effective outside a small region close to the origin, whereas
the saturation function in [8] is (by construction) generally effective
very far from the origin. This difference can have a major impact on
the relative performance of the two policies as illustrated through an
example in Section IV.

We develop easily computable bounded control policies for the case
when � is marginally stable and ����� is stabilizable. Our policy is
not in general stationary and is selected from the class of finite �-his-
tory-dependent and/or non-stationary policies. In the case when � is
orthogonal, it turns out that if the system is reachable in one step (i.e.,
����� � 	
� ������� �� 	
� �	�	� �����), we do get stationary
feedback policies. In the more general case when the system ��� is
reachable in � steps (with arbitrary controls), we propose a feedback
policy for a sub-sampled system derived from the original one, which,
for the actual system, turns out to be a �-history-dependent policy. In
fact, in this case we realize our policy as successive concatenations
of a fixed �-length policy. In the most general situation we propose a
�-history-dependent policy, where � is now the reachability index of
the particular subsystem of ����� for which the dynamics matrix is
orthogonal. In all these cases, the length of the policy is at most equal
to the dimension of the state space; memory requirements for even the
most general case are, therefore, modest.

Note that we do not assume that the noise is white. For our purposes
the requirements on the noise are rather general, namely, the fourth mo-
ment of the noise should be uniformly bounded, and the noise vectors
should be independent of each other (identical distribution at each time
is not assumed). In particular, we do not assume Gaussian structure of
the noise. It turns out that to ensure stabilization we need the controller
to be sufficiently strong, in the sense that the control input norm bound
should be bigger than a uniform bound on the first moment of the noise.

Section II contains a precise statement of our result under the most
general hypotheses (� marginally stable and ����� stabilizable),
and a brief sketch of the proof. In Section III, after some preliminary
material, we prove the attainability of bounded second moment for a
random walk, then we generalize the result under weaker and weaker
hypotheses, finally culminating in the proof of the main theorem
of Section II. The final Section IV presents a numerical example
illustrating our results.

1For instance, if the noise has a spherically symmetric Cauchy distribution
on , then given any initial condition � � , the second moment of �
does not even exist. Similarly, if the second moment of the noise becomes un-
bounded with time, it is not possible to control the second moment of the process
�� � .
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II. MAIN RESULT

A. Statement of the Theorem

Consider the discrete-time linear system

���� � ��� ���� � ��� �� � �� � � � (1)

where the following hold: � � � is given; the state �� at time � takes
values in �; � � ���, all the eigenvalues of � lie in the closed unit
circle, and those eigenvalues � such that ��� � � have equal algebraic
and geometric multiplicities; � � ���, and the control �� at time �
takes values in �; ������ is an �-valued random process.

Our objective is to synthesize a 	-history-dependent control policy2


 � �
���� , consisting of successive concatenations of a 	-length
sequence of maps �
����� �� ��
�� � � � � �
���	, �
� � � �� � for
� � 
� � � � � 	 � �, such that 
� � ��� �� � is measurable, �� ��

����� ����� � � � � �������, the sequence ������ is bounded, and the
state of the closed-loop system

���� ���� ��
����� � � � � ������� � ���

�� ��� � � � (2)

has bounded second-order moment. (To simplify the notation, we fix
����� � � � � � ��� � ��.) The following is our main result:

Theorem 1: Consider the system (1). Suppose that the pair �����
is stabilizable, and that ���� �����

�	 � �. Then there exist an
 � 
 and a deterministic 	-history-dependent policy �
���� , with
	 � � and �
����� �  for every �, such that

(P1) for every fixed � � � the solution ������ to (2) satisfies
���� ������

�	 � �;
(P2) in the absence of the random noise the origin is asymptoti-
cally stable for the closed-loop system.

B. Sketch of the Proof

Our proof is built in a series of steps, moving from simpler to pro-
gressively more complex systems. The starting point is the �-dimen-
sional random walk ���� � �� � �� � ��. In this case we employ
the main result of [13] to design a policy that guarantees mean-square
boundedness of the closed-loop system. We then consider the system
���� � ��� ���� � ��, where �� is a �-dimensional control input,
����� � �, and � is orthogonal. With the help of a time-varying in-
jective linear transformation this case is reduced to the �-dimensional
random walk. The third case is when �� �

� and � is orthogonal.
This is reduced to the second case above with the aid of an injective
linear transformation derived from the reachability matrix of the pair
�����. Finally, the general case when � is just stable and ����� sta-
bilizable is reduced to the third case by observing that � acts as an
orthogonal map on the invariant subspace corresponding to the eigen-
values that lie on the unit circle.

Arguments for establishing mean-square boundedness of stochastic
dynamical systems typically rely on ��-boundedness of a Lyapunov-
like function for the system. The latter can be established in at least
three different ways: The first is via the classical Foster-Lyapunov drift-
conditions [11], [14] and its various refinements; this is the approach
followed in [8]. The second is via excursion-theoretic analysis [15] that
relies primarily on the existence of certain supermartingales as long as
the process is outside some bounded set. The third is via martingale
inequalities [13], and this is the approach pursued in this article.

2See Section III-A for definitions of policies.

III. PROOF OF THE MAIN RESULT

A. Preliminaries

If ������ is a random process on a probability space ��� � �,
taking values in some Euclidean space, we let ������� � �

� �� � � � � ��	 denote the conditional expectation of a measurable
mapping � of the process up to time �, given the initial condition
�� � �; in particular we define the �-th moment of �� as ������

�	.3

We denote conditional expectation given a sub-�-algebra � of as
��� �	. For � � 
 let ���	 � � �� 		 be defined by ���	��� �� �

if � � 		 and ���	��� �� ������ otherwise.4 Given matrices
� � ��� and � � ��� we define the 	-step reachability matrix

� �� �� �� � � � �����	.

We specialize the general definition of a policy [16, Ch. 2] to our
setting. A policy 
 �� �
���� is a sequence of measurable maps

� � ��� �� � for some 	 � , such that the control at time �
is 
����� ����� � � � � �������. The policy 
 � �
���� we have de-
fined is also known as a deterministic 	-history-dependent policy in the
literature. A special case of these policies is a deterministic feedback
policy or simply a feedback if 	 � � in the definition of a deterministic
history-dependent policy. Under deterministic feedback policies the
closed-loop system is Markovian [16, Proposition 2.3.5]. A further spe-
cial case is when 
� � � , a fixed measurable mapping � � � �� �

for � � �; this is known as a stationary feedback policy.
Lemma 2: Let ��� � � � � �� be ��� matrices, � �� ��� � � � ��	,

and �� denote the minimum singular value of � . If ����� � �, then
for all � � 
 every vector � � � belonging to 		 can be expressed
as � � �

���
����, with �� �

� and ���� � ����� . In particular,
if � � ��� and ����� � �, then every vector � � � belonging to
		 can be expressed as � � ��, where � � �, ��� � ����� .

Proof: ����� � � implies that 	� � �. Hence,
� � ��� � � � ��	 � ���� is a “flat” matrix. Let
� � ��� � � � �� 
	� � be a singular value decom-
position of � , where � � �������� � � � � ���. Since �
has full rank, the matrix � is invertible. Hence every vector
� � � can be expressed as � � ��, where � � ��� and
�� � � 	

�
�� � ���� is the Moore-Penrose pseudoinverse

of � . Since �� � are orthogonal, for any � � 
 we have
����
��� ���� � ����� 
��� �� �� 
	� ��� �������� �� � �
���. Hence, the image of 	� under � contains 	�� , and
if we choose � � ����� , then the image of 	� under �
contains 		 . Notice that ���� is also the greatest singular
value of ��, and indeed we have ������	 ��

��� �

���� ���	 ��
	

�
���� �������	 ��

��!� � ����� .
Summing up, every � � 		 can be expressed as � � ��,
where � � �� and ��� � ����� . It remains to notice that
� can be partitioned according to the partition of � , that is
� � �� � ��� �� � � � ��	��

�
� � � � ��� 	

�
� �

���
���� and the

bound ��� � ����� implies ���� � ����� for all � � � � � � 	.

B. The �-Dimensional Random Walk

At the core of our proof is the �-dimensional random walk

���� � �� � �� � ��� �� � �� � � � (3)

with the state �� � �, the control �� � � with ���� � � for some
� � 
, the noise process ������ satisfies the following assumption:

3Let be the set of nonnegative integers ��� �� �� � � ��. The standard 2-norm
on Euclidean spaces is denoted by � � � and the absolute value on by � � �. In a
Euclidean space we denote by � the closed Euclidean ball of radius � centered
at the origin.

4Note that ��� ��	 is not the component-wise saturation function.
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Assumption 3:
• ������ are mutually independent �-dimensional random vec-

tors (not necessarily identically distributed);
• ����

�
� � � �� for all � � �;

• there exists �� � � such that ������� � �� for all � � �.
Let �� �� �	


��
������; this is well-defined because by

Jensen’s inequality we have �� �
�
��. Let � ���� be the natural

filtration of the system (3). Our proof of Theorem 1 relies on the
following (immediate) adaptation of the fundamental result [13,
Theorem 1].

Proposition 4: Let ������ be a sequence of nonnegative random
variables on some probability space ��� � �, and let � ���� be
any filtration to which ������ is adapted. Suppose that there exist
constants 	 � �, and 
�� ��, such that �� � 
 , and for all �

����� � ��� �� � �	 � ��� ���� ��� � 
	� �� (4)

������ � �������� � � � � ��� �� (5)

Then there exists a constant � � ��	� 
��� � � such that
�	

��

���� � � �.

Lemma 5: Consider the system (3), and define �� �� ����, � � �.
There exists a constant 	 � � such that for any � � �� condition (4)
holds in closed-loop with the control �� � ���������.

Proof: Fix � � � and � � ��. We have ����� � ��� �� �
������� � ����� �� � ���� � ������ � ����� �� � ���� �

������������������ �� � ����� ���������� ���������� ��.
Let 
 � � and 	 �� � � ��. On the set ����� � 
	 we have ��� �
��������� � ���� � ��. From the above we get, on the set ����� �

	, ����� � ��� �� � �� � ������ � �	, where 	 is positive by
our hypothesis. The assertion follows.

Lemma 6: Consider the system (3) and define �� �� ����, � � �.
Then for the closed-loop system with �� � ��������� there exists a
constant � � ����� � � such that (5) holds.

Proof: Fix � � ��. Applying the triangle inequality successively,
we have ����� � ���� � ������� � ������ � ����� � ���� ���� �
���� � �� � ������, and ������ � �������� � � � � ��� � ��� �
���������� � � � � ��� � �����������. Since the fourth moment of�� is
uniformly bounded, expanding the right-hand side above and applying
Jensen’s inequality shows that there exists some � � ������� � �
such that ��� � ������� �� . The assertion follows.

Proposition 7: For � � � consider the system (3) under the deter-
ministic stationary feedback policy �� � ���������

���� � �� � �������� � ��� �� � �� � � � (6)

Then for every � � �� the system (6) satisfies �	

�� �������� � �

for some � � ���� �� ��� � �.
Proof: Let � � �� � 	 for some 	 � � and 
 �� ������ ���	.

Lemma 5 guarantees that (4) holds, and Lemma 6 shows that there
exists an� � � such that (5) holds. The assertion now is an immediate
consequence of Proposition 4.

C. The Case of � Orthogonal

Next we establish part (P1) of the main theorem in the particular case
of � being orthogonal.

Lemma 8: Consider the system ���� � ��� � �� � ��� �� � �,
where �� and �� take values in �, � is orthogonal, and ������
satisfies Assumption 3. There exist a constant � � � and a deterministic
stationary policy � � ��� �� 
 
 
� such that ������ � � for all � � �

and � � �, and the closed-loop system

���� � ��� � ����� � �� (7)

under this policy satisfies �	

�� �������� � �.

Proof: Consider the process ������ defined by �� ��

����
�

��. The second moment of �� is the same as that of ��

due to orthogonality of �: �������� � �������
�

����� �

���
�
� �

�����
�

��� � ���
�
� ��� � ��������. Now we have

���� �����
���

����

�����
�

�� � ����
���

�� � ����
���

��

� �� � ��� � ��� (8)

where the mapping �� �� ��� �� ����
���

�� is isometric and invert-
ible, and � ������ defined by ��� �� ���������, is a sequence of in-
dependent (although in general not identically distributed) random vec-
tors, with fourth moment given by �� ������ � ������

���
����� �

������� � ��. Due to Proposition 7, there exists a constant � such
that the closed-loop system (8) under the policy ��� � ��������� ��
������ has bounded second moment. Consequently, the original system
(7) has bounded second moment under the policy �� � ������� �

���� ������ � ������������
��

�

��� ��������. Noting that for any
orthogonal matrix � we have �������� � ��������, we arrive at
�� � ������ � ���������� �� �����, which is indeed a stationary
feedback. Moreover, since ����������� � �, we have ������� � �.

In the following we will consider a non-stationary policy obtained by
successive concatenations of a �-length policy ���� ��� 
 
 
 ����� acting
on the “sub-sampled” process ������� . More precisely, our policy
has the form�� � ��� ��� ����������where the “” symbol denotes
integer division and “���” its remainder. In words, we break the time
line into segments of length �, and within each segment we let the
controls be given by ��� ��� 
 
 
 ����, applied in this order always to the
first state observed in the segment. For example, �� � �����������
��, �� � �������������� � � �, �� � �������������������,
���� � ������������� , ���� � �����������������, and
so on.

Lemma 9: Consider the system

���� � ��� ���� � ��� �� � � (9)

where �� takes values in �, �� takes values in �, � is orthog-
onal, the pair ����� is reachable in � steps (i.e., ����� � �,
where �� � �� �� 
 
 
 ������), and ������ satisfies As-
sumption 3. Then there exist a constant � � � and a policy
� � ���� ��� 
 
 
 ����� ��� ��� 
 
 
� such that ������� � � for all
� � �, and the closed-loop system

���� � ��� �������� ������� � �� (10)

under this policy satisfies �	

�� �������� � �.

Proof: Let � � � and consider the evolution of (9) from time
�� to time �� � ���

��	���� ��
�
�	� ��� �

�
�	������ 
 
 
 �

�
	�

�

�

���

�	�

�
�����

�	���

� ���	� � ��	 � ��	 (11)

where ��	 �� ���
�	� �

������	��� is a random vector with bounded
fourth moment. Since �� has full rank, we can exploit Lemma 2
setting � � ��� 
 
 
 ��� � �� 
 
 
 ������ � ��, and obtain
that for arbitrary � � �, any ��	 in �� can be expressed as ��	 �

���
�	� �

�������	���, where ��	���� � ����
�

and �� is the
smallest singular value of ��. In other words, for arbitrary � � �, at
time � we can choose any “�-steps” input ��	 such that ���	� � �;
and in doing that we can enforce that each of its components
�	� 
 
 
��	������, which are the actual inputs of system (9) that will
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be applied in the subsequent time steps �� � � � �� � ��� � �, will be
bounded by ������� � ����� . Now, we know from Lemma 8 that there
exists a particular � � � such that, under the stationary policy ��� �
������ � � �	�	
������, there exists a constant 
 � 
��� ��� ��� �
� such that ����� �������� � 
, that is, the “sub-sampled”
system (11) has bounded second moment with “�-steps” input
bounded by ����� � �. Therefore, if we choose, as the constant whose
existence is claimed in the assertion,  � ����� , we can attain the
same result having the actual input bounded by ���� � .

It remains to show that the second-order moment of the state in the
intermediate steps (between �� and ��������, say) are also bounded.
It follows from the system dynamics and the triangle inequality that
for � � �� � � � � � � �, ���������� � ��
 � ����������� �
��	����	���	���
������ � ��
 � ����������� � �

�
��, where

the last step follows from Jensen’s inequality. Since the right-hand side
above constitutes a uniform bound, this proves the assertion.

Remark 10: The policy for (9) is ��	���
��� � � � ������ �

���
�
�	�	
������. The proof above shows that all the inputs

�	���
���� � � � � ��� can be computed at time �� in order to coun-
teract the future effect of the current state, i.e. �	���, and ignoring
the effect of the noise for the following � steps. In the particular
case when � � ��� has full rank, � � �, and obviously � � �,
the above policy is stationary, and in particular it has the form:
�� � ����� � ����	�	
�����. Once again we have ���� � ����� ,
where this time �� is the smallest singular value of �. �

D. Proof of Theorem 1

Proof: Consider the system (1), with �	��� stabilizable and
������ with bounded fourth moment. If 	 is Schur stable (that is,
all the eigenvalues of 	 belong to the interior of the unit disk), the
system with zero input has bounded second moment and is asymptot-
ically stable, and there is nothing to prove. Otherwise, there exists a
change of base in the state-space that brings the original pair �	���
to a new pair � �	� ���, where �	 is in real Jordan form [17, p. 150]. In
particular, choosing a suitable ordering of the Jordan blocks, we can

ensure that the pair � �	� ��� has the form
	�� �

� 	��
�
��

��
,

where 	�� is Schur stable, and 	�� has its eigenvalues on the unit
circle. Due to the stability hypothesis (the algebraic and geometric
multiplicities of the eigenvalues of 	�� are equal), 	�� is therefore
block-diagonal with elements on the diagonal being either �1 or 2 	
2 rotation matrices. As a consequence, 	�� is orthogonal. Moreover,
since �	��� is stabilizable, the pair �	��� ��� must be reachable
in a number of steps � � � which depends on the dimension of
	�� and the structure of �	��� ���, since it contains precisely the
modes of 	 which are not asymptotically stable. Summing up, we
can reduce the original system ���� � 	�� � ��� � �� to the form
�

�
�


 �


 �
� �

�
���

�

�
, where	�� is Schur stable,	��

is orthogonal, �	��� ��� is reachable, and �
�

�
��� is derived

from ������ by means of linear transformations. We know that

since 	�� is Schur stable, the noise ��
	�

� �

��
has bounded second

moment, and the control inputs ������ are bounded, then the �	�


sub-system is mean-square bounded under any Markovian control [1,
§4]. Therefore, if under some bounded policy the �	�
 sub-system is
mean-square bounded, the original system will also be mean-square
bounded under the same policy. Thus, at least for the proof of (P1),
it suffices to restrict our attention to the subsystem described by the
pair �	��� ���. Suppose that this subsystem is reachable in a certain
number � � � of steps.

The proof of (P1) coincides with the proof of Lemma 9, where we
obtain  � ����� for � � �� and �� is the smallest singular value of

Fig. 1. The policy proposed in this article (with nominal and a tenth of nominal
control authority) compared against no control. Empirical average of �� � over
1000 runs.

�� . (Here,�� � �� 	���� � � � 	���
�� ���.) As the control authority

required in the claim of the theorem, we choose precisely � � .
To prove (P2), notice that for the closed-loop “sub-sampled” system

without noise under the policy �� � ���
�
�	�	
���

	�

� �, where �	 �

	�
��, it holds

�
	�

	���
� � �	�

	�

�� � �	�	
� �

	�

�� � (12)

As long as �	�
�� is outside 
� , ��	�
	���
�� � ��	�
�� � � �. Hence, in a

finite number of steps it must hold ��	�
�� � � �. When for some �� we
have ��	�
	����
�� � �, by the definition of �	
���� we have �	�
��� �

�, and consequently �
	�

�� � � for all � � �� . Hence, the state of

the closed-loop “sub-sampled” system converges to zero in finite time
for any initial condition. Then, according to the chosen policy, for all
� � �� we have ��	���
��� � � � ������ � ���

�
�	�

	�

�� � � and

��� � ���
�
	���
��� � � � ������ � �, and consequently, for � � �� and

�� � � � �� � ��� we also have �	�
� � �, that is, �	�
� � ��� � ���,
which proves (P2) for the subsystem �	��� ��� of our system (1).

Finally, to extend the result (P2) to the general case (where 	 �
��	��	��� 	���), it suffices to note that, since for � � ��� it also holds
�� � �, from the time ��� onwards the subsystem �	��� ��� is in open
loop. Since we imposed 	�� to be Schur stable, the state �	�
� of the
latter converges to zero as ��. This proves the theorem.

IV. A NUMERICAL EXAMPLE

To demonstrate that our nonlinear policy is readily computable and
effective, we applied it to the system ���� � 	�� �������, where

	 �

���� � ���� ����� � ����
���� ���� ���� �

� � � ���

� � � ���

,� �

��
�

�

�

, with� �

���, �� � � ��� ���� ���, and ���� is Gaussian white noise with

mild variance �� � ���������

 � �� �

� � � �

�� � � ��
� � �� �

. This system is

marginally stable and the 3-D subsystem with eigenvalues on the unit
circle is reachable in 3 steps, whereas the 1-D Schur-stable subsystem
is not reachable at all. The control authority � was chosen equal to
0.99196 according to an estimate of �� � �����. Fig. 2(a) shows
the empirical average of ����� over the 1000 runs, respectively with



2418 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 10, OCTOBER 2010

Fig. 2. The policy proposed in this article compared against the one proposed
in [8]. Empirical average of �� � over 1000 runs.

disabled control, with the chosen control authority, and with one tenth
of the chosen control authority. Fig. 2(b) compares the performance
of our policy against the feedback policy proposed in [8], for the same
stable linear system. In the case of [8] the saturation is component-wise
with � � �, but the linear gain of the controller is tuned in order to
match the required design conditions in [8]. Note that the structure of
the policy in [8] and the requirement for a low linear gain imply that
the saturation is practically inactive within a large region around the
origin. As a consequence, the response diverges away from the origin
(on an average) until the saturation kicks in at large state values. This
is clearly seen in Fig. 2(b) where our policy outperforms that of [8] by
two orders of magnitude in terms of the steady state variance.

Note that using our policy smaller values of � are also sufficient to
stabilize the system, which leads us to conjecture that if the noise has
bounded variance, then given any arbitrary positive uniform upper-
bound on the norm of the control, there exists a stationary feedback
policy such that the closed-loop system is mean-square bounded. It ap-
pears to us that a proof of this conjecture will require substantially new
and nontrivial techniques.
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Robust Adaptive Output-Feedback Tracking for
a Class of Nonlinear Time-Delayed Plants

Boris Mirkin and Per-Olof Gutman

Abstract—Within the model reference adaptive control (MRAC) frame-
work, a continuous adaptive output-feedback control scheme is developed
for a class of nonlinear SISO dynamic systems with time delays which is
robust with respect to unknown time-varying plant delays and to an ex-
ternal disturbance with unknown bounds. A special form of the Lyapunov-
Krasovskii functional with a “virtual” adaptation gain vector is introduced
to prove stability.

Index Terms—Nonlinear time-delay systems, robust adaptive control.

I. INTRODUCTION

The adaptive control technique applied to uncertain systems with
time-delays is a research area that is receiving considerable attention
during the last few years, see e.g. the recent papers [1]–[17] and the ref-
erences therein. Many important results have been obtained for linear
[1], [3], [4], [8], [10], [12]–[14], [17], switched [16] and nonlinear [5],
[6], [9], [13], [14] state or/and input delay plants; based on state [1],
[5], [10], [11], [13]–[15], [17] or output [2]–[4], [6]–[8], [12] feedback;
with continuous [1], [3]–[9], [17] or discontinuous [2], [10]–[14], [16]
control actions.
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