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On the Convergence of an Efficient Algorithm
for Kullback–Leibler Approximation

of Spectral Densities
Augusto Ferrante, Federico Ramponi, Member, IEEE, and Francesco Ticozzi

Abstract—This paper deals with a method for the approximation
of a spectral density function among the solutions of a generalized
moment problem à la Byrnes/Georgiou/Lindquist. The approxima-
tion is pursued with respect to the Kullback–Leibler pseudo-dis-
tance, which gives rise to a convex optimization problem. After
developing the variational analysis, we discuss the properties of
an efficient algorithm for the solution of the corresponding dual
problem, based on the iteration of a nonlinear map in a bounded
subset of the dual space. Our main result is the proof of local con-
vergence of the latter, established as a consequence of the central
manifold theorem. Supported by numerical evidence, we conjec-
ture that, in the mentioned bounded set, the convergence is actu-
ally global.

Index Terms—Kullback–Leibler pseudo-distance, spectral
estimation.

I. INTRODUCTION

D URING the last decade a broad research program on the
interplay between (generalized) moment problems and

analytic interpolation problems with complexity constraints,
robust control, approximation and estimation of spectral density
functions has been carried out by C. I. Byrnes, T. Georgiou,
and A. Lindquist and their collaborators and epigones [3]–[12],
[15], [17], [18], [20]–[26], [28], [29], [31], [32]. Moment
problems have a long history and have been at the heart of
many mathematical and engineering problems in the past cen-
tury, see, e.g., [1], [33] and the references therein. Only with
recent developments of the above-mentioned research program,
however, the parametrization of solutions in the presence of
additional constraints on the complexity has been satisfactorily
addressed [11]. This result, that has been possible thanks to a
suitable variational formulation, is of key interest in control
engineering. In fact, the well-known relation between moment
problems and Nevanlinna-Pick interpolation problems allows
for solutions of control problems that include a bound
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on the complexity of the controller, which is of paramount
practical importance [3], [8], [19]. Similar considerations apply
to the covariance extension problem [9], [26]. Among prac-
tical applications, we mention in particular signal and image
processing [22]–[25], and Biomedical Engineering [30]. These
applications are based on a spectral estimation procedure that
hinges on optimal approximation of a given spectral density

with linear integral constraints. The latter may be viewed
as constraints on a finite number of “generalized” moments of
the spectrum and represent an a posteriori knowledge on the
steady-state covariance of a bank of filters that is designed to
estimate the unknown spectral density . The spectral density

, on the other hand, represents a prior knowledge on , see
Section II for more details. As discussed in [6], [26], [31], this
optimal approximation leads to a tunable spectral estimation
procedure that provides high resolution estimates in prescribed
frequency bands even in presence of a short observation record.
The degrees of freedom provided by both the presence of
and the structure of the bank of filters — which determines
high-resolution regions — make the above-mentioned method
particularly flexible. As we shall see, a key feature of the
method is that the primal optimization problem is strictly
convex and can be solved in closed form. Furthermore, as long
as the prior spectral density is rational, it yields a solution
which is also rational, and comes with an a priori bound on its
complexity.

On the other hand the dual problem, which is finite-dimen-
sional, poses a numerical challenge. In fact, the dual variable is
an Hermitian matrix and, as discussed in [26], its reparametriza-
tion may lead to a loss of convexity. Moreover, the gradient of
the dual functional is unbounded in the neighborhood of the
boundary, leading to serious numerical difficulties in practical
implementations. As a consequence any gradient-based numer-
ical method is severely affected by heavy computational burden,
due to a large number of back-stepping iterations.

In order to avoid this major computational problem, a non-
linear matricial iteration has been introduced in [31]. The latter
has manifold good properties, namely it is surprisingly simple,
it is reliable, it is not computationally demanding (it does not in-
volve either back-stepping or the computation and inversion of
Hessians), and it seems to converge globally — in a prescribed
set — to an optimal solution of the dual problem, with linear rate
of convergence. Providing any explanation for its convergence,
however, has so far been a challenging open problem.

Our main contribution is the proof that this iteration is locally
convergent to the manifold of solutions of the dual problem. In
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doing this, we analyze in depth the dynamical properties of this
matricial iteration and establish other relevant results that clarify
its connection with the structures of the dual space and some
features of the dual solutions. The second main contribution of
the paper is to show that, by resorting to a spectral factorization
method, the proposed iteration may be implemented in an effec-
tive way. In fact, by exploiting the system-theoretic features of
the iteration, we establish a procedure in which each iteration
of the algorithm requires only the solution of a Riccati equa-
tion and of a Lyapunov equation, for which robust and efficient
algorithms are available. Our results lay a solid ground for effi-
ciently applying this spectral approximation methods to signal
analysis and to various fields of control engineering.

The paper is organized as follows. In Section II we give a
proper mathematical statement of the problem, and proceed by
recalling some relevant facts from the literature as well as estab-
lishing some preliminary results. Section III contains our main
result: Local convergence of the matricial iteration to one of the
fixed points that solve the dual problem. The proof is rather
articulated and involves many different tools from linear and
non-linear systems theory, including the Center Manifold The-
orem. Subdivision of Section III into many subsections provides
a roadmap of the various parts of the proof. As a byproduct,
we also obtain many relevant results on the iteration and its lin-
earization. In Section IV we describe how the proposed iteration
may be implemented in an effective numerical way. Section V
illustrates some results obtained from simulations and a con-
jecture, and concludes the paper with final remarks and future
perspective.

Notation

We denote by the set of Hermitian matrices of dimension
. Given a complex matrix , denotes the transpose conju-

gate of , while, for a matrix valued function in the com-
plex variable , denotes the analytic continuation of the
function that for equals the transpose conjugate of .
Thus, for a matrix-valued rational function

, we have . We
denote by the unit circle in the complex plane and by
the set of complex-valued continuous functions on .
denotes the subset of whose elements are real-valued pos-
itive functions. Elements in will be thought of as spec-
tral densities.

II. PROBLEM FORMULATION AND BACKGROUND MATERIAL

Consider the transfer function of the
system

where is a stability matrix, i.e., has all its eigenvalues
in the open unit disc, , and is a reachable pair.

The transfer function models a bank of filters fed by
a stationary process of unknown spectral density .
We assume that we know (or that we can reliably estimate) the
steady-state covariance of the state of the filter. Based on

and on an a priori information in the form of a prior spectral
density , we want to estimate the spectral density .

We will consider the Kullback-Leibler index as a measure of
the difference between spectral densities and in

The above notation, where integration takes place on the unit
circle and with respect to the normalized Lebesgue measure, is
used throughout the whole paper.

As in [26], we consider the following
Problem 2.1: (Approximation problem) Let ,

and let satisfy . Find that solves

(1)

(2)

Remark 2.1: Notice that in order to guarantee that
we need that the zeroth-order moment of its arguments is the
same, i.e., if then . For the minimiza-
tion problem to make sense as an approximation, we need pre-
cisely this condition. In [26] it is shown that, when is sin-
gular, the zeroth-order moment of all the spectra compatible
with the constraint is constant, say .
Without either of the singularity of or the equality of the ze-
roth-order moments of and all of the ’s, it is not clear at all if

serves as a pseudo-distance, even if the minimization problem
continues to be valid. In view of this consideration, we require
from now on that has at least one eigenvalue at the origin,
and that is rescaled accordingly in order to obtain .
Hence, what we approximate is the “shape” of , not itself. If

is non-singular, it is still possible to consider a weighted ver-
sion of the Kullback-Leibler pseudo-distance in such a way that
the problem maintains the meaning of spectral approximation.

Remark 2.2: Notice that minimizing may appear
unusual with respect to the minimization of , which is
more common in the literature on statistics, probability, and in-
formation theory. In our setting, however, this choice has the
advantage of leading to an optimal solution having the form of
a rational function with an a priori bound on the McMillan de-
gree. Besides, by selecting , this choice includes, as spe-
cial case, the maximum entropy spectral density [22].

Remark 2.3: To simplify the writing we can, without loss
of generality, normalize and . Indeed, if , it suf-
fices to replace by and with

to obtain an equivalent problem
where . In a similar fashion, if
(compare with Remark 2.1), let and .
Then, to any solution to the moment problem
there corresponds a solution to the problem ,
where . It is immediate to check that

which ensures that the positivity of the pseudo-dis-
tance is preserved. Therefore, we can assume that .

The first issue one needs to worry about is the existence of
satisfying constraint (2). It has been shown that the

following conditions are equivalent [26]:
1) The family of satisfying constraint (2) is nonempty.
2) there exists such that .
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A third equivalent condition is based on the linear operator
defined as follows. Let be the space of Hermitian matrices
of dimension , and consider

(3)

It is clear (recall that ) that there exists satis-
fying (2) if and only if

(4)

Indeed, it has been shown [17] that (4) is necessary and sufficient
for the family of in (2) to be nonempty. Thus, (4) will be a
standing assumption for this paper. We endow the space of
Hermitian matrices with the inner product .
The orthogonal complement of (defined with respect
to this inner product) has been shown in [17] to be given by

Notice that, in view of (4), we have
. Given (4) and hence the existence of spectral densi-

ties satisfying the constraints, we next focus on the minimization
Problem 2.1.

A. Variational Analysis

To solve Problem 2.1, we consider a matrix Lagrange multi-
plier satisfying on all of , and define the
Lagrangian functional

(5)

This functional is easily seen to be strictly convex. Therefore
unconstrained minimization of can be achieved if there
exists a such that the directional derivative
is annihilated along all directions . Such a indeed
exists and is given by the following expression in terms of the
Lagrange multiplier

(6)

Now, it is clear that if satisfies

(7a)

(7b)

then

(8)

is optimal for Problem 2.1. As for many optimization problems,
the most delicate issue is existence of a satisfying (7). This

issue has been addressed in [16], [26] where the following result
has been proven.

Theorem 2.1: There exist matrices such that (7)
hold. For any such a , given by (8) is the unique solution
of the Approximation Problem (2.1).

Remark 2.4: Since Problem (2.1) admits a unique solution,
if and are two matrices satisfying (7), then

so that we clearly have , or equiva-
lently, . Conversely, it is clear that if
satisfies conditions (7) then also satisfies conditions
(7) for any . Thus, the family of all solutions
of (7) is an affine space that may be parametrized in terms of an
arbitrary solution , as

(9)

Moreover, for any satisfying (7), we have
and, using the cyclic

property of the trace we immediately get .
By duality theory, a satisfying (7) may be computed by

maximization of the dual functional
. The latter may be explicitly written as

(10)

Consider now the maximization of the dual functional (10)
over the set

(11)

Let . The dual problem is
then equivalent to

(12)

As discussed in the Introduction, the bottleneck of the whole
theory and of its numerous applications is now the numerical
computation of a satisfying (7). To this aim the following
algorithm has been proposed in [31] and further discussed in
[16].

B. Iterative Algorithm

For , let

(13)

It has been shown in [31] that is a map from density ma-
trices to density matrices, i.e., if is a positive semi-definite
Hermitian matrix with trace equal to 1, then has the same
properties. Density matrices have long been studied in statistical
quantum mechanics, representing quantum states in the pres-
ence of uncertainty [34]. Moreover, maintains positive defi-
niteness, i.e., if , then . In addition to this, the
following holds:

Proposition 2.1: The matrix has the same rank and the
same kernel of the matrix .
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Proof: By taking into account that , it
is immediate to check that if then .
Conversely, it is sufficient to prove that

(14)

Indeed, if this is the case and then
so that . To prove (14), we observe that is
continuous and strictly positive on and hence has a positive
minimum there. It is therefore sufficient to show that
is positive definite. The latter integral is the steady-state co-
variance of the filter driven by normalized white noise, i.e.,
the unique solution of the discrete-time Lyapunov equation

. In view of the controllability of the pair
, it is clear that is positive definite.

Consider the sequence produced by the following
iteration:

(15)

with an arbitrary initial condition . Notice that, since
each is positive definite and has trace equal to we also
have . If the sequence converges to a limit
point then such a is a fixed point for the map in (13)

(16)

By multiplying the latter by on both sides, it is clear that
satisfies (7) and hence provides a solution of Problem 2.1.
Notice that, even if all are positive definite, it may happen

that the sequence converges to a limit point which is
singular. In this case, it is not guaranteed that satisfies (7).

We observe that if is a fixed point of , then for any
, is also a fixed point of , as long

as . In fact, in view of Remark 2.4, we have

(17)

In a wide series of simulations, we have observed that always
converges to a limit point. In only one case such a limit point
was a singular matrix. Also in that case, however, the limit point
satisfied (7) and hence provided a solution of Problem 2.1.

III. PROOF OF LOCAL CONVERGENCE

In this section we prove the following result that is the main
contribution of the paper.

Theorem 3.1: The intersection between the set of solutions
of (7) and the cone of positive definite matrices is a non-empty
manifold that is locally asymptotically stable for the iteration
(15).

A. Existence of a Positive Definite

Once again, the first issue that must be addressed is an exis-
tence result: We have to show that

(18)

where is defined in (9). To this aim we need a preliminary
result in the same vein of Lemma 9 in [26]. The latter has been
established in a slightly different setting and using an abstract
functional-analytic approach. We will instead use a direct alge-
braic approach that provides a constructive proof.

Lemma 3.1: If , then there exists a
vector such that .

Proof: As shown in Lemma A.1 in the Appendix, we can
obtain a decomposition where the (right) spec-
tral factor is given by (59). Denoting by the stabilizing
solution of the Riccati equation (60), by using (63), may be
explicitly expressed in the form

(19)

It is immediate to check that
so that

(20)

and thus with
. Therefore,

the vector exists and may be explicitly written as
.

Theorem 3.2: The set defined by (18) is nonempty and
it is an open convex subset of the affine space .

Proof: Let (recall that due to Theorem
2.1) so that . From Lemma 3.1 we know
that this implies the existence of a vector such that

. On , is continuous and posi-
tive. Thus, . Similarly,
on , is continuous. Thus,

is finite. Let . Clearly,

(21)

Hence, exploiting again Lemma 3.1, we conclude that there ex-
ists such that

Therefore we have

where is positive definite so
that . Thus, is non-empty. The fact that
is an open convex subset of is an immediate consequence of
the fact that the cone of positive definite matrices is open and
convex together with the fact that is an affine space.
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B. Linearization

Given that is non-empty, we can now pick a point
and analyze the map in a neighborhood of . To this

aim we linearize the map namely we compute the directional
derivative of at in the direction specified by an arbitrary
Hermitian matrix

In order to find an explicit form for this derivative, we first need
an expression for .

1) Derivative of the Matrix Square Root: For a given function
, let us take the directional derivative of

in the direction . The chain rule gives

Now if , we have so that clearly
. In conclusion, we get that

the derivative is the solution of the following Lya-
punov equation:

(22)

2) Derivative of : Let us take the variation of (13) in a
direction . By applying the chain rule we get

(23)

We now compute the latter expression at and take (7b)
into account. This yields

(24)

which, by property (22), may be rewritten as

(25)
where we have defined the linear map that
is therefore the derivative of computed at a given fixed point

.
Adopting a system-theoretic approach, we can consider the

sequence of increments with and the
linear system as the linear approximation of

the nonlinear system in the neighborhood of
its equilibrium point . If all the eigenvalues of lied in the
open unit circle, then we could immediately conclude that is
asymptotically stable. However, this is not the case. In fact, it is
immediate to check that

(26)

so that acts on as the identity operator. We thus
need a more sophisticated analysis.

C. Properties and Spectrum of

First, notice that maps in itself but it is not self-adjoint
(with respect to the inner product defined in by

). Indeed, given , it may happen that

so it is not a priori true that the eigenvalues of are real and
that the eigenmatrices of span the whole space .

A second observation is stated in the following result.
Lemma 3.2: For any , .

Proof: We have

(27)

We are now ready to analyze the spectrum of . Let be
an eigenmatrix of and be the corresponding eigenvalue,
namely is a non-zero Hermitian matrix such that

. Due to (27), it must be . Thus, we have the
following corollary.

Corollary 3.1: Let be any eigenmatrix of and assume
. Then, the corresponding eigenvalue is zero.

Notice that is one such eigenmatrix. Indeed

Let be an eigenmatrix of and be the corresponding
eigenvalue. We want to compute bounds for . In view of Corol-
lary 3.1, we can assume . We have

or, equivalently
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Since , we can multiply both members by on the
left side, and by on the right side. This yields

which, by taking the trace on both members and exploiting the
cyclic property of the trace, implies

We now observe that the trace in the left-hand side is strictly
positive, being the square of the Frobenius norm of the nonzero
matrix . In conclusion we get

(28)

The right-hand side of (28) is clearly real and non-negative. In-
deed, it vanishes if and only if is identically zero
on or, equivalently, if and only if . The fol-
lowing theorem is thus proven.

Theorem 3.3: All the eigenvalues of the map are real.
For any eigenmatrix of that is not in , the cor-
responding eigenvalue is strictly smaller than 1. On the space

, acts as the identity operator.
Remark 3.1: The above theorem may be interpreted as fol-

lows. Let be a basis for the (real) vector space
and define as the column vector
with real entries . Choose a matrix whose
columns form a basis for the linear space

. Let be such that

(29)

is square and nonsingular. For any let
. Clearly, is a coordinate representation of .

Theorem 3.3 states that, with respect to these coordinates, the
linear map is represented by a matrix of dimension

with block structure where

is the dimension of and

(30)

Clearly, since and have disjoint spectra, we can select
in (29) in such a way that , i.e., has the structure

(31)

It remains to establish a lower bound for the spectrum of .

D. Eigenvalues of are Non-Negative

In order to provide a lower bound for the spectrum, we shall
consider the linearized map as the generator of a continuous-

time evolution semigroup, for which a key spectral property will
be derived.

1) is the Opposite of a Lindblad Generator: We observe
that the operator may be written in the form

(32)

where . It is immediate to check that
, so that clearly . Therefore, we

can write as a (generalized) Lindblad generator [27]:1

(33)

2) A Continuous-Time Evolution: We now consider the fol-
lowing continuous-time linear system :

(34)
with state space being the set of traceless Hermitian matrices
(notice that, since , evolution (34) is trace pre-
serving). This will be helpful in proving the following

Theorem 3.4: All the eigenvalues of the map are non-
negative.

Proof: Let be an eigenvalue of and be the corre-
sponding eigenmatrix, so that the state trajectory generated by
system (34) with initial condition is .
We denote by the sum of the absolute values of the eigen-
values of , i.e., .

Let and be the positive and negative parts
of defined as follows: Let , where

, is a diagonal matrix, is obtained from
by annihilating the negative entries and .
Define and . Define also the or-
thogonal projection ( ), where

( ) is the matrix obtained from ( ) by setting to 1
all the non-zero entries. Clearly

(35)

Moreover

(36)

Recall now that, in view of Corollary 3.1, we can as-
sume . Thus, taking into account (35) and
(36), we have so

1It is remarkable to notice that, in the framework of quantum statistical me-
chanics, it has been shown by Lindblad [27] that any trace-preserving, strongly-
continuous semigroup of completely positive maps has a generator which can
be written as the sum of a Hamiltonian (Liouvillian) term and a number of terms
of the form of the integrand in (33). Such Markov semigroups have long been
studied for their relevance to many aspects of quantum theory and thermody-
namics (see e.g.,[2]). In that setting, their spectral properties have been inves-
tigated from an operator-theoretic perspective. In order to avoid to overburden
this paper with an unnecessary and rather technical detour, we choose here to
prove the needed results by means of linear algebraic tools.
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that . Hence,
. It is now easy to see

that

(37)

Define , and . Notice
that

(38)

and a similar equality holds for . We also have
so that, by linearity, the integrand of the last

member of (37) may be written as with

(39)

where we have used the cyclic property of the trace operator,
equality (38), the fact that and eventually
that . As for , we have

(40)

where we have used the fact that , the cyclic
property of the trace operator, the fact that and even-
tually that . In conclusion we have that so that

. On the other hand

(41)

so that (recall that, since is an eigenmatrix, ).

Theorem 3.4 and (30) allow us to conclude that the matrix
in (31) is such that and hence it is a discrete-time
stability matrix.

E. Center Manifold Theory

Let us go back to the original non-linear map . The itera-
tion (15) may be incrementally represented as

and, by Taylor series expansion, as

(42)

where we have defined and is the residue
function that vanishes with its first derivatives at the origin.

Moreover, notice that, from (17), (26), and (42), we immedi-
ately get

(43)

Theorem 3.5: The set is locally asymptotically stable for
.

Proof: We resort again to the coordinate representation of
introduced in Remark 3.1. Moreover, we partition in the

form , where is the component of cor-

responding to , and . In these coordinates
the incremental evolution (42) is represented by

(44)

where, as already discussed, is a stability matrix. We are now
in the setting of Center Manifold theory, see [13, pp. 34–35].
The first and, in general, most difficult step to apply this theory
is to find a center manifold, i.e., a function
that vanishes with its first order derivatives at the origin, and
such that the center manifold equation

(45)

is satisfied. In our situation, however, this equation admits a so-
lution that may be computed very easily. In fact, in view of (43),
it is immediate to check that

(46)

Therefore, we may choose as a solution to (45) the identically
zero function . The asymptotic behavior of trajectories of (44)
originating in a neighborhood of the origin is determined by the
flow on the center manifold whose dynamics is governed by the
equation

(47)

Clearly, the zero solution of (47) is stable2 and thus, as stated in
[13, Theorem 8, page 35]:

1) The zero solution of (44) is stable.

2) If the norm of is sufficiently small, then there

exists a solution of (47) and two positive constants
and , such that

(48)

Notice that, since in our case the dynamics of (47) is constant,
does not depend on , but, in general, depends on the initial

condition . Notice also that the whole argument holds for an
arbitrary choice of as the reference fixed point, so that
we may always assume that the norm of is arbitrarily small
(or even zero). Therefore, for point 2) above to hold it is only
necessary to assume that the norm of is sufficiently small.

2Here, following [13, page 35], we use the term stable in the sense of neutrally
stable as opposed to asymptotically stable.



FERRANTE et al.: ON THE CONVERGENCE OF AN EFFICIENT ALGORITHM 513

In conclusion, if the initial condition of (44) is sufficiently
close to a point of the vector representation (according to Re-

mark 3.1) of , then , i.e., con-

verges to a state representing an element of . This is
equivalent to say that for any (defined in (18)) there
exists a neighborhood such that all trajectories gen-
erated by (15) and originating from , converge to a matrix
in . Equivalently, is locally asymptotically stable for .

Remark 3.2: We recall that is a set of fixed points for :
This implies that as soon as we enter the set the iteration stops,
i.e., all the “orbits” in the center manifold actually consist of
single points.

Remark 3.3: We observe that center manifold reduction is
typically carried out for an isolated fixed point: Our proof, in-
stead, employes this result to establish local asymptotic stability
of the manifold . Each point of this manifold pro-
vides a solution of the dual problem and hence the same solution
of the original problem.

IV. NUMERICAL IMPLEMENTATION

In this section we discuss a numerically efficient implemen-
tation of the integral in the iteration (15). We show that it may
be computed using very robust and reliable linear algebra al-
gorithms. We want to compute , where and

are given and is positive on . To this aim, we as-
sume that is rational and, as a preliminary step we compute,
using standard tools, a minimal minimum-phase spectral factor

of . We also employ the fac-
torization with

(49)

derived in Appendix. Thus, we clearly have

(50)

so that the integral in (50) is the steady-state output covariance
of the filter driven by normalized white noise. Then,
let us compute a state space realization of . First, we
observe that

(51)

where

(52)

is a stability matrix. Hence

(53)

Notice that
. Plugging this expression into (53) we get

(54)

Eventually, it is now easy to see that has the fol-
lowing state space realization:

(55)

with

Notice that is a stability matrix so that the following result is
a straightforward conclusion.

Proposition 4.1: Let be the solution of the following dis-
crete-time Lyapunov equation:

(56)

Then the integral in (50) is the bottom-right block of , i.e.

(57)

In conclusion, for each iteration of the algorithm (15) we only
have to compute: the solution of an algebraic Riccati equation
of order , the solution of a discrete-time Lyapunov equation of
order ( being the state space dimension of ),
and the square root of a positive definite matrix . All these op-
erations are accomplished by standard linear algebra algorithms
that may be implemented by numerically efficient and robust
routines.

V. EVIDENCE FROM SIMULATIONS AND

A CONVERGENCE CONJECTURE

In the previous section we have proven a local result. In an
extensive campaign of simulations, however, we have always
observed that the sequence converges very fast to a in
the closure of . Thus, we conjecture that indeed
is globally asymptotically stable for . To this extent, we can
do a few considerations. The function maps the open set
of positive definite matrices with unitary trace to itself. Even if
all fixed points in this open set are clearly in , we cannot
exclude that the sequence converges to the boundary of

, i.e., to a singular matrix. Indeed, it is easy to see that there
is a whole family of singular matrices in the boundary of that
are fixed points of . This is the family of the 1-D orthogonal
projections. We have conducted some numerical experiments to
understand the behavior of the map in the neighborhood of
1-D orthogonal projections. We have observed that, even if we
generate the sequence by choosing the initial condition
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arbitrarily close to a 1-D orthogonal projection , the sequence
always converged to . For this reason we believe that, except
for those in , the 1-D orthogonal projections are unstable
equilibrium points. A formal proof of this fact should probably
adopt a (nonlinear) Lyapunov approach. In fact, the derivative
of the square root in the neighborhood of a singular matrix (as
is an orthogonal projection) is infinite and thus a proof based on
linearization does not seem viable.

A second remark concerns the values of along the trajec-
tory generated by iterating . It has been shown in [16]
that is a descent direction for . Indeed,
experimental evidence in numerical simulation shows that more
is true: always decreases along trajectories . This fact,
if proven, would be an important step toward a Lyapunov argu-
ment for global convergence.

Summing up, while a closed form solution of the dual
problem (2.1) is not available, an iterative algorithm has been
proposed in [16], [31] in order to obtain the dual solution
numerically. Necessary conditions for such an algorithm to
be of interest are clearly its numerical efficiency and, most
important, its convergence features.

Our main result proves that the iteration is locally convergent
to the manifold of full-rank solutions for the dual problem. The
path to this results is quite tortuous yet provides new insights on
the dynamics associated to the iteration.

The iterative algorithm presented in Section II-C is thus
proven to be an eligible candidate for being the missing piece
towards a satisfactory, feasible solution of the spectral ap-
proximation problem in the general case. In fact, we believe it
should be possible to prove that convergence is almost global,
namely that all the stationary points that are not in are
in fact repulsive. Technical difficulties rule out a linearization
approach, suggesting a general Lyapunov analysis as the natural
pathway to the desired result. This indeed represents the most
challenging yet compelling direction for further work.

APPENDIX

In the following we present a factorization result that is re-
peatedly used in the paper.

Lemma A.1: Let with
and a reachable pair. Let

be such that on . Then, the following
factorization holds:

(58)

where

(59)

and is the stabilizing solution of the algebraic Riccati
equation

(60)

so that the spectrum of closed loop matrix defined in (52) lies
inside the open unit disk.

Proof: Given and , the
following identity holds [14]:

(61)

Therefore, we have

(62)

Since is positive on the whole , there exists the stabi-
lizing solution of the algebraic Riccati (60). Thus if we set

, the block matrix on the right hand side of (62) admits
the factorization

so that

(63)

with given by (59).
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