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On Mean-Square Boundedness of Stochastic Linear
Systems With Quantized Observations

Debasish Chatterjee, Peter Hokayem, Federico A. Ramponi, and
John Lygeros

Abstract—We propose a procedure to design a state-quantizer with a
fixed finite alphabet for a Lyapunov stable stochastic linear system, and a
bounded policy based on the resulting quantized state measurements to en-
sure bounded second moments of the states in closed-loop.

Index Terms—Static quantizer, transmission rate.

I. INTRODUCTION

Recently the authors have investigated the stabilizability in the
mean-square sense of a controlled discrete-time linear system subject
to unbounded random disturbance. Namely, given a linear system

, where is a stabilizable pair,
is a bounded control signal ( for all ), and
is a sequence of independent random vectors, we have

demonstrated that with an appropriate choice of the control strategy,
it is possible to attain mean-square boundedness of the state process
(i.e., ) provided that has bounded
fourth moment.1 The reader is referred to our articles [13] and [2],
which deal with the case when full-state information is available; the
more recent article [7] treats this problem in greater generality and
establishes the result by means of a receding-horizon strategy.
It is of interest to extend the preceding result to the context of net-

worked systems, i.e., supposing that the signals involved in both the
state measurement and the actuation of the control action travel across
a communication network. At least two key problems arise: first, all the
information must be encoded, and in particular the state information is
quantized; second, at certain times either the state information or the
control action can be absent due to communication packet drops. The
aim of this article is to deal with the first problem: we assume that the
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1Observe that this fourth moment requirement is more general than the stip-
ulation that is itself bounded, which is the standard assumption in
robust control.

state information reaches the controller in a quantized form, and we
propose a controller that ensures that the states of a Lyapunov stable
system are mean-square bounded.2

Stabilization of linear systems with quantized state measurements
has a rich history, see, for example, [1], [3]–[5], [8]–[11], [14]–[17].
While this article deals neither with networked control in its broad gen-
erality, nor with the case of multiple systems interacting over a network
per se, it provides a contribution to the subject by proving that ensuring
mean-square stability under unbounded noise and bounded control ac-
tions—a highly nontrivial task for Lyapunov stable linear systems even
with full-state information—is possible with quantized state informa-
tion. We stress that, unlike elsewhere in the literature, we do not focus
on attaining stability under the assumption of a finite transmission rate
available between sensors, controller, and actuators; our main result is
not in terms of a minimum necessary rate. We establish, instead, that
mean-square boundedness can be attained with the information pro-
vided by a fixed quantizer with finite alphabet—that is, knowing in
which region of the state space, or “bin,” out of finitely many, the state
happens to lie at prescribed times—and our main result is in terms of
the maximum “amplitude” of such bins.
The proof of our result is constructive: we show that the informa-

tion relevant to ensure mean-square boundedness is encoded in the di-
rection of the state vector. We therefore start by constructing a finite
partition (the “bins”) of the set of all possible directions, and a corre-
sponding quantizer. Based on this fixed quantizer with finitely many
values, we then define a time-varying policy as a concatenation of a
-length policy , that depends only on the
“bin” in which the state happens to fall at times .
As a consequence, the control actions can take only a finite number

of values as well; hence, mean-square stability is trivially attained also
with bounded transmission rate. Under mild assumptions on the con-
trol bound and on the maximum size of the bins, (and as a con-
sequence their number,) this policy ensures mean-square boundedness
of the states.
In the same vein, note that on the one hand, for linear systems with

at least one eigenvalue outside the closed unit disc, it is impossible
to attain mean-square boundedness of the states with bounded control
actions [2]. Observe that although the finite data rate theorem [9, The-
orem 2.1] asserts that it is possible to bound the variance of a stochastic
linear systemwith unbounded noise by appropriate controls transmitted
over a channel supporting a bounded data rate, the magnitude of the
control needed must necessarily be unbounded if the system matrix is
unstable. This was argued following Proposition 5.1 in [9] and estab-
lished in [2], and the technical problems involved are quite different
from those concerned with stabilization of deterministic systems with
quantized states, considered e.g., in [11], where the disturbances are
bounded. Due to the finiteness of the input set, the result of this article
cannot be extended to unstable systems.
On the other hand, for asymptotically stable systems, any bounded

sequence of controls is enough to ensure mean-square bounded states;
therefore, a trivial quantizer is good enough. For Lyapunov stable sys-
tems that are not asymptotically stable, however, not all standard quan-
tizers may work.
To summarize, our result shows that for the (borderline) case of

Lyapunov stable systems, a specifically designed static quantizer with

2The second problem can also be solved assuming a linear quan-
tizer—treating the “quantization noise” as a further bounded disturbance;
for a solution to this problem, we refer the reader to the companion article [6],
which provides a standard stochastic model for the packet drops, imperfect and
partial state observation, and bounded control actions.
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finitely many fixed bins suffices, and, as such, fills the gap between the
two extreme cases above. The result is tested on a simple system at the
end of the article.

II. THE RESULT

Consider the linear control system

(1)

where is the vector of states, is the vector of control
actions, is a zero-mean sequence of noise vectors defined on
some probability space , and and are matrices of appro-
priate dimensions. It is assumed that instead of perfect measurements
of the state, quantized state measurements are available by means of a
quantizer , where is a finite set of vectors in

which we refer to as “bins”.
Our objective is to construct a quantizer and a corresponding control

policy such that the magnitude of the control is uniformly bounded,
(i.e., for some we have for all ,) the number
of bins is finite, and the state of (1) is mean-square bounded (i.e.,

,) in closed-loop.
Assumption 1:
• The matrix is Lyapunov stable—the eigenvalues of have
magnitude at most 1, and those on the unit circle have equal geo-
metric and algebraic multiplicities.

• The pair is reachable in steps, i.e.,
.

• is a zero mean sequence of independent vectors with
.

• for all .
The policy that we construct below belongs to the class of -his-

tory-dependent policies, where “ -history” refers to the quantized
states preceding the current time step. We refer the reader to [13] for
the basic setup, definitions, and in particular to [13, §3.4] for details
about a change of basis in that shows that it is sufficient to consider
orthogonal. We let for a ma-

trix of appropriate dimensions, let denote the Moore–Penrose
pseudoinverse of , and let denote the minimal
and maximal singular values of , respectively. denotes the
identity matrix. For a , let
and denote the projections onto the span of
and its orthogonal complement, respectively. For let the radial
-saturation function be defined as

, and let denote the open ball cen-
tered at 0 and denote its boundary.
Theorem 2: Consider the system (1), and suppose that Assumption 1

holds. Let the quantizer be such that there exists a constant satisfying:
a) , where

is the maximal angle between and , , and
b) for every .

Let . Then successive -step applications
of the control policy

(2)

ensures that .
Remark 3: Observe that Theorem 2 outlines a procedure for con-

structing a quantizer with finitely many bins, an example of which on
is depicted in Fig. 1. We see from the hypotheses of Theorem 2

that the quantizer must be radial, and have no large gap between the
bins on the -sphere; the quantization rule for the states inside does
not matter insofar as mean-square boundedness of the states is con-
cerned. As a consequence of the control policy in Theorem 2, the con-
trol alphabet is also finite with elements. Since the number of

Fig. 1. Pictorial depiction of the proposed quantization scheme in , with
being the set of bins. The various projections are com-

puted for a generic state outside the -ball centered at the origin.

orthants grows exponentially with (the dimension of ) and since
, the number of bins also increases at least exponentially

with . Moreover, for quantizers such that
• , i.e., the “density” of the bins on the -sphere increases

indefinitely due to , and
• uniformly in ,

(2) tends uniformly to the policy proposed in [13].
Hereafter denotes conditional expectation for a -algebra

. We need the following immediate consequence of [12,
Theorem 1].
Proposition 4: Let be a sequence of nonnegative random

variables on some probability space , and let be
any filtration to which is adapted. Suppose that there exist
constants , and , such that , and for all we
have on the event and

. Then there exists a constant
such that .

Preparatory to the proof of Theorem 2, observe that it is no loss of
generality to assume that the matrix is orthogonal. Indeed, as argued
in [13, Proof of Theorem 1], there exists a change of basis which de-
composes a given system matrix into its real Jordan form, and after
a rearrangement it is possible to block-diagonalize into an asymp-
totically stable part and an orthogonal part, which yield two decoupled
subsystems. While mean-square boundedness of the former subsystem
under bounded controls follows at once from standard Lyapunov tech-
niques, the latter requires further analysis, and accordingly we shall
henceforth consider to be orthogonal.
Proof of Theorem 2: Let be the -algebra generated by

. Since is a measurable map, it is clear that is
-adapted. For , on
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Fig. 2. Empirical average of the square norm of the state under various quan-
tization choices versus the policy in [13].

where , and

is zero mean noise. It follows that:

Selecting the controls as in (2) and
using the fact that , we arrive
at

The vector in (2) satisfies

Since for each and since is orthogonal, we see that
for

for some . It remains to define and appeal
to Proposition 4 with the above definition of to conclude
that there exists some , depending on , , , and , such
that . A standard argu-
ment, e.g., as in [13, Proof of Lemma 9], shows that this guarantees

for some .

III. NUMERICAL SIMULATION

As a simple example, we consider the system

, where

and . Here, ,
, ,

and . Hence the assumptions of
Theorem 2 stipulate that and

. We choose (arbitrarily) the number of bins to
be 8, and the quantized point to be located on the bisecting axis of
each bin (exactly as in Fig. 1.); then , and we obtain

and . Fig. 2. shows the
average of the square norm of the state over 1000 runs of the above
system under the quantized policy. The result is compared with a
similar policy having the same control authority but a lower
number of bins than that required by our main Theorem; observe
that the controller appears to ensure mean-square boundedness
in this particular system. The results are also compared with the
policy proposed in [13], which was based on perfect (as opposed to
quantized) state information.
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On Stability of Systems With Aperiodic Sampling Devices

Chung-Yao Kao and Hisaya Fujioka

Abstract—This technical note is concerned with stability analysis of ape-
riodic sampled-data systems. The stability problem is tackled from a pure
discrete-time point of view, where the at-sampling behavior of the system is
modelled as the response of a nominal discrete-time LTI system in feedback
interconnection with a structured uncertainty. Conditions under which the
uncertainty is positive real (PR) are identified. Based on the PR property,
a number of integral quadratic constraints (IQC) are derived and the IQC
theory is applied to derive stability conditions. Numerical examples are
given to illustrate the effectiveness of the proposed approach.

Index Terms—Nonuniform sampling, sampled-data systems, stability.

I. INTRODUCTION

Consider the following state feedback sampled-data system:

(1)

where and respectively denote the state and the control input taking
values in and , and the sampling sequence satisfies

, with . When
the sampling sequence is uniform, it is well-known that system (1) can
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be analyzed and/or designed in discrete-time. Such systems have been
extensively studied over the past decades and a well-developed and
understood theory has been established; see for example [1]. The sit-
uation is more complicated when the sampling pattern is nonuniform
(and usually unknown a priori). In this case, the discretized system
has complicated dependency on the uncertain sampling pattern and of-
fers little useful information about stability or performance of the orig-
inal system. Sampled-data systems with a nonuniform sampling pat-
tern may arise in networked and/or embedded control systems, where
resources for measurement and control are limited (see [2], [3] and
references therein). In view of the widespread use of networked and
embedded control systems, it is both theoretically and practically im-
portant to develop tools for accurate robust stability analysis of system
model (1) against variation of sampling intervals.
In the literature, several different approaches have been proposed

for robust stability analysis of system (1) with a nonuniform sampling
pattern. The impulsive system approach views system (1) as a hybrid
system—a system with both continuous-time and discrete-time parts
[4]. Analysis of such systems, particularly in the sampled-data con-
text, can be dated back to the early 1990s (see [5], [6]). For the recent
development on the nonuniform sampling, we refer to [7], where sta-
bility conditions are derived by Lyapunov stability theory using Lya-
punov functions with jumps that correspond to the nonuniform sam-
pling pattern. The input delay approach takes a pure continuous-time
point of view and models the sampled-data input as the result of a con-
tinuous-time signal subject to a sawtooth delay. This approach was first
proposed in [8]. Following this approach, stability conditions were de-
rived either by the Lyapunov stability theory [8]–[12] or by operator-
theoretic methods such as the scaled small gain theorem [13], [14]. On
the other hand, the discrete-time approach tackles the stability problem
from a pure discrete-time point of view. The behavior of system (1)
at sampling instances is examined, which leads to a robust stability
problem of a discrete-time system where the variation of the sampling
period of system (1) is modelled as a structured uncertainty. Following
this approach, stability conditions were derived by the use of robust
linear matrix inequalities [15], [16], the scaled small gain theorem [17],
[18], and the convex polytopic embedding [19], [20]. Recently, in-
spired by the advantages of the input delay and the discrete-time ap-
proaches, a novel approach is proposed in [21], [22], which utilizes the
discrete-time Lyapunov theorem to analyze the continuous-time system
(1). With a new type of Lyapunov functional, the new method relaxes
certain conditions typically required in the input delay approach.
In this technical note, we follow the discrete-time approach and

specifically aim at refining the stability condition proposed in [17]
and [18]. The key idea is to identify certain property of the structured
uncertainty in the transformed discrete-time system that is useful for
robust stability analysis. More specifically, we discover that, under
certain conditions, the structured uncertainty exhibits the so-called
“positive real” (PR) property. Based on the PR property, a number of
integral quadratic constraints (IQC) are derived, which eventually lead
to a tighter robust stability condition for system (1).

Notation and Terminology

Symbols , , , , , , and are used to denote
respectively the sets of real numbers, nonnegative real numbers,
real matrices, complex numbers, complex numbers with nonnegative
real part, complex matrices, and nonnegative integers. Given
a matrix , the transposition and the conjugate transposition of
are denoted by and , respectively. The spectrum of is de-
noted as while the spectral radius of is denoted as .
Symbol denotes the space of -valued, square summable functions
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