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a b s t r a c t

In this paper, we establish the well-posedness of the generalized moment problems recently studied
by Byrnes–Georgiou–Lindquist and coworkers, and by Ferrante–Pavon–Ramponi. We then apply these
continuity results to prove the almost sure convergence of a sequence of high-resolution spectral
estimators indexed by the sample size.
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1. Introduction

Consider a linear, time invariant system

x(t + 1) = Ax(t)+ By(t), A ∈ Cn×n, B ∈ Cn×m, (1)

with the transfer function

G(z) = (zI − A)−1B, (2)

where A is a stability matrix, B is full column rank, and (A, B)
is a reachable pair. Suppose that the system is fed with a m-
dimensional, zero-mean, wide-sense stationary process y having a
spectrum Φ . The asymptotic state covariance Σ of the system (1)
satisfies:

Σ =

∫
GΦG∗. (3)

Here and in the following, G∗(z) = G>(z−1), and integration takes
place over the unit circle with respect to the normalized Lebesgue
measure dϑ/2π . Let Sm×m+ (T) be the family of bounded, coercive,
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Cm×m-valued spectral density functions on the unit circle. Hence,
Φ ∈ Sm×m+ (T) if and only if Φ−1 ∈ Sm×m+ (T). Given a Hermi-
tian and positive-definite n × n matrix Σ , consider the problem
of finding Φ ∈ Sm×m+ (T) that satisfies (3), i.e., that is compat-
ible with Σ . This is a particular case of a moment problem. In
the last ten years, much research has been produced, mainly by
the Byrnes–Georgiou–Lindquist school, on generalized moment
problems [1–5], and analytic interpolation with complexity con-
straint [6], and their applications to spectral estimation [7–9] and
robust control [10]. It is worth recalling that two fundamental
problems of control theory, namely the covariance extension prob-
lem and theNevanlinna–Pick interpolation problem of robust control,
can be recast in this form [5].
Eq. (3), where the unknown is Φ , is also a typical example of

an inverse problem. Recall that a problem is said to be well posed,
in the sense of Hadamard, if it admits a solution, such a solution
is unique, and the solution depends continuously on the data.
Inverse problems are typically not well posed. In our case, there
may well be no solution Φ , and when a solution exists, there may
be (infinitely) many. It was shown in [11], that the set of solutions
is nonempty if and only if there exists H ∈ Cm×n such that

Σ − AΣA∗ = BH + H∗B∗. (4)

When (4) is feasible with Σ > 0, and there are infinitely many
solutions Φ to (3). To select a particular solution it is natural
to introduce an optimality criterion. For control applications,
however, it is desirable that such a solution be of limited
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complexity. It should namely be rational andwith an a priori bound
on its MacMillan degree. One of the great accomplishments of
the Byrnes–Georgiou–Lindquist approach is having shown that the
minimization of certain entropy-like functionals leads to solutions
that satisfy this requirement. In [11], Georgiou provided an explicit
expression for the spectrum Φ̂ that exhibits a maximum entropy
rate among the solutions of (3).
Suppose now that some a priori information aboutΦ is available

in the form of a spectrum Ψ ∈ Sm×m+ (T). Given G, Σ , and Ψ , we
now seek a spectrum Φ , which is the closest to Ψ in a certain
metric, among the solutions of (3). Paper [5] deals with such an
optimization problem in the case when y is a scalar process. The
criterion there is the Kullback–Leibler pseudo-distance from Ψ

to Φ . A drawback of this approach is that it does not seem to
generalize to the multivariable case. This motivated us to provide
a suitable extension of the so-called Hellinger distancewith respect
to which the multivariable version of the problem is solvable (see
[12,9]).
Themain result of this paper is contained in Section 3.We show

there that, under the feasibility assumption, the solution to the
spectrum approximation problem with respect to both the scalar
Kullback–Leibler pseudo-distance and the multivariable Hellinger
distance depends continuously on Σ , thereby proving that these
problems are well-posed. In Section 4 we deal with the case when
only an estimate Σ̂ of Σ is available. By applying the continuity
results of Section 3, we prove a consistency result for the solutions
to both approximation problems.

2. Spectrum approximation problems

In this section, we collect some background material on the
spectrum approximation problems. The reader is referred to
[11,5,12,9] for a more detailed treatment.

2.1. Feasibility of the moment problem

Let H(n) be the space of Hermitian n × n matrices, and
C(T;H(m)) the space of H(m)-valued continuous functions
defined on the unit circle. Let the operator Γ : C(T;H(m)) →
H(n) be defined as follows:

Γ (Φ) :=

∫
GΦG∗. (5)

Consider now the range of the operator Γ (as a vector space over
the reals). We have the following result (see [9]).

Proposition 2.1. 1. Let Σ = Σ∗ > 0. The following are equivalent:
• There exists H ∈ Cm×n which solves (4).
• There existsΦ ∈ Sm×m+ (T) such that

∫
GΦG∗ = Σ .

• There existsΦ ∈ C(T;H(m)),Φ > 0 such that Γ (Φ) = Σ .

2. Let Σ = Σ∗ (not necessarily definite). There exists H ∈ Cm×n that
solves (4) if and only if Σ ∈ Range Γ .

3. X ∈ Range Γ ⊥ if and only if G∗(ejϑ )XG(ejϑ ) = 0 ∀ϑ ∈ [0, 2π ].

We define

PΓ := {Σ ∈ Range Γ | Σ > 0}. (6)

In view of Proposition 2.1, for each Σ ∈ PΓ the problem (3) is
feasible.
2.2. Scalar approximation in the Kullback–Leibler pseudo-distance

In [5], the Kullback–Leibler pseudo-distance for spectral
densities in S1×1+ (T)was introduced:

D(Ψ ‖ Φ) =
∫
Ψ log

Ψ

Φ
. (7)

As iswell known, the corresponding quantity for probability densi-
ties originates in hypothesis testing, where it represents the mean
information per observation for the discrimination of an under-
lying probability density from another [13]. The approximation
problem goes as follows:

Problem 2.2. GivenΣ ∈ PΓ andΨ ∈ S1×1+ (T), findΦKLo that solves

minimize D(Ψ ‖ Φ)

over
{
Φ ∈ S1×1

+
(T) |

∫
GΦG∗ = Σ

}
. (8)

Note that, following [5], and differently from optimization prob-
lems that are usual in the probability setting, weminimize (7) with
respect to the second argument. The remarkable advantage of this
approach is that, differently from an optimization with respect to
the first argument, it will yield a rational solution whenever Ψ is
rational. Let
LKL := {Λ ∈ H(n) | G∗ΛG > 0, ∀eiϑ ∈ T}.
For a givenΛ ∈ LKL, consider the Lagrangian functional

L(Φ;Λ) = D(Ψ ‖ Φ)+
〈
Λ,

∫
GΦG∗ −Σ

〉
, (9)

where 〈A, B〉 := tr AB denotes the scalar product between the Her-
mitian matrices A and B. Observe that the term

∫
GΦG∗ between

the brackets belongs to Range Γ by definition, while Σ belongs
to Range Γ by the feasibility assumption. Hence, it is natural to
restrictΛ to Range Γ , or, which is the same, to
LKLΓ := LKL ∩ Range Γ .

The functional (9) is strictly convex on S1×1+ (T). Hence, its uncon-
strainedminimization with respect to Φ can be pursued imposing
that its derivative in an arbitrary direction δΦ is zero. This yields
the form for the optimal spectrum:

Φ̂KL(Λ) =
Ψ

G∗ΛG
. (10)

As noted previously, inasmuch asΨ is rational Φ̂KL(Λ) is also ratio-
nal, and with a MacMillan degree less than or equal to 2n+ degΨ .
Now if Λ̂ ∈ LKLΓ is such that∫
G

Ψ

G∗Λ̂G
G∗ = Σ, (11)

that is, if Λ̂ is such that the corresponding optimal spectrumΦKLo =
Φ̂KL(Λ̂) satisfies the constraint, then ΦKLo is the unique solution to
the constrained approximation Problem 2.2. Finding such Λ̂ is the
objective of the dual problem, which is readily seen [5] to be equiv-
alent to

minimize {JKLΨ (Λ) | Λ ∈ LKLΓ } (12)
where

JKLΨ (Λ) = −
∫
Ψ logG∗ΛG+ trΛΣ . (13)

This is also a convex optimization problem. The existence of a min-
imum is a highly nontrivial issue. Such an existence was proved in
[5] resorting to a profound topological result, and in [14] by a less
abstract argument.

Theorem 2.3. The strictly convex functional JKLΨ has a unique
minimum point inLKLΓ .
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The minimum point of the Theorem 2.3 provides the optimal
solution to the primal Problem 2.2 via (10). Differently from the
primal problem, whose domain S1×1+ (T) is infinite-dimensional,
the dual problem is finite-dimensional, hence the minimization
of JKLΨ can be accomplished with iterative numerical methods. The
numerical minimization of JKLΨ is not, however, a simple problem,
because both the functional and its gradient are unbounded onLKLΓ
(which is unbounded itself). Moreover, the reparameterization of
LKLΓ may lead to a loss of convexity (see [5] and references therein).
An alternative approach to this problem was proposed in [15,16].

2.3. Multivariable approximation in the Hellinger distance

In [12] the Hellinger distance between two spectral densities
Φ,Ψ ∈ S1×1+ (T)was introduced:

dH(Φ,Ψ ) :=
[∫ (√

Φ −
√
Ψ

)2]1/2
. (14)

As it happens for the Kullback–Leibler case, its counterpart for
probability densities is well-known in mathematical statistics.
Differently from the Kullback–Leibler case, this is a bona fide
distance (note that (14) is nothing more that the L2 distance
between the square roots ofΦ andΨ , and that the square roots are
particular instances of the spectral factors). A variational analysis
similar to the one we have just seen is possible and leads to similar
results. Let us focus directly on the multivariable extension of (14)
that was developed in [12]. GivenΦ,Ψ ∈ Sm×m+ (T), we define the
following quantity:

dH(Φ,Ψ ) := inf
{
‖WΨ −WΦ‖2 : WΨ ,WΦ ∈ Lm×m2 ,

WΨW ∗Ψ = Ψ , WΦW ∗Φ = Φ
}
. (15)

Observe that dH(Φ,Ψ ) is simply the L2 distance between the sets
of all the square spectral factors of Φ and Ψ respectively. We have
the following result (see [12]).

Theorem 2.4. The following facts hold true:
1. dH is a bona fide distance function.
2. dH(Φ,Ψ ) coincides with (14) whenΦ and Ψ are scalar.
3. The infimum in (15) is indeed a minimum.
4. For any square spectral factor W̄Ψ of Ψ , we have:

dH(Φ,Ψ ) = inf
WΦ

{
‖W̄Ψ −WΦ‖2 : WΦ ∈ Lm×m2 ,WΦW ∗Φ = Φ

}
.

Fact 4 says that, if we fix a spectral factor of one spectrum andmin-
imize only among the spectral factors of the other, the result is the
same. Given Ψ ∈ Sm×m+ (T) (and G(z)n× m), we pose a minimiza-
tion problem similar to Problem 2.2:

Problem 2.5. Given Σ ∈ PΓ and Ψ ∈ Sm×m+ (T), find ΦHo that
solves

minimize dH(Φ,Ψ )

over
{
Φ ∈ Sm×m

+
(T) |

∫
GΦG∗ = Σ

}
. (16)

In viewof the facts 3 and4 in the Theorem2.4, once a spectral factor
of Ψ is fixed, the same Problem 2.5 can be reformulated in terms
of a minimization with respect to spectral factors of Φ:
Given Σ ∈ PΓ and a spectral factor WΨ of Ψ ∈ Sm×m+ (T), find

WHo that solves

minimize tr
∫
(WΦ −WΨ ) (WΦ −WΨ )

∗

over
{
WΦ ∈ Lm×m2

∣∣∣∣∫ GWΦW ∗ΦG
∗
= Σ

}
. (17)
Consider the Lagrangian functional

H(WΦ,Λ) = tr
∫
(WΦ −WΨ ) (WΦ −WΨ )

∗

+

〈
Λ,

∫
GWΦW ∗ΦG

∗
−Σ

〉
. (18)

For the same reason as before, we restrict the matrix Λ to
Range Γ . The functional (18) is strictly convex and, for a given Λ,
its unconstrained minimization with respect to WΦ yields the
following condition for the optimal spectral factor ŴH(Λ) (see [12]
for details):

ŴH(Λ)−WΨ + G∗ΛG ŴH(Λ) = 0. (19)

In order to ensure that the corresponding spectrum is integrable
over the unit circle, we now require a posteriori that Λ belongs to
the set

LH =
{
Λ ∈ H(n) | I + G∗ΛG > 0 ∀ejϑ ∈ T

}
or, which is the same, that it belongs to the set

LHΓ := LH ∩ Range Γ . (20)

Such a restriction yields the following optimal spectral factor and
spectrum:

ŴH(Λ) = (I + G∗ΛG)−1WΨ ,

Φ̂H(Λ) = ŴH(Λ)ŴH
∗

(Λ) = (I + G∗ΛG)−1Ψ (I + G∗ΛG)−1.
(21)

Now if Λ̂ is such that∫
G (I + G∗Λ̂G)−1Ψ (I + G∗Λ̂G)−1 G∗ = Σ, (22)

then WHo = Ŵ
H(Λ̂) and ΦHo = Φ̂H(Λ̂) are the unique solutions

to the constrained approximation problems (17) and (16) respec-
tively. In order to find such Λ̂, one must solve the dual problem,
which can be shown to be equivalent to

minimize {JHΨ (Λ) | Λ ∈ LHΓ } (23)

where

JHΨ (Λ) = tr
∫
(I + G∗ΛG)−1Ψ + trΛΣ . (24)

The existence of a minimum is again a highly nontrivial issue. We
have the following result (see [12]).

Theorem 2.6. The strictly convex functional JHΨ has a unique
minimum point inLHΓ .

The minimum point of Theorem 2.6 provides the optimal solution
to the primal Problem 2.5 via (21). It can be found by means of
iterative numerical algorithms. The numerical minimization of JHΨ
is challenging due to reasons similar to the ones concerning JKLΨ .
In [9], we propose a matricial version of the Newton algorithm
that avoids any reparameterization of LHΓ , and proved its global
convergence.

3. Well-posedness of the approximation problems

In this section, we show that both the dual problems (12) and
(23) are well-posed, since their unique solution is continuous with
respect to a small perturbation of Σ . The well-posedness of the
respective primal problem then easily follows. All these continuity
properties rely on the following basic result.
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Theorem 3.1. Let A be an open and convex subset of a finite-
dimensional Euclidean space V . Let f : A → R be a strictly convex
function, and suppose that a minimum point x̄ of f exists. Then, for all
ε > 0, there exists δ > 0 such that, for each p ∈ Rn, ‖p‖ < δ, the
function fp : A→ R defined as

fp(x) := f (x)− 〈p, x〉

admits an unique minimum point x̄p, and moreover

‖x̄p − x̄‖ < ε.

(Note: f ∗(p) := −fp(x̄p) is the Fenchel dual of f at p.)

Proof. First, note that the minimum point x̄ is unique, since f is
strictly convex. Let ε > 0, and let S(x̄, ε) = {x̄ + y | ‖y‖ = ε}
denote the sphere of radius ε centered in x̄. Let moreover B(x̄, ε) =
{x̄ + y | ‖y‖ < ε} denote the open ball of radius ε centered in
x̄ and B̄(x̄, ε) = {x̄ + y | ‖y‖ ≤ ε} its closure. Then B̄(x̄, ε) =
B(x̄, ε) ∪ S(x̄, ε), B̄(x̄, ε) and S(x̄, ε) are compact, and S(x̄, ε) is the
boundary of B(x̄, ε). Since f is continuous, it admits a minimum
point x̄ + yε over S(x̄, ε). Since x̄ is the unique global minimum
point of f , we must have mε := f (x̄ + yε) − f (x̄) > 0. Then, for
‖y‖ = ε we have

f (x̄+ y)− f (x̄) ≥ mε. (25)

Let now 0 < δ < mε/ε. For ‖p‖ < δ and ‖y‖ = ε we have

〈p, y〉 ≤ ‖p‖ ‖y‖ < δε < mε (26)

where the first inequality stems from the Cauchy–Schwartz
inequality. From (25) and (26), we get for ‖y‖ = ε

f (x̄+ y)− f (x̄) > 〈p, y〉 = 〈p, x̄+ y〉 − 〈p, x̄〉
fp(x̄+ y) > fp(x̄)

that is,

fp(x) > fp(x̄)

for each x ∈ S(x̄, ε).
Now, since f is strictly convex and hence continuous, fp is also

strictly convex and continuous, and admits a minimum point x̄p
over the compact set B̄(x̄, ε). But it follows from the previous con-
siderations that such a minimum cannot belong to S(x̄, ε). Hence,
it must belong to the open ball B(x̄, ε). As such, x̄p is also a local min-
imum of fp over A, but since fp is strictly convex, it is also the unique
global minimum point. Summing up, for fixed ε > 0, there exists
δ > 0 such that, if ‖p‖ < δ, then fp admits a unique minimum x̄p
over A. It follows from the previous analysis that, for sufficiently
small δ, x̄p belongs to B(x̄, ε). This proves the theorem. �

3.1. Well-posedness of Kullback–Leibler approximation

Consider the dual functional (13), and let us make its depen-
dence uponΣ explicit:

JKLΨ (Λ;Σ) = −
∫
Ψ logG∗ΛG+ trΛΣ .

JKLΨ is a strictly convex functional over LKLΓ , which is an open and
convex subset of the Euclidean space Range Γ . Due to Theorem2.3,
it does admit a minimum point

Λ̂KL(Σ) = argmin
Λ
JKLΨ (Λ;Σ).

In the latter, we have made the dependence of Λ̂KL on Σ explicit.
We proceed next to study this dependence. Let δΣ be a perturba-
tion ofΣ . We have

JKLΨ (Λ;Σ + δΣ) = −
∫
Ψ logG∗ΛG+ trΛΣ + trΛδΣ

= JKLΨ (Λ;Σ)+ 〈δΣ,Λ〉 .
It follows from Theorem 3.1, where the role of δΣ is played by−p,
that for each ε > 0 there exists δ > 0 such that if ‖δΣ‖F < δ, then
JKLΨ (Λ;Σ + δΣ) again admits a minimum point

Λ̂KL(Σ + δΣ) = argmin
Λ
JKLΨ (Λ;Σ + δΣ) (27)

and the distance ‖Λ̂KL(Σ + δΣ) − Λ̂KL(Σ)‖F is less than ε. The
above observation implies thewell-posedness of the dual problem:

Corollary 3.2. The map Λ̂KL : PΓ → LKLΓ is continuous.

Consider now the primal problem. The variational analysis
yielded the following optimal solution, where the dependence
uponΣ has been made explicit:

ΦKLo (Σ) = Φ̂
KL(Λ̂KL(Σ)) =

Ψ

G∗ Λ̂KL(Σ) G
.

We have the following result.

Theorem 3.3. The mapΦKLo : PΓ → L∞ is continuous.

Proof. Recall that Λ̂KL(Σ) is the solution of the dual problem
where the true asymptotic state variance is known, and let
Λ̂KL(Σ + δΣ) be the solution to the dual problem with respect to
a perturbed covariance. Let Φ̂KL(Λ̂KL(Σ)) and Φ̂KL(Λ̂KL(Σ + δΣ))
be the corresponding solutions to the primal problem. Then

‖Φ̂KL(Λ̂KL(Σ + δΣ))− Φ̂KL(Λ̂KL(Σ))‖∞

=

∥∥∥∥ Ψ

G∗ Λ̂KL(Σ + δΣ) G
−

Ψ

G∗ Λ̂KL(Σ) G

∥∥∥∥
∞

≤ ‖Ψ ‖∞

∥∥∥∥ 1

G∗ Λ̂KL(Σ + δΣ) G
−

1

G∗ Λ̂KL(Σ) G

∥∥∥∥
∞

.

It is easily seen that for each η > 0 we can choose ε > 0 such that
if ‖Λ̂KL(Σ + δΣ)− Λ̂KL(Σ)‖F < ε, then

max
ϑ
|G∗Λ̂KL(Σ + δΣ)G− G∗Λ̂KL(Σ)G|

= max
ϑ
|G>(e−jϑ )(Λ̂KL(Σ + δΣ)− Λ̂KL(Σ))G(ejϑ )| < η.

Finally, from the above observation, from the Corollary 3.2, and
from the continuity of the function 1x over R+, it follows that for
each µ > 0, there exists δ > 0 such that, for all ‖δΣ‖F < δ,
‖Φ̂KL(Λ̂KL(Σ + δΣ))− Φ̂KL(Λ̂KL(Σ))‖∞ < µ. �

Corollary 3.4. The problem

argmin
Φ
D(Ψ ‖ Φ) such that

∫
GΦG∗ = Σ

is well-posed for Σ ∈ PΓ and for variations δΣ that belong to
Range Γ .

3.2. Well-posedness of the Hellinger approximation

Consider the dual functional (24):

JHΨ (Λ;Σ) = tr
∫
(I + G∗ΛG)−1Ψ + trΛΣ .

JHΨ is a strictly convex functional over LHΓ , which is an open
and convex subset of the Euclidean space Range Γ . Due to the
Theorem 2.3, it admits a minimum point

Λ̂H(Σ) = argmin
Λ
JHΨ (Λ;Σ).

Let as before δΣ be a perturbation ofΣ . Then

JHΨ (Λ;Σ + δΣ) = J
H
Ψ (Λ;Σ)+ 〈δΣ,Λ〉 .

Theorem 3.1 implies the following
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Corollary 3.5. The map Λ̂H : PΓ → LHΓ is continuous.

The variational analysis yielded the optimal solution for the
primal problem

ΦHo (Σ) = Φ̂H(Λ̂H(Σ)) = (I + G∗ Λ̂H(Σ) G)−1

×Ψ (I + G∗ Λ̂H(Σ) G)−1, (28)

and considerations similar to those of the Theorem 3.3 lead to the
following

Theorem 3.6. The mapΦHo : PΓ → Lm×m
∞

is continuous.

To prove Theorem 3.6 we exploit the following result estab-
lished in [9] (Lemma 5.2):

Lemma 3.7. Define QΛ(z) = I + G∗(z)ΛG(z). Consider a sequence
Λn ∈ LHΓ converging to Λ ∈ LHΓ . Then Q

−1
Λn
are well defined and

continuous on T and converge uniformly to Q−1Λ on T.

Proof of Theorem 3.6. Let QΛ(z;Σ) = I + G∗(z) Λ̂H(Σ) G(z).
Apply the Corollary 3.5 and Lemma 3.7 to establish the continuity
of the map from PΓ to Lm×m∞ defined byΣ 7→ Q−1Λ . The continuity
ofΦHo follows from the continuity of thematrixmultiplication. �

Corollary 3.8. The problem

argmin
Φ
dH(Φ,Ψ ) such that

∫
GΦG∗ = Σ

is well-posed, for Σ ∈ PΓ and for variations δΣ that belong to
Range Γ .

4. Consistency

So far we have shown that both the approximation problems
admit a unique solution for all Σ ∈ PΓ , and that the solution is
continuous with respect to the variations δΣ ∈ Range Γ . The ne-
cessity of a restriction toRange Γ becomes crucial in the casewhen
we only have an estimate Σ̂ ofΣ .
In linewith the Byrnes–Georgiou–Lindquist theory, and follow-

ing an estimation procedure we have sketched in [9], we want to
use the above theory to provide an estimate Φ̂ of the true spectrum
of the process y.
Let G(z) and Ψ be given. Suppose that we feed G(z) with a

finite sequence of observations, say {y1, . . . , yN} of the process.
Observing the states of the system, say {x1, . . . , xN}, we then
compute a Hermitian and positive definite estimate Σ̂ of the
asymptotic state covariance, such as

Σ̂ =
1
N

N∑
k=1

xkx∗k .

This is provably consistent, and also unbiased, for we have sup-
posed from the beginning that y has a zero mean. We seek an esti-
mate Φ̂ ofΦ by solving an approximation problemwith respect to
G(z), Ψ , and Σ̂ .
Since Σ̂ is not the true variance any longer, the constraint (3)

may be not feasible. Hence, in order to find a solution Φ̂ , we need
to find a second estimate Σ̄ , close to the first, such that the (4)
is feasible with the covariance matrix Σ̄ . A reasonable way to
proceed is to let Σ̄ be the projection of Σ̂ onto Range Γ . Since
the orthogonal projectors from H(n) to a subspace of the H(n) are
continuous functions, if Σ̂(x1, . . . , xN) is a consistent estimator of
Σ , then Σ̄ is also a consistent estimator ofΣ .
The problem that may come up in proceeding this way is that

the projection onto Range Γ needs not be positive definite (that is,
it may not belong to PΓ ), even if Σ̂ is. If this is the case, the correct
procedure to estimate Σ while preserving the structure of a state
covariance compatible with G(z) is to find Σ̄ ∈ PΓ which is the
closest to Σ̂ in a suitable distance. This is an optimization problem
in itself.
The continuity results of the preceding sections imply two

strong consistency results. Let Σ̄(x1, . . . , xN) ∈ PΓ denote a con-
sistent estimator ofΣ . LetΦKLo (Σ) be the solution to the Kullback–
Leibler approximation problemwith respect to the true asymptotic
variance andΦKLo (Σ̄(x1, . . . , xN)) be the solution of the same prob-
lem with respect to the estimate.

Corollary 4.1. If

lim
N→∞

Σ̄(x1, . . . , xN) = Σ a.s., (29)

then

lim
N→∞
‖ΦKLo (Σ̄(x1, . . . , xN))− Φ

KL
o (Σ)‖∞ = 0 a.s.

Proof. From the continuity of themapΦKLo wehave that, excepting
a set of zero probability,

lim
N→∞

ΦKLo
(
Σ̄(x1(ω), . . . , xN(ω))

)
= ΦKLo

(
lim
N→∞

Σ̄(x1(ω), . . . , xN(ω))
)

= ΦKLo (Σ),

where the first limit is taken in L∞(T). �

As for the Hellinger multivariable approximation problem,
let ΦHo (Σ) be the solution with respect to the true asymptotic
variance and ΦHo (Σ̄(x1, . . . , xN)) be the solution with respect
to the estimate. Employing the very same technique used for
the proof of Corollary 4.1 it is easy to establish the following
consistency result for the problem associated to the multivariable
Hellinger distance.

Corollary 4.2. If

lim
N→∞

Σ̄(x1, . . . , xN) = Σ a.s.,

then

lim
N→∞
‖ΦHo (Σ̄(x1, . . . , xN))− Φ

H
o (Σ)‖∞ = 0 a.s.

5. Conclusion and future work

In this paper, we have considered the constrained spectrum ap-
proximation problems with respect to both the Kullback–Leibler
pseudo-distance (scalar case) and the Hellinger distance (multi-
variable case). The range of the operator Γ : Φ 7→

∫
GΦG∗ is

the subspace of the Hermitian matrices that conveys all the struc-
ture that is needed from a positive-definitematrix in order to be an
asymptotic covariance matrix of the systemwith transfer function
G(z). As such, it is also a natural subspace to which the domains
of the respective dual problems should be constrained. We have
shown that the condition Σ ∈ PΓ is not only necessary for the
feasibility of the moment problem {Φ |

∫
GΦG∗ = Σ}, but is also

sufficient for the continuity of the respective solutionswith respect
toΣ . This fact implies well-posedness of both kinds of approxima-
tion problem, and implies the consistency of the respective solu-
tions with respect to a consistent estimator Σ̂ ofΣ , as long as it is
restricted to Range Γ . Similar results can be established along the
same lineswhen employing any other (pseudo-)distance, as long as
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the functional form of the primal optimum depends continuously
upon the Lagrange parameterΛ.
As suggested by an anonymous reviewer, to whom we are

grateful, it would be interesting to investigate the possibility of
establishing the (local) moduli of continuity of the maps ΦKLo and
ΦHo . In particular, it would be worthwhile to study this issue
when Σ tends to become singular and/or the prior spectrum
Ψ may have roots on the unit circle. The complete analysis
appears to be challenging and we defer this investigation to future
research. Here, we shall be content with making an observation
on themaximum entropy solution, i.e., the Kullback–Leibler optimal
solution in the case when Ψ = I . It has been shown in [2] that in
this important case the map Λ̂KL(Σ)may be explicitly written as

Λ̂KL(Σ) = Σ−1B
(
B∗Σ−1B

)−1
B∗Σ−1.

It is apparent that this function is locally Lipschitz-continuous but
the Lipschitz constant may diverge asΣ tends to become singular.
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