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a b s t r a c t

We start by summarizing the state of the art in stabilization of stochastic linear systems with bounded
inputs and highlight remaining open problems.We then report two new results concerningmean-square
boundedness of a linear system with additive stochastic noise. The first states that, given any nonzero
boundon the controls, it is possible to construct a policywith boundedmemory requirements that renders
a marginally stable stabilizable system mean-square bounded in closed-loop. The second states that it
is not possible to ensure mean-square boundedness in closed-loop with a bounded control policy for
systems affected by unbounded noise and having at least one eigenvalue outside the unit circle.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction and results

This article concerns a problem of stability of stochastic linear
controlled systems

xt+1 = Axt + But + wt , x0 given, t ∈ N0, (1.1)

where xt , ut are the state and the control vectors at time t ,
respectively, (wt)t∈N0 is the (not necessarily bounded) mean-zero
noise with bounded variance, assumed i.i.d. for the moment, A ∈

Rd×d and B ∈ Rd×m. We are interested in determining a suitable
control sequence (ut)t∈N0 under which the state sequence (xt)t∈N0
is mean-square bounded. To wit, our objective is to determine, if
possible, a controller satisfying ∥ut∥ 6 R for all t and γ > 0 such
that supt∈N0

E[∥xt∥2
] 6 γ .1 The crux of the matter is the presence

of the bound on the control actions. Even in the deterministic
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noise-free setting, global asymptotic stabilization of the system is
a rather non-trivial matter—see e.g., [1,2] for details. (Analogous
to the deterministic setting, one could potentially think of
establishing conditions in the stochastic context that ensure
Ex0 [∥xt∥

2
] −−−→

t→∞
0; this, however, necessarily requires that the

variance of the noise in (1.1) vanishes asymptotically. Herewe shall
stick to the standard assumption of non-vanishing variance of the
noise.) In the stochastic setting the interplay of spectral radius and
Lyapunov stability of the matrix A gives rise to four distinct cases,
stated next.

1.1. A is Schur stable

If the matrix A is Schur stable, (i.e., the eigenvalues of A
are all inside the open unit disc,) standard Foster–Lyapunov
techniques [3] reveal that a bound γ exists whenever the variance
of the noise is bounded.

1.2. A is Lyapunov stable

Recall that Lyapunov stability of A implies that its eigenvalues
have magnitude at most one 1 and those on the unit circle have
equal geometric and algebraicmultiplicities. This casewas recently
treated in [4], where a bounded k-history-dependent policy was
constructed which renders the closed-loop system mean-square
bounded provided that the control bound is large enough. It is not
difficult to see that in this case the system decomposes to a Schur
stable part and a part with an orthogonal A matrix. The integer k
is then the reachability index of the orthogonal part of the system,
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and the control bound required is proportional to the first absolute
moment of the noise. This policy is a feedback for the k-subsampled
system, and is therefore not a pure feedback for the original system.
Nonetheless, the bounded memory requirement of this policy – at
most k past states need to be retained at any time – ensures that
it is applicable in practical situations. For instance, the policy has
been constructively employed in receding horizon control [5] and
networked control systems [6] to ensure good qualitative behavior
of the closed-loop systems. However, the requirement that the
control bound is greater than the first absolutemoment of thenoise
is undesirable and appears to be unnecessary.

Our first result extends the main result of [4] by removing the
lower bound on the control authority required there to ensure
bounded variance of the closed-loop system. We construct a
control policy that ensures that a linear system (1.1) is mean-
square bounded in closed-loop when A is Lyapunov stable, the pair
(A, B) is reachable in κ steps with arbitrary controls, and ∥ut∥ 6
R for arbitrary and pre-assigned R > 0. Our policy belongs to
the class of κ-history-dependent non-stationary policies. We refer
the reader to our earlier article [4] for the basic setup, various
definitions, and in particular to [4, Section 3.4] for the details about
a change of basis in Rd that shows that it is sufficient to consider A
orthogonal. We have the following theorem:

Theorem 1.2. Consider the system (1.1). Suppose that the pair
(A, B) is κ-steps reachable, and that A is orthogonal. In addition,
suppose that (wt)t∈N0 is a mutually independent Rd-valued mean-
zero stochastic noise, and that there exists some C4 > 0 such that
E

∥wt∥

4 6 C4 for every t. Let R > 0 be given. Then there exists a
time-varying κ-history-dependent policy (πt)t∈N0 with κ 6 d and
∥πt(·)∥ 6 R for every t, such that for every initial state x0 ∈ Rd there
exists γ = γ (x0, R, C4) > 0 with the closed-loop system satisfying
supt∈N0

Ex0


∥xt∥2 6 γ .

Wegive a quantitative estimate of the constant γ in Remark 2.7.
Theorem 1.2, which yields a time-varying κ-history-dependent
policy, also leads to the following natural open question:

Open problem 1.3. Is it possible to attain bounded closed-loop
variance with bounded controls using static state feedback?

We conjecture that the answer to Problem 1.3 is ‘‘yes’’, but contend
that a proof of this will require new techniques.

1.3. A has spectral radius 1 but is not Lyapunov stable

In the deterministic setting with no noise, i.e., the system being
xt+1 = Axt + But , the main result of [2] established that the
system can be globally asymptotically stabilized if the pair (A, B)
is stabilizable and the spectral radius of A is no more than 1. In the
stochastic setting results in this direction were reported in [7], but
a conclusive treatment remains elusive.

Open problem 1.4. Is it possible to attain bounded closed-loop
variance with bounded controls for systems with spectral radius at
most 1?

Our proof of Theorem 1.2 exploits orthogonality of the matrix
A crucially, consequently, our arguments do not extend in a
straightforward fashion to the case of A having non-trivial Jordan
blocks. We contend that the settlement of this question will also
require new analysis techniques.

1.4. A has spectral radius greater than 1

While it is intuitively reasonable and has been argued,
e.g., in [8], that a bound γ on the closed-loop variance does not
exist if even one eigenvalue of A hasmagnitude greater than 1, (see
also [9] for an interesting argument in the scalar case,) to the best of
our knowledge a general proof in themulti-dimensional case is not
available. Our second result concerns this case, and establishes that
a linear systemwith at least one unstable eigenvalue and subjected
to unbounded noise cannot be stabilized by means of bounded
controls. Let A ∈ Rd×d, and suppose that λ is a real eigenvalue.
Then λ will appear in at least one diagonal block of the real Jordan
form of A, for example:

Ā =



λ 1 0 0 0 0 0
0 λ 1 0 0 0 0
0 0 λ 0 0 0 0
0 0 0 λ 1 0 0
0 0 0 0 λ 0 0
0 0 0 0 0 µ 1
0 0 0 0 0 0 µ

 (1.5)

With loose terminology, wewill call a ‘‘last generalized eigenspace
relative to λ’’ a space generated by what in the Jordan basis is
the canonical vector corresponding to the last column of a block
(e.g., either e3 or e5, if we refer to (1.5)). In the same fashion,
suppose that σ ± iω is a conjugate pair of eigenvalues. Then in
the real Jordan form of A that pair will appear in the form of 2 × 2
blocks, for example as follows:

Ā =



σ −ω 1 0 0 0 0 0
ω σ 0 1 0 0 0 0
0 0 σ −ω 0 0 0 0
0 0 ω σ 0 0 0 0
0 0 0 0 λ 1 0 0
0 0 0 0 0 λ 0 0
0 0 0 0 0 0 λ 0
0 0 0 0 0 0 0 µ


(1.6)

andwewill call a ‘‘last generalized eigenspace relative to σ ± iω’’ a
space generated by the two vectors that in the real Jordanbasis read
as the canonical vectors corresponding to the last two columns of
a block (e.g., Span{e3, e4} with respect to (1.6)).

Theorem 1.7. Consider the linear system (1.1), where A ∈ Rd×d has
at least one eigenvalue λ with |λ| > 1, ut ∈ Rm is a bounded con-
trol action for any time t, and (wt)t∈N0 is an i.i.d. d-dimensional ran-
dom noise independent of x0. Let νt be the projection of wt on a last
generalized eigenspace relative to the unstable eigenvalue (or unsta-
ble conjugate pair) of A, and suppose that (νt)t∈N0 has unbounded
support, that is, P


∥νt∥ > M


> 0 for all M > 0 and t ∈ N0.

Then for any x0 ∈ Rd, supt∈N0
E

∥xt∥


= ∞, and, consequently,

supt∈N0
E

∥xt∥2


= ∞.

The proofs of Theorems 1.2 and 1.7 are provided in Section 2.

2. Proofs

For r > 0 the standard r-saturation function is R ∋ y −→

satr( y) := sgn( y) × min{r, |y|} ∈ [−r, r]. For a matrix M ∈

Rm×n we let σ1(M) denote its maximal singular value and M+ its
Moore–Penrose pseudo-inverse. For a vector v ∈ Rn we let v(k)

denote its k-th entry, k = 1, . . . , n. For a real-valued random vari-
able X on some probability space, we let X+

:= max{0, X}, X−
:=

max{0, −X} denote its positive and negative parts, respectively.
For a stochastic process (Xt)t∈N0 defined on some probability space
and f a measurable function, we denote by Ex[f (Xt)] := E[f (Xt) |

X0 = x] the conditional expectation of f (Xt) given initial condition
X0 = x.

We need the following basic result derived from [10]:

Proposition 2.1. Let (ξt)t∈N0 be a sequence of scalar random
variables on some probability space (Ω, F, P), and let (Ft)t∈N0 be
any filtration to which (ξt)t∈N0 is adapted. Suppose that there exist
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constants a > 0, and J,M < ∞, such that ξ0 6 J , and for all t:

EFt [ξt+1 − ξt ] 6 −a on the event {ξt > J}, (2.2)

and

E

|ξt+1 − ξt |

4
 ξ0, . . . , ξt 6 M. (2.3)

Then there exists a constant c = c(a, J,M) > 0 such that supt∈N0

E

(ξ+

t )2


6 c.

Proof of Theorem 1.2. Fix R > 0. Consider the κ-sub-sampled
version of (1.1):

xκ(t+1) = Aκxκt + Rκ(A, B)

 uκt
...

uκ(t+1)−1


+ Rκ(A, I)

 wκt
...

wκ(t+1)−1


=: Aκxκt + Rκ(A, B)ūt + w̄t , t ∈ N0, (2.4)

with initial condition x0 given, Rk(A,M) :=

Ak−1M · · · AM M


for any matrix M with d rows, and I the d × d identity matrix.
Observe that Rκ(A, B) has full rank due to the pair (A, B) being κ-
step reachable. Here ūt ∈ Rκm, with each block component being
uκt+ℓ with ∥uκt+ℓ∥ 6 R, ℓ = 0, 1, . . . , κ − 1, and (w̄t)t∈N0 is
Rd-valued mean-zero stochastic noise with supt∈N0

E

∥w̄t∥

4


6

σ1

Rκ(A, I)

4C4.

Defining yt :=

Aκt
⊤xκt ∈ Rd, in view of A being orthogonal,

we get

yt+1 =

Aκ(t+1)⊤xκ(t+1)

=

Aκ(t+1)⊤Aκxκt + Rκ(A, B)ūt + w̄t


= yt +ut + wt , (2.5)

where ut = (A⊤)κ(t+1)Rκ(A, B)ūt , wt = (A⊤)κ(t+1)w̄t , with
the sequence (wt)t∈N0 being Rd-valued mean-zero noise with
supt∈N0

E

∥wt∥

4


6 σ1

Rκ(A, I)

4C4. Trivially, therefore, eachw(k)
t

t∈N0

is mean-zero and fourth-moment bounded. Selecting

r ∈

0, R

(
√
dσ1(Rκ (A,B)+))


, we define u(k)

t := −satr

y(k)
t

, k =

1, . . . , d. Let Ft be the σ -algebra generated by the random vectors
{xκs}

t
s=0; note that ( yt)t∈N0 is (Ft)t∈N0-adapted.

Since
y(k)

t

 =

y(k)
t
+

+

y(k)
t
−

=

y(k)
t
+

+

−y(k)

t
+, a trivial

application of the triangle inequality shows that

Ey0

y(k)
t

2
t∈N0

is bounded provided both the sequences

Ey0


y(k)
t
+2

t∈N0

and

Ey0


y(k)
t
−2

t∈N0
are bounded. To this end, consider the

dynamics of the k-th component of ( yt)t∈N0 :

y(k)
t+1 = y(k)

t − satr

y(k)
t

+ w(k)

t , y(k)
0 given, t ∈ N0. (2.6)

In view of the above arguments, observe that

EFt

y(k)
t+1 − y(k)

t


= −satr

y(k)
t


= −r on the set

y(k)
t > r


.

Moreover, the triangle inequality gives

E
y(k)

t+1 − y(k)
t

4  y(k)
s

t
s=0


6
Er +

w(k)
t

4  y(k)
s

t
s=0


6 M

for some M = M(r, C4) > 0. We take J+ = max{( y(k)
0 ), r}

and verify that the conditions of Proposition 2.1 hold for the
sequence

y(k)
t

t∈N0

. This shows that there exists a constant γ
(k)
+ =

γ
(k)
+ ( y0, R, C4) > 0 such that Ey0


y(k)
t
+2

6 γ
(k)
+ for all t . An

identical calculation with

−y(k)

t

t∈N0

instead of

y(k)
t

t∈N0

shows

that there exists a constant γ
(k)
− = γ

(k)
− ( y0, R, C4) > 0 such

that Ey0


y(k)
t
−2

6 γ
(k)
− . In view of the discussion above,

Ey0

y(k)
t

2 6 2

γ

(k)
+ + γ

(k)
−


for all t ∈ N0. Furthermore, since

A is orthogonal,
xκt

 = ∥yt∥ and x0 = y0; thus,

Ex0

xκt
2 6

d
k=1


γ

(k)
+ + γ

(k)
−


=: γ for all t.

A standard argument, e.g., as in [4, Proof of Lemma 3.14] shows
that (xt)t∈N0 ismean-square bounded if (xκt)t∈N0 is; therefore there
exists a constant γ depending on (x0, R, C4) (and, of course, the
system parameters,) such that Ex0


∥xt∥2 6 γ for all t ∈ N0.

We recover the controls (ut)t∈N0 by noting that Rκ(A, B) has
rank d, hence (A⊤)κ(t+1)Rκ(A, B) is left-invertible; so, for t ∈ N0,

u(k)
t = −satr


y(k)
t


= −satr


(A⊤)κtxκt
(k)

∈ R,

k = 1, . . . , d,

ūt =

 uκt
...

uκ(t+1)−1

 =

(A⊤)κ(t+1)Rκ(A, B)

+ut

= Rκ(A, B)+Aκ(t+1)ut ∈ Rκm,

where the last equality is due to the fact that Rκ(A, B) has full row
rank and that A is non-singular. To wit, for each t ∈ N0, the control
uκt+ℓ ∈ Rm depends only on xκt for ℓ = 0, . . . , κ − 1, and is at
most κ-history-dependent; and due to the presence of the time-
varying factor (A⊤)κ(t+1), the policy is time-varying. The controls
are bounded (in the Euclidean norm) by R by construction because
for t ∈ N0 and ℓ ∈ {0, 1, . . . , κ − 1},uκt+ℓ

 6 ∥ūt∥ 6 σ1

Rκ(A, B)+


∥ut∥

6 σ1

Rκ(A, B)+

√
dr 6 R.

Since R was arbitrary, the proof is complete. �

Remark 2.7. From the remark following [10, Corollary 2] we get
the expression for the bound γ in Theorem 1.2 given below.
Referring to the proof of Theorem 1.2 above for the notation, we
have γ 6

d
k=1 γ (k)

= 2
d

k=1


γ

(k)
+ + γ

(k)
−


, where

γ
(k)
+ , γ

(k)
− 6 max{r, ∥x0∥} + π2r221434(1 + 3−4)4

×


918 + π2


11 + 34


24

1 +

M
r4



+


1 + 24


1 +

M
r4

4


×


24

1 +

M
r4


+


1 + 24


1 +

M
r4

4
2

,

and M is bounded above by 8(r4 + C4). �

Proof of Theorem 1.7. First of all, note that if wt does not have
finite first absolute moment then, for all t ∈ N0, xt does not have
finite first absolute moment either, and the claim holds. We may
therefore assume that C1 := E[∥wt∥] < ∞. The same, of course,
holds for any projection νt ofwt on a subspace ofRd, i.e., E[∥νt∥] =:

c1 < ∞.
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Consider a real change of basis which brings A in its real Jordan
form

x̄t+1 = Āx̄t + ūt + w̄t . (2.8)

If A has an unstable real eigenvalue λ, without loss of generality
we can restrict our attention to the dynamics of the system along a
‘‘last generalized eigenspace’’ relative to λ. In the real Jordan basis,
this is the space generated by the canonical vector en, where n is the
index of the last column of a Jordan block. Referring to the example
in (1.5), we can consider the dynamics along en = e3; for any a ∈ R
it holds

Ā(ae3) = ae2 + (λa)e3,

whose projection onto e3 is just (λa)e3. Nowwe let ξt ∈ R, υt ∈ R,
and νt be the components of x̄t , ūt , and w̄t along en. Since ut is
bounded, ūt is also bounded, hence ∥υt∥ 6 ρ for a certain ρ > 0.
Also, E [∥νt∥] 6 c1 for a certain c1 > 0. In analogy to what happens
in the example, the dynamics of ξt is given by

ξt+1 = λξt + υt + νt .

Given the component ξτ at a certain time τ , we have that

E

∥ξt+τ∥ |ξτ


= E

λtξτ +

t−1
k=0

λt−1−kυτ+k

+

t−1
k=0

λt−1−kντ+k

  ξτ



> ∥λtξτ∥ − E

 t−1
k=0

λt−1−kυτ+k

  ξτ



− E

 t−1
k=0

λt−1−kντ+k

  ξτ



> |λ|
t
∥ξτ∥ −

t−1
k=0

|λ|
t−1−kE

υτ+k
  ξτ


−

t−1
k=0

|λ|
t−1−kE


∥ντ+k∥

 ξτ


> |λ|

t
∥ξτ∥ − (ρ + c1)

t−1
k=0

|λ|
k

= |λ|
t
∥ξτ∥ − (ρ + c1)

|λ|
t
− 1

|λ| − 1

> αt (∥ξτ∥ − β) ,

where α = |λ| and β =
ρ+c1
|λ|−1 .

If A has an unstable conjugate pair of eigenvalues σ ± iω, we
restrict again our attention to a two-dimensional ‘‘last generalized
eigenspace’’. Referring to the example in (1.6), we can consider the
dynamics along Span{e3, e4}, for whose generic element it holds

Ā(ae3 + be4) = a(e1 + σ e3 + ωe4) + b(e2 − ωe3 + σ e4)
= ae1 + be2 + (σa − ωb)e3 + (ωa + σb)e4.

In general, we let ξt ∈ R2 be the coordinates of x̄t along
Span{en−1, en}, (n being the index of the last column of a block
relative toσ ±iω), andwe let the same component of ūt beυt ∈ R2,
and of w̄t be νt ∈ R2. We have ∥υt∥ 6 ρ and E [∥νt∥] 6 c1 for
positive constants ρ, and c1 as before. The dynamics of ξt is given
by

ξt+1 = Λξt + υt + νt ,
where Λ =


σ −ω
ω σ


. Define α =

√
σ 2 + ω2, then ∥Λξt∥ =

α∥ξt∥. With essentially the same computations as before, we
obtain

E [∥ξt+τ∥ | ξτ ]

= E

Λtξτ +

t−1
k=0

Λt−1−kυτ+k +

t−1
k=0

Λt−1−kντ+k

  ξτ



> αt
∥ξτ∥ − (ρ + c1)

t−1
k=0

αk > αt (∥ξτ∥ − β) .

Therefore, in both cases, if for a given ε > 0 we have ∥ξτ∥ >
β + ε, then E


∥ξt+τ∥

 ξτ


> αtε, for a certain α > 1. Let us now

define the events

H1 = {∃τ ∈ N0 | ∥ντ∥ > (α + 1)β + ρ} ,

H2 = {∃τ ∈ N0, ε > 0 | ∥ξτ∥ > β + ε} .

Note that H1 ⊂ H2. Indeed, if ∥ξt∥ 6 β for all t = 0, . . . , τ but
∥ντ∥ > (α + 1)β + ρ, then

∥ξτ+1∥ > ∥ντ∥ − ∥Λξτ∥ − ∥υτ∥ > (α + 1)β + ρ − αβ − ρ > β.

By hypothesis, since ντ are unbounded, the random variables
1{∥ντ ∥>(α+1)β+ρ} form a sequence of Bernoulli trials with a certain
positive probability, hence P(H1) = 1. Consequently also P(H2) =

1, and

sup
t∈N0

E

∥x̄t∥


> sup

t∈N0

E

∥ξt∥


= sup

t∈N0

E

∥ξt∥

H2


> sup
t∈N0

E

∥ξt+τ∥

H2


= sup
t∈N0

E

E

∥ξt+τ∥

 ξτ

 H2


> sup

t∈N0

E

αtε

H2


= sup
t∈N0

αtε

= ∞.

Finally, xt = T x̄t , where T represents the change of basis that
brings A in Jordan form. In particular T is invertible, hence ∥x̄t∥ 6
∥T−1

∥∥xt∥ and

sup
t∈N0

E

∥xt∥2 > sup

t∈N0

E[∥xt∥]2 >
1

∥T−1∥2
sup
t∈N0

E[∥x̄t∥]2 = ∞,

where the first inequality follows from Jensen’s inequality. �

3. Simulations

Fig. 1 shows the average of the square norm of the state over 50
runs of the following system:

xt+1 =


cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)


xt +


1
0


ut + wt

where x0 =


10
10


, wt ∈ N (0, 0.1I2), and where ut is chosen

respectively according to the policy proposed in this paper, the one
proposed in [4], the one proposed in [7], and a slightly modified
version of the policy in [7]. The policy proposed in [7] is

ut = σ(−ρB⊤Axt) (3.1)

where σ is the component-wise saturation function, and ρ is a
small enough constant. The modified version of the policy (3.1) is
with a fixed ρ = 1. Although no stability guarantee is provable
in this case, it is apparent that the policy (3.1) with ρ = 1
outperforms the other three choices in closed-loop. This fact
supports our conjecture that mean-square stability is attainable
also with a feedback policy.
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Fig. 1. Comparison of average squared norm of state: A orthogonal.

Fig. 2. Squared norm of state vs. bound R on ut : A orthogonal.

Fig. 2 shows the logarithm in base 10 of the average over 20 runs
and 1000 time steps of the steady-state square norm, as a function
of the control bound R, for the same four policies, now with initial
condition x0 = 0.

Fig. 3 shows the average of the square norm of the state over 50
runs of the following system, with an unstable A matrix, starting
from zero initial condition:

xt+1 =

cosπ/4 − sinπ/4 0
sinπ/4 cosπ/4 0

0 0 1.1


xt +

1
0
1


ut + wt

wherewt is awhite Gaussian noisewith variance 0.2I , respectively
controlled with the policies proposed in this paper, the one
proposed in [4], and the one proposed in [7]. Since the system
has an eigenvalue outside the unit circle, sooner or later
each realization ‘‘explodes’’ with exponential rate. This behavior
illustrates Theorem 1.7.

Fig. 4 shows, on two different scales, the average of the square
norm of the state over 50 runs of the following asymptotically
stable system starting from zero initial condition:

xt+1 =

0.9 1 0
0 0.9 0
0 0 0.95


xt +

1
1
1


ut + wt
Fig. 3. Comparison of average squared norm of state: A unstable.

Fig. 4. Comparison of average squared norm of state: A asymptotically stable.

wherewt is awhite Gaussian noisewith variance 0.2I , respectively
controlled with a random policy, namely a Gaussian white noise
with mean zero and unit variance, with the policy proposed in [4],
and the one proposed in [7]. Since the system is asymptotically
stable, the variance of the state remains bounded even with a
random input.

Finally, Fig. 5 shows the average of the square norm of the state
over 50 runs of the following system starting from zero initial
condition:

xt+1 =


1 1
0 1


xt +


0
1


ut + wt

wherewt is awhite Gaussian noisewith variance 0.2I , respectively
controlled with the policy proposed in [4] and the one proposed
in [11]. The latter has been tuned as follows:

ut = f (xt) =

−1 if x(1)
t > 10, x(2)

t > −10,
1 if x(1)

t > 10, x(2)
t 6 10,

0 otherwise.

Both policies seem to attain mean square boundedness, although
in neither case this has been proven. The behavior of the other
policies considered earlier (namely the one proposed in [7]) is not



380 D. Chatterjee et al. / Systems & Control Letters 61 (2012) 375–380
Fig. 5. Average squared norm of state: A having two eigenvalues equal to 1 and a
non-trivial Jordan block.

clear at all. Note that for this system the policy proposed exhibits
a stable behavior, despite the fact that powers of the A matrix are
unbounded.

4. Conclusions

We established answers to the problem of attaining mean-
square bounds for controlled linear systems with additive
stochastic noise in two special cases:

◦ When the system matrix A is marginally stable and the
controlled system is reachable, a bounded state feedback policy
with finite memory exists to render the system mean square
bounded starting from any initial state.

◦ When the matrix A has a spectral radius larger than one and
the noise is unbounded in probability along the directions of
unstable eigen-subspace of A, the system cannot bemademean
square bounded by any bounded control policy.
Acknowledgments

This research was partially supported by the Swiss National
Science Foundation, grant 200021-122072, the European Com-
mission under the project MoVeS (FP7-ICT-2009.3.5), and the
HY- CON2 Network of Excellence (FP7-ICT-2009-5). The authors
thank Saurabh Amin for insisting that we pursue the conjectures
in [4].

References

[1] H.J. Sussmann, E.D. Sontag, Y. Yang, A general result on the stabilization
of linear systems using bounded controls, IEEE Transactions on Automatic
Control 39 (12) (1994) 2411–2425.

[2] Y.D. Yang, E.D. Sontag, H.J. Sussmann, Global stabilization of linear discrete-
time systems with bounded feedback, Systems and Control Letters 30 (5)
(1997) 273–281.

[3] S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, second ed.,
Cambridge University Press, Cambridge, 2009.

[4] F. Ramponi, D. Chatterjee, A. Milias-Argeitis, P. Hokayem, J. Lygeros, Attaining
mean square boundedness of a marginally stable stochastic linear system
with a bounded control input, IEEE Transactions on Automatic Control 55 (10)
(2010) 2414–2418.

[5] P. Hokayem, E. Cinquemani, D. Chatterjee, F. Ramponi, J. Lygeros, Stochastic
receding horizon control with output feedback and bounded control inputs,
Automatica 48 (1) (2012) 77–88.

[6] D. Chatterjee, S. Amin, P. Hokayem, J. Lygeros, S. Shankar Sastry, 2010, Mean-
square boundedness of stochastic networked control systems with bounded
control inputs, in: Proceedings of the 49th IEEE Conference on Decision and
Control, pp. 4759–4764, http://arxiv.org/abs/1004.0793.

[7] A.A. Stoorvogel, A. Saberi, S.Weiland, 2007, On external semi-global stochastic
stabilization of linear systems with input saturation, in: Proceedings of the
American Control Conference, pp. 5845–5850.

[8] G.N. Nair, R.J. Evans, Stabilizability of stochastic linear systems with finite
feedback data rates, SIAM Journal on Control and Optimization 43 (2) (2004)
413–436. electronic.

[9] S. Yüksel, T. Başar, 2010, Control over noisy forward and reverse channels,
(in press) in IEEE Transactions on Automatic Control, vol. 56, Also available
at http://www.mast.queensu.ca/~yuksel/YukBasNoisyTAC2011.pdf.

[10] R. Pemantle, J.S. Rosenthal, Moment conditions for a sequence with negative
drift to be uniformly bounded in Lr , Stochastic Processes and their Applications
82 (1) (1999) 143–155.

[11] M. Korda, 2011, Stochastic Model: Predictive Control, Master thesis, ETH
Zürich.

http://arxiv.org/1004.0793
http://www.mast.queensu.ca/~yuksel/YukBasNoisyTAC2011.pdf

	On mean square boundedness of stochastic linear systems with bounded controls
	Introduction and results
	 A  is Schur stable
	 A  is Lyapunov stable
	 A  has spectral radius 1 but is not Lyapunov stable
	 A  has spectral radius greater than 1

	Proofs
	Simulations
	Conclusions
	Acknowledgments
	References


