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a b s t r a c t 

We consider the expected shortfall, a coherent risk measure that is gaining popularity outside mathe- 

matical finance and that is being applied to an increasing number of optimization problems due to its 

versatility and pleasant properties. A commonly used heuristic to optimize the expected shortfall con- 

sists in replacing the unknown distribution of the loss function with its empirical discrete counterpart 

constructed from observations. The boundary of the empirical shortfall tail is called the shortfall thresh- 

old, and, in this paper, we study the probability of incurring losses larger than the shortfall threshold. 

In a stationary set-up, we show that under mild conditions a striking universal result holds which says 

that the probability of losses exceeding the shortfall threshold is a random variable whose distribution 

is independent of the distribution of the loss function. This result complements previous findings on the 

expected shortfall and bears important practical consequences on the applications of this risk measure 

to stochastic optimization. The theory this result rests on is fully developed in this paper and its use is 

illustrated by examples. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

In this paper, we consider the following sample-based opti-

ization problem: 

 

∗
N = arg min 

x ∈X 
{ average of the k largest values among 

L (x, δ1 ) , . . . , L (x, δN ) } , (1) 

here k is an integer in the range 1 ≤ k ≤ N , X is a convex sub-

et of R 

d , L ( ·, δi ) are convex cost functions, each one depending on

 value δi of a random variable δ, and where the random sam-

le (δ1 , . . . , δN ) is supposed to be independent and identically dis-

ributed. In a real application, the variable δ describes uncertainty,

nd δi are observations of the variable δ that come from previ-

us experience. The quantity being minimized in (1) is the empir-

cal estimate of a measure of risk, known in financial risk manage-

ent as Conditional Value-at-Risk (CVaR) or Expected Shortfall (ES).

o make the meaning of (1) concrete, we introduce at this early

tage an example that will be resumed later with more explana-
ion and numerical results. 
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xample 1.1 (Portfolio optimization) . Suppose that n a assets

 

[1] , . . . , A 

[ n a ] are available for trading. On period i , the asset A 

[ j ] 

ay gain or lose value in the market, and the ratio δ[ j] 
i 

= (P 
[ j] 
i 

−
 

[ j] 
i −1 

) /P 
[ j] 
i −1 

, where P 
[ j] 
i 

is the close price of asset A 

[ j ] on period

 , is called the rate of return of asset A 

[ j ] on period i . To cope

ith uncertainty, investors diversify among assets; thus, if an in-

estor has 1$ to invest, s/he will invest fractions x [1] , . . . , x [ n a ] of

er/his dollar on A 

[1] , . . . , A 

[ n a ] (we assume that x [ j ] ≥ 0 for all j , and
 n a 
j=1 

x [ j] = 1 ). The vector x := (x [1] , . . . , x [ n a ] ) is called a portfolio .

etting δi := (δ[1] 
i 

, . . . , δ[ n a ] 
i 

) be the vector of the rates of return, the

calar product δi · x = 

∑ n a 
j=1 

δ[ j] 
i 

x [ j] is the rate of return of the port-

olio on period i . If δi ·x is positive, the investor’s capital increases

n period i of δi ·x $ for each dollar invested. Hence, 

 i (x ) := −δi · x 

uantifies the portfolio loss on period i . 

Suppose now that the investor has observed a record of N

ectors (δ1 , . . . , δN ) on various periods. Then s/he can choose a

ortfolio x ∗
N 

by minimizing cost (1) where X = { x ∈ R 

n a : x [ j] ≥
 for all j , 

∑ n a 
j=1 

x [ j] = 1 } is the simplex in R 

n a . The interpretation

s that the investor chooses the portfolio that incurs the lowest av-

rage loss over the empirical shortfall cases. 

CVaR is a coherent risk measure in the sense of Artzner, Del-

aen, Eber, and Heath (1999) , which has been introduced and pop-

https://doi.org/10.1016/j.ejor.2017.11.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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ularized by Rockafellar and Uryasev (20 0 0) and Rockafellar and

Uryasev (2002) in their papers. 1 ES (see e.g. Christoffersen, 2012 or

Fabozzi, Kolm, Pachamanova, & Focardi, 2007 ) is defined similarly

to CVaR, and the difference between CVaR and ES arises only

when the distribution of L ( x , ·) has point masses (that is, there are

single values that have non-zero probability to occur). Moreover,

in finance, often such a difference is not even considered and a

definition of ES completely equivalent to CVaR is used, see e.g.

Acerbi and Tasche (2002) and McNeil, Frey, and Embrechts (2015 ,

Chapter 2). In this paper we deal with distributions without point

masses, and use the definition of ES (or CVaR) that is given in for-

mula (4) below. Terminology and technicalities aside, the concept

of expected shortfall is gaining popularity in fields well outside

the realm of financial analysis. For example, ES as a measure of

risk has recently seen applications to breast cancer therapy ( Chan,

Mahmoudzadeh, & Purdie, 2014 ), scheduling ( Quan, He, & He,

2014; Sarin, Sherali, & Liao, 2014 ), and machine learning ( Takeda,

2009; Takeda & Kanamori, 2009, 2014; Wang, Dang, & Wang,

2015 ). 2 

As said before, Problem (1) is a heuristic towards the minimiza-

tion of an ES risk measure and in this paper we provide rigorous

results that certify the properties of this heuristic. More precisely,

we introduce a notion of shortfall threshold L̄ N (see Eq. (6) ) which

is interpreted as the empirical boundary of shortfall cases and con-

sider the event where “a further function L ( ·, δ), with δ sampled

from P independently of the already seen values (δ1 , . . . , δN ) , in-

curs a cost L (x ∗N , δ) bigger than L̄ N ”. Such a probability is written

as P 

{
δ : L (x ∗

N 
, δ) > L̄ N 

}
, and is a random variable because it de-

pends on x ∗
N 

and L̄ N , which in turn depend on the random sample

δ1 , . . . , δN . 

We show that a probabilistic certificate of the form 

P 

{
δ : L (x ∗N , δ) > L̄ N 

}
≤ ε with confidence 1 − β (2)

can be attached to the solution of (1) . This result has a universal

validity, that is, it holds true regardless of the distribution P by

which the δi ’s are sampled. Hence, an experimenter unaware of

P can still append to the solution of Problem (1) a probabilistic

certificate in the form of (2) . This paper also shows the usefulness

of this result by providing a set of corollaries that have a practical

use, as well as application examples with real data. 

1.1. Structure of the paper 

Relevant definitions are given in Section 2 . In Section 3 the

main result that the random variable P 

{
δ : L (x ∗

N 
, δ) > L̄ N 

}
has a

universal distribution is stated and proven, followed by two corol-

laries regarding the statistics and the long-run behavior of such

random variable. Section 4 presents two applications exploring, re-

spectively, the choice of k , and the long-run behavior of a sequence

of optimization problems solved in a “sliding window” fashion. In

Section 5 , the results from Sections 3 and 4 are applied to the op-

timization of a portfolio that includes shares of 10 companies with

high market capitalization traded on the New York Stock Exchange

and the NASDAQ. The paper ends with some conclusions and ac-

knowledgments. 

2. Formal definitions and problem position 

Let X ⊆ R 

d be a convex set, (�, F , P ) be a probability space,

and L : X × � → R be a function such that 
1 A recent work of Mafusalov and Uryasev (2016) has generalized the concept 

of CVaR from that of a risk measure to that of a norm over a space of random 

variables. In fact the average of the k greatest values among | l 1 | , . . . , | l N | of a vector 

(l 1 , . . . , l N ) ∈ R N is a norm on R N ; for k = 1 it reduces to the Chebycheff norm ‖·‖ ∞ . 
2 The minimization problem with empirical distribution in Takeda and Kanamori 

(2014 , Section 3.2) is essentially Problem (1) . 

L  

r  

l  

l  

m  

l  

p

1. For any x ∈ X , L ( x , ·) is a random variable on (�, F , P ) ; 

2. For any δ ∈ �, L ( ·, δ) is a convex function on X . 

L is interpreted as a cost function whose value depends on

n optimization variable x and a variable δ (uncertainty vari-

ble) that accounts for all other sources of variation of L be-

ides x . If (δ1 , . . . , δN ) is a sample of independent realizations from

(�, F , P ) , we shall often use the shorthand notation L i := L ( ·, δi ),

nd L i ( x ) := L ( x , δi ), i = 1 , . . . , N. 

For any x ∈ X , denote by L ( i ) ( x ), i = 1 , . . . , N, the values attained

y L 1 (x ) , . . . , L N (x ) taken in descending order: 

 (1) (x ) ≥ L (2) (x ) ≥ · · · ≥ L (N) (x ) . 

n statistical terminology, David and Nagaraja (2003) , L (N−i +1) (x ) is

alled the i th order statistic of the random sample L 1 (x ) , . . . , L N (x ) .

roblem (1) can now be restated as follows: 

in 

x ∈X 
1 

k 

k ∑ 

i =1 

L (i ) (x ) , (3)

here 1 ≤ k ≤ N . 

We next introduce a definition of expected shortfall. If L is a

andom variable modeling a loss, α ∈ [0,1], and F L is the cumula-

ive distribution function of L , the Value at Risk (VaR) and Expected

hortfall (ES) of L are given by: 

VaR α(L ) := min { l ∈ R : F L (l) ≥ α} , 
ES α(L ) := E [ L | L > VaR α(L ) ] . 

(4)

aR α( L ) is the threshold value at the boundary of the fraction α
f highest losses. VaR is currently the most widely adopted risk

easure in banking and finance despite some of its shortcom-

ngs seem to suggest that it would be better replaced by other

easures like ES (refer e.g. to Christoffersen (2012) and Fabozzi

t al. (2007) for examples and practical uses, and to Rockafellar

nd Uryasev (2002) and Hong, Hu, and Liu (2014) for a compari-

on of the properties of VaR and ES). ES α( L ) is instead the expected

oss suffered when the threshold VaR α( L ) is exceeded. When the

oss L depends on a choice x ∈ X , i.e., L = L (x ) , it makes sense to

inimize the expected shortfall for a selected value of α: 

in 

x ∈X 
ES α(L (x )) . (5)

roblem (3) is indeed an empirical version of Problem (5) for

= 1 − k 
N , based on the N observations δ1 , . . . , δN . Hence, we call

roblem (3) the empirical expected shortfall problem. 

Let x ∗
N 

be the minimizer of (3) , assume that it exists and is

nique and, assuming also that N ≥ k + d, define 

L̄ N := L (k + d) (x ∗N ) . (6)

e call L̄ N the shortfall threshold . In typical cases the interpretation

f L̄ N is that it separates shortfall empirical functions from func-

ions attaining a lower value at the minimizer. This is easily under-

tood by making reference to a simple case where d = 1 and k = 2 ,

s shown in Fig. 1 (a). The dashed function is 1 
2 (L (1) (x ) + L (2) (x )) .

 

∗
N 

minimizes this dashed function, which happens at the intersec-

ion of two functions L i . L̄ N = L (2) (x ∗
N 
) = L (3) (x ∗

N 
) is at the boundary

f the values attained by the functions L i that are averaged to de-

ermine the solution. Notice, however, that there are cases where
¯
 N takes a value lower than the boundary value. For example, in

ig. 1 (b) the solution is determined by two functions only, and
¯
 N is obtained by “digging” at x ∗N until the third value L (3) (x ∗N ) is

eached. This situation may occur when the cost functions are not

inear, as in Fig. 1 (b), or even when they are linear and the so-

ution x ∗
N 

is obtained at a boundary point of the optimization do-

ain X . The reason why L̄ N is defined to always be the (k + d) th

argest cost is that the theoretical certificate introduced in this pa-

er holds true rigorously for this choice only. 
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xx∗N
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a b

xx∗N

L̄N

Fig. 1. The shortfall threshold L̄ N . The solid lines represent the functions L i and the dashed line is 1 
2 
(L (1) (x ) + L (2) (x )) . 
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By definition, k + d empirical functions out of N have a value at

 

∗
N 

bigger than or equal to L̄ N . Moreover, under a non-degeneracy

ssumption ( Assumption 3.2 below), this number is exact in the

ense that no other function L i attains at x ∗
N 

the value L̄ N . Hence,

he empirical probability of exceeding or meeting the value L̄ N 
s (k + d) /N. In other words, L̄ N is the VaR α , where α = 1 − k + d 

N ,

f a random variable having a discrete distribution function with

qual masses placed at L 1 (x ∗N ) , . . . , L N (x ∗N ) . The value (k + d) /N can

e seen as an estimate of the probability P 

{
δ : L (x ∗

N 
, δ) > L̄ N 

}
, 3 

hich is the true probability with which a next, still unseen, situ-

tion δ will incur a cost L (x ∗N , δ) greater than the shortfall thresh-

ld L̄ N . This paper establishes results on the true probability that

 (x ∗N , δ) > L̄ N , and Theorem 3.1 provides a precise answer that this

robability has a Beta distribution irrespective of P . 

This result is of great importance in applications, where as-

uming knowledge of P is often not realistic. This is in contrast

ith most literature on ES, where it is often assumed that P be-

ongs to a parametric class or that it is however restricted in some

pecific way: see e.g. Quan et al. (2014) where the inflows have

 Gamma distribution, Šutien, Kabašinskas, Strebeika, Kopa, and

eichardt (2014) where the returns possess “α-stable” distribu-

ions, Ponomareva, Roman, and Date (2015) where moments are

sed to generate scenarios for further mean-risk analysis, (Takeda

 Kanamori, 2014, Section 3.3) for a case in which the first and

econd moments are known, Natarajan, Pachamanova, and Sim

2009) and Zymler, Rustem, and Kuhn (2011) dealing with pa-

ameter uncertainty by means of robust optimization, or Zhu and

ukushima (2009) for an introduction to the so-called Worst-Case

VaR, whose very definition requires that P belongs to an a-priori

nown class P . 

We feel advisable to spend some further words to highlight

ome aspects of the mathematical problem dealt with in this pa-

er, that might otherwise be missed. Note first that the problem

f evaluating P 

{
δ : L (x, δ) > L (k + d) (x ) 

}
for a fixed x is a standard

roblem in probability which falls within the frame of order statis-

ics. Specifically, by applying the result in e.g. David and Nagaraja

2003 , p. 10), Shao (2003 , p. 102), or Gentle (2009 , p. 63), one con-

ludes that, if L ( x , ·) has no point masses, P 

{
δ : L (x, δ) > L (k + d) (x ) 

}
istributes as a Beta (k + d, N + 1 − k − d) random variable. On the

ther hand, in the context of the present paper we deal with the

xpected shortfall solution x ∗
N 
, which is not fixed and depends on

he random sample (δ1 , . . . , δN ) . In other words, the x -value at

hich P 

{
δ : L (x ∗

N 
, δ) > L (k + d) (x ∗

N 
) 
}

is evaluated is itself stochastic;
3 Under Assumption 3.2 , this is the same as P 
{
δ : L (x ∗N , δ) ≥ L̄ N 

}
. 

m  

t  

t  

G  

C  

a  
s a consequence, the standard theory of order statistics cannot

e applied to this context. It is a fact that for a generic choice

f a function x ∗N (δ1 , . . . , δN ) , and for a given k , the result that

 

{
δ : L (x ∗

N 
(δ1 , . . . , δN ) , δ) > L (k + d) (x ∗

N 
(δ1 , . . . , δN )) 

}
has a Beta dis- 

ribution fails to be true, and a simple example showing this fact

s provided below. 

xample 2.1 (VaR optimization) . Let X = [0 , 4] , δ = (c, α) , where

 is a Bernoullian random variable taking values {0,1} with proba-

ility 1/2 each, and α is a uniform random variable over [0,1] in-

ependent of c , and let 

 (x, δ) = cx + ( 1 − c ) 

(
2 − x 

2 

)
+ α;

ee Fig. 2 (a). Further, let N = 3 and k = 2 , and 

 

∗
3 (δ1 , δ2 , δ3 ) = arg min 

x ∈X 
L (2) (x ) . 

n words, x ∗3 is the random point minimizing the level-2 VaR

ver [0,4]. Only one of two situations may occur: either L 1 , L 2 ,

 3 have all the same slope (see Fig. 2 (b)), or two of them have

he same slope, while the other has opposite slope (see Fig. 2 (c)).

 simple reasoning reveals that in both cases either x ∗
3 

= 0 or

 

∗
3 

= 4 , and in both cases L (3) (x ∗
3 
) ≤ 1 . Therefore it holds that

 

{
δ : L (x ∗

3 
, δ) > L (2+1) (x ∗

3 
) 
}

≥ 1 / 2 , so that in this example the cu-

ulative distribution function of P 

{
δ : L (x ∗N , δ) > L (k + d) (x ∗N ) 

}
takes 

he value 0 over [0,1/2), and is not a Beta distribution. 

.1. Comparison with other results in the literature 

In the last decade, a new methodology called the scenario ap-

roach has been introduced where the following min-max program

s considered ( X and δi have here the same meaning as in (1) ): 

 

∗
N = arg min 

x ∈X 
max 

i =1 , ... ,N 
L (x, δi ) . (7)

ote that (7) is a particular case of (1) obtained for k = 1 . The min-

mum attained by x ∗N is denoted by L ∗N . 
The scenario approach was firstly introduced in Calafiore and

ampi (2006) , then studied by others, see e.g. Campi and Garatti

2008) , Kanamori and Takeda (2012) , Esfahani, Sutter, and Lygeros

2015) , and Carè, Garatti, and Campi (2015) for recent develop-

ents, and has come in widespread use with many applications

o model identification ( Campi, Calafiore, & Garatti, 2009 ) and sys-

ems and control engineering ( Calafiore & Campi, 2006; Campi,

aratti, & Prandini, 2009 ). For Problem (7) , papers ( Calafiore &

ampi, 2006; Campi & Garatti, 2008 ) contain studies of the prob-

bility P 

{
δ : L (x ∗

N 
, δ) > L ∗

N 

}
, which has been shown to have a Beta
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Fig. 2. (a) Functions L ( ·, δ); (b) sample of N = 3 functions with the same slope (the point (x ∗3 , L (2+1) (x ∗3 )) is marked with •); (c) sample of N = 3 functions, two with the 

same slope and one with opposite slope. 
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4 It turns out that similar properties do not hold true for other common risk 

measures, so that the result of this paper is specific to ES. This is the reason why, 

for example, for the VaR problem in Section 2 the Beta distribution result is not 

valid. 
5 Throughout, proofs are provided immediately after each result. However, never 

in the text reference is made to the proofs, so that the reader can decide to skip 

reading the proofs without any loss of continuity. 
distribution. The results of this paper extend in a non-trivial man-

ner these achievements to expected shortfall optimization. 

The worst-case Problem (7) suffers from the inconvenience that

its solution is dictated by few ill situations and is therefore quite

sensitive to outliers. To cope with this difficulty, in Campi and

Garatti (2011) the following problem of the VaR type has been con-

sidered: 

min 

x ∈X 
{ the k th largest value among L 1 (x ) , . . . , L N (x ) } . (8)

The main drawback with (8) is that it is a highly non-convex

optimization problem whose exact solution can be hardly found,

see e.g. Pagnoncelli, Reich, and Campi (2012) for an application of

(8) to portfolio optimization and a discussion on how sub-optimal

solutions can be found, and ( Natarajan, Pachamanova, & Sim, 2008;

Zymler, Kuhn, & Rustem, 2013 ) for parameter-dependent relax-

ations of the VaR leading to tractable problems. Moreover, the

guarantee provided by Campi and Garatti (2011) for Problem (8) is

only a conservative bound. 

The expected shortfall studied in this paper avoids the above-

mentioned drawbacks that turn up with the VaR approach of

Campi and Garatti (2011) . In particular, the minimization of the

empirical ES is a convex problem. When the cost functions are lin-

ear, as is typical in financial mean-risk analysis, it can be solved

by means of Linear Programming (see e.g. Mansini, Ogryczak, and

Speranza, 2007, Mansini, Ogryczak, and Speranza, 2014, Espinoza

and Moreno, 2014; Ponomareva et al., 2015, Bertsimas, Lauprete,

and Samarov, 2004 , see also Mansini, Ogryczak, and Speranza

(2015) for an in-depth survey of LP applied to mean-risk analysis).

Moreover, the theoretical results obtained in this paper are tight

and then non-conservative. 

3. Probabilistic certificates 

This section contains the main result that P 

{
δ : L (x ∗

N 
, δ) > L̄ N 

}
has a Beta distribution irrespective of probability P ( Theorem 3.1 ).

This result leverages upon Propositions 3.2 and 3.3 where

the fundamental properties of ES that underpin the result in
heorem 3.1 are established 

4 ; in turn, these propositions are based

n some preliminary results. The section is closed by two corollar-

es of Theorem 3.1 , that have a practical utility and are used in the

ext Section 4 . 

It turns out that studying the properties of Problem (3) requires

onsidering other problems with the same structure as problem

3) which, however, are generated from m functions, instead of N ,

here m is any integer greater than or equal to k . Correspondingly,

onsider a sample (δ1 , . . . , δm 

) with m ≥ k independent realizations

rom (�, F , P ) and order L i ( x ), i = 1 , . . . , m, in descending order:

 (1) (x ) ≥ L (2) (x ) ≥ · · · ≥ L (m ) (x ) . Then, construct the same problem

s in (3) , where this time we average the largest among m func-

ions 

in 

x ∈X 
1 

k 

k ∑ 

i =1 

L (i ) (x ) . (9)

roposition 3.1. For any m ≥ k , (9) is a convex minimization prob-

em. 

roof. 5 Let { i 1 , . . . , i k } ⊆ { 1 , . . . , m } be an arbitrary choice of k in-

ices. Since for all δ ∈ � the function L ( ·, δ) is convex, 1 
k 

∑ k 
j=1 L i j (·)

s the average of k convex functions and hence is itself convex. The

um 

1 
k 

∑ k 
i =1 L (i ) (·) in (9) is the point-wise maximum among all the

ossible 
(

m 

k 

)
choices of k indices from m and is therefore a convex

unction. �

We make the following assumptions. 

ssumption 3.1. For any m ≥ k , the solution x ∗m 

to Problem (9) ex-

sts and is unique almost surely. 
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6 The fact that if a constraint is not active it can be removed from the problem 

without changing the solution is because the problem is convex ( Proposition 3.1 ). 

The results in this paper do not hold, in general, for non-convex L i ’s. 
For example, this assumption is verified if X is compact and

 ( ·, δ) is almost surely lower semi-continuous and strictly convex

ver the whole X (this case is, of course, rather conservative). For

 = N, Assumption 3.1 says that the solution x ∗
N 

to Problem (3) ex-

sts and is unique almost surely. 

The next assumption is a non-degeneracy condition. 

ssumption 3.2. Consider a sample (δ1 , . . . , δd+2 ) of independent

ealizations from (�, F , P ) . The event 

 

there exists an x ∈ X such that L 1 (x ) = L 2 (x ) = · · · = L d+2 (x ) } 
as probability zero. 

In typical situations, at most d + 1 functions of a variable x ∈ R 

d 

eet at isolated points. Assumption 3.2 rules out the degenerate

ase where one more function passes through one of the points

here the other functions meet. This assumption is satisfied in

any applications where the losses are continuous quantities and

t is a reasonable modeling simplification even when losses are dis-

rete but fine-grained quantities as is in various financial applica-

ions. See also Section 5 for an example. 

An immediate consequence of Assumption 3.2 is the following. 

emma 3.1. For each x ∈ X , L ( x , ·) is a random variable without point

asses. 

roof. Suppose that, for some x and l , P { δ ∈ � : L (x, δ) = l } = γ >

 , and consider an independent sample (δ1 , . . . , δd+2 ) . By inde-

endence, P 

d+2 { L i (x ) = l, i = 1 , . . . , d + 2 } = γ d+2 
 = 0 , which con-

radicts Assumption 3.2 . �

In preparation of the main result, Theorem 3.1 , note that Prob-

em (9) can be written in epigraphic form as follows: 

 m 

: min 

(x,y ) ∈X×R 

y 

s.t. 
1 

k 

k ∑ 

j=1 

L i j (x ) ≤ y 

for any choice of k indices { i 1 , . . . , i k } ⊆ { 1 , . . . , m } . 
ince { i 1 , . . . , i k } is any subset of { 1 , . . . , m } with cardinality k , P m 

as 
(

m 

k 

)
constraints. The average to be minimized in (9) is the

oint-wise maximum between all the possible averages of k cost

unctions, hence the solution of the reformulation P m 

is (x ∗m 

, y ∗m 

) ,

here x ∗m 

is the minimizer of (9) and y ∗m 

is the optimal value of

9) . 

Suppose now that m ≥ k + d (recall that d is the dimension of

he optimization variable x ) and let 

¯
 m 

:= L (k + d) (x ∗m 

) . 

Hence, L̄ m 

is the (k + d) th value in the sequence 

 (1) (x ∗m 

) , L (2) (x ∗m 

) , . . . , L (m ) (x ∗m 

) . 

n principle, more than k + d values in this sequence could be

reater than or equal to L̄ m 

. The following result says that this does

ot happen when Assumptions 3.1 and 3.2 are satisfied. 

roposition 3.2. Suppose that Assumptions 3.1 and 3.2 hold. Then,

lmost surely, among the cost functions L 1 , . . . , L m 

exactly k + d cost

unctions attain values ≥ L̄ m 

at x ∗m 

. 

roof. Consider a probabilistic outcome where no more than d + 1

unctions have value L̄ m 

at x ∗m 

which, by Assumption 3.2 , happens

ith probability 1, and suppose for the sake of contradiction that

ore than k + d values of L i (x ∗m 

) are ≥ L̄ m 

. This bears two conse-

uences: 

(I) the value L̄ m 

is taken up by at least two functions at x ∗m 

; 

(II) at least k functions are strictly bigger than L̄ m 

at x ∗m 

. 
Fact (I) is true because if L̄ m 

= L (k + d) (x ∗m 

) is taken up by only

ne function, then L (k + d+1) (x ∗m 

) < L (k + d) (x ∗m 

) = L̄ m 

and therefore

nly k + d values of L i (x ∗m 

) are greater than or equal to L̄ m 

. Fact

II) is a consequence of the fact that at least k + d + 1 functions at-

ain values greater than or equal to L̄ m 

while at most d + 1 have

alue L̄ m 

. Note now that y ∗m 

minimizes the largest mean of k func-

ions so that, if a function L i attains at x ∗m 

a value strictly less than

 (k ) (x ∗m 

) , then any constraint of P m 

containing L i is not active for

roblem P m 

, and it can be removed from P m 

without changing

he solution (x ∗m 

, y ∗m 

) . 6 Hence, because of (II), we conclude that

ll functions that at x ∗m 

have a value L̄ m 

do not concur in form-

ng the solution. Next, consider problem P̄ m 

which is the same as

 m 

with the only difference that all the indices i corresponding

o the functions for which L i (x ∗m 

) = L̄ m 

have been canceled from

 1 , . . . , m } . The solution of P̄ m 

is still x ∗m 

. Consider now any prob-

em P̄ obtained by leaving out the functions that have as indices

ny deterministic subset of { 1 , . . . , m } . To fix ideas, say that P̄ con-

ains the indices { 1 , . . . , p} with p < m . Let x̄ be the solution of
¯
 . Due to Lemma 3.1 , the functions with indices p + 1 , . . . , m do

ot have point masses corresponding to x = x̄ . Hence, the event

here L h ( ̄x ) = L j ( ̄x ) for two h, j ∈ { p + 1 , . . . , m } has zero proba-

ility. Summing over all the problems of the form P̄ (which are

nite in number), one sees that zero is the probability of the event

where there exists a subset of indices from { 1 , . . . , m } such that,

fter computing the solution of the corresponding problem P̄ , two

f the functions that are left out assume the same value corre-

ponding to the solution of P̄ . Since for each probabilistic outcome
¯
 m 

is one of the P̄ ’s, the event where “the value L̄ m 

is taken up by

t least two functions at x ∗m 

” (refer to (I)) is a subset of the event

and has therefore probability zero. Hence, the assumption made

or the sake of contradiction holds with probability zero, and this

oncludes the proof of the proposition. �

Proposition 3.2 gives a rule that almost surely selects k + d in-

ices from { 1 , . . . , m } , namely the indices corresponding to the

unctions that attain value ≥ L̄ m 

. We use the symbol σ m 

to explic-

tly denote this selection function: 

σm 

(δ1 , . . . , δm 

) = { i 1 , . . . , i k + d } , 
where i 1 < i 2 < . . . < i k + d . 

(10) 

The following proposition links L̄ m 

to the selection operated by

m 

. 

roposition 3.3. Suppose that a further sample δm +1 , independent of

1 , . . . , δm 

, is sampled from (�, F , P ) , and that L m +1 is added to the

roblem so obtaining 

 m +1 : min 

(x,y ) ∈X×R 

y 

s.t. 
1 

k 

k ∑ 

j=1 

L i j (x ) ≤ y 

for any choice of k indices { i 1 , . . . , i k } ⊆ { 1 , . . . , m + 1 } . 
et (x ∗m +1 , y 

∗
m +1 ) be the solution of P m +1 . Then, almost surely, the cor-

esponding selection of indices is such that 

m +1 (δ1 , . . . , δm +1 ) 
 = σm 

(δ1 , . . . , δm 

) 

f and only if L m +1 (x ∗m 

) > L̄ m 

, and in this case the last index of

m +1 (δ1 , . . . , δm +1 ) is m + 1 . 
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Proof. Three situations may happen: 

1. L m +1 (x ∗m 

) < L̄ m 

: in this case we have x ∗m +1 = x ∗m 

, the val-

ues L (1) (x ∗m 

) , . . . , L (k + d) (x ∗m 

) are the same as those of P m 

by definition of L̄ m 

, and, consequently, σm +1 (δ1 , . . . , δm +1 ) =
σm 

(δ1 , . . . , δm 

) ; 

2. L m +1 (x ∗m 

) = L̄ m 

: this event happens with probability zero in

view of Lemma 3.1 and is therefore negligible; 

3. L m +1 (x ∗m 

) > L̄ m 

: we distinguish two sub-cases: 

3.1 it holds that x ∗m 

= x ∗
m +1 

. Then, L m +1 (x ∗
m +1 

) = L m +1 (x ∗m 

) >

L̄ m 

and m + 1 is therefore included as the last index of

σm +1 (δ1 , . . . , δm +1 ) . 

3.2 it holds that x ∗m 


 = x ∗m +1 . If in problem P m +1 a function

L i attains at x ∗
m +1 

a value strictly less than L (k ) (x ∗
m +1 

) ,

then any constraint of P m +1 containing L i is not active for

problem P m +1 , and it can be removed from P m +1 without

changing the solution (x ∗
m +1 

, y ∗
m +1 

) (recall that the problem

is convex, Proposition 3.1 ). Hence L m +1 (x ∗
m +1 

) ≥ L (k ) (x ∗
m +1 

)

in problem P m +1 since, otherwise, we would have x ∗m +1 =
x ∗m 

. It follows that m + 1 is included as the last index of

σm +1 (δ1 , . . . , δm +1 ) . �

Interestingly, the result in Proposition 3.3 does not hold if in-

stead of L̄ m 

one considers a threshold which is above the bound-

ary of the shortfall situations because the selection made by the σ
function can in this case change even when the new function does

not exceed the threshold of interest. As a consequence, the prob-

ability of exceeding the threshold is not distributed as a Beta in

this case and Theorem 3.1 fails to be true. For example, a easy, but

cumbersome, computation shows that in the VaR Example 2.1 if

one sets k = 2 , computes the solution according to (3) and consid-

ers the distribution of exceeding the value of the second largest

function (instead of the k + d = 3 -rd largest), this distribution is

not a Beta distribution. 

We now go back to considering Problem (3) involving N con-

straints. Introduce the notation 

PS N := P 

{
δ ∈ � : L (x ∗N , δ) > L̄ N 

}
, 

where “PS” means Probability of Shortfall. Since x ∗
N 

depends on

(δ1 , . . . , δN ) , so does PS N , and PS N is a random variable on

(�N , F 

N , P 

N ) taking value in [0,1]. The following fundamental re-

sult claims that the cumulative distribution function of PS N is inde-

pendent of the problem, i.e., it remains the same, and is therefore

known without extra knowledge of the problem, for all problems

that satisfy Assumptions 3.1 and 3.2 . 

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold. Then, PS N 
has a Beta (k + d, N + 1 − k − d) cumulative distribution function: 

P 

N { PS N ≤ ε } 
= 

∫ ε 

0 

	(N + 1) 

	(k + d)	(N + 1 − k − d) 
p k + d−1 (1 − p) N−k −d dp, 

where 	 is Euler’s Gamma function. 

Proof. Consider problem P m 

, with m ≥ k + d. To each sam-

ple (δ1 , . . . , δm 

) , we associate the indices { i 1 , . . . , i k + d } =
σm 

(δ1 , . . . , δm 

) , and group together the samples with the same

selection of indices. In this way, �m is partitioned in 

(
m 

k + d 
)

sets

S 1 , . . . , S ( m 
k + d ) 

up to a zero probability set. Since δ1 , . . . , δm 

are in-

dependent and identically distributed, all the sets in the partition

have the same probability 1 / 
(

m 

k + d 
)
. 

We shall next evaluate the probability of the sets S i along a dif-

ferent approach, which will allow us to compute quantities of in-

terest by equating the computed probability to 1 / 
(

m 

k + d 
)
. Since the

probability of the sets S i is the same, let us focus on one of them,

say the set S corresponding to the indices 1 , . . . , k + d. 
1 
Consider problem P k + d which contains only the functions

 1 , . . . , L k + d , and let F denote the cumulative distribution function

f PS k + d . As an intermediate step, we aim to compute F . 

For a given selection of L 1 , . . . , L k + d , almost surely the next

unction L k + d+1 changes the selection of indices if and only if

 k + d+1 (x ∗
k + d ) > L̄ k + d (refer to Proposition 3.3 ). Moreover, if the se-

ection of indices is changed after L k + d+1 is added, it cannot possi-

ly go back to the initial selection 1 , . . . , k + d by adding additional

unctions L k + d+2 , L k + d+3 , . . . for any further change would add to

he selection the index of the newly added function. As a con-

equence, (δ1 , . . . , δm 

) / ∈ S 1 . On the other hand, if L k + d+1 (x ∗
k + d ) ≤

¯
 k + d the solution x ∗

k + d+1 
does not change. Since x ∗

k + d+1 
= x ∗

k + d ,
y iterating the same argument, one ends up to the conclusion

hat almost surely (δ1 , . . . , δm 

) ∈ S 1 if and only if L k + d+1 (x ∗
k + d ) ≤

¯
 k + d , . . . , L m 

(x ∗
k + d ) ≤ L̄ k + d . We are now ready to compute the prob-

bility of S 1 . For a given selection of δ1 , . . . , δk + d , let p(δ1 , . . . , δk + d )
e the value of PS k + d . One relation L k + d+ i (x ∗

k + d ) ≤ L̄ k + d holds

ith probability 1 − p(δ1 , . . . , δk + d ) and the relations hold si-

ultaneously for all i = 1 , . . . , m − (k + d) with probability (1 −
p(δ1 , . . . , δk + d )) m −(k + d) due to independence of δk + d+1 , . . . , δm 

. In-

egrating over all possible values of p(δ1 , . . . , δk + d ) gives 

 

m [ S 1 ] = 

∫ 
�k + d 

(1 − p(δ1 , . . . , δk + d )) 
m −(k + d) dP (δ1 , . . . , δk + d ) 

= 

∫ 1 

0 

(1 − p) m −(k + d) dF (p) . 

ow go back to relation P 

m [ S 1 ] = 

1 

( m 
k + d ) 

to obtain 

 1 

0 

(1 − p) m −(k + d) dF (p) = 

1 (
m 

k + d 
) , (11)

hich holds for any m ≥ k + d, and provides all moments of

he cumulative distribution function F . Hence, F remains fixed by

11) (see e.g. Shiryaev (1996 , ch. 2, sec. 12.9, Corollary 1)). Since by

he properties of Euler’s Beta function it holds that 

m 

k + d 

)
(k + d) 

∫ 1 

0 

(1 − p) m −(k + d) p k + d−1 dp = 1 , 

e conclude that F (p) = p k + d . 
Consider now the problem with N functions. Partition �N as

efore in 

(
N 

k + d 
)

sets S 1 , . . . , S ( N 
k + d ) 

up to a zero probability set. It

olds that 

 

N { PS N ≤ ε } 

= P 

N 

[ 

{ PS N ≤ ε} ∩ 

⋃ 

i 

S i 

] 

= 

∑ 

i 

P 

N [ { PS N ≤ ε } ∩ S i ] 

= 

(
N 

k + d 

)
P 

N [ { PS N ≤ ε } ∩ S 1 ] 

= 

(
N 

k + d 

)∫ 
�N 

1 { PS N ≤ε} (δ1 , . . . , δN ) 1 S 1 (δ1 , . . . , δN ) dP (δ1 , . . . , δN ) . 

Since over S 1 the solution with all N functions coincides with

he solution with only the first k + d functions, the last expression
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an further be written as 

N 

k + d 

)∫ 
�k + d 

1 { p(δ1 , ... ,δk + d ) ≤ε} (δ1 , . . . , δk + d ) 

× (1 − p(δ1 , . . . , δk + d )) 
N−(k + d) dP (δ1 , . . . , δk + d ) 

= 

(
N 

k + d 

)∫ ε 

0 

(1 − p) N−(k + d) dF (p) 

= 

∫ ε 

0 

N!(k + d) 

(k + d)!(N − k − d)! 
p k + d−1 (1 − p) N−(k + d) dp 

= 

∫ ε 

0 

	(N + 1) 

	(k + d)	(N + 1 − k − d) 
p k + d−1 (1 − p) N−(k + d) dp. 

his concludes the proof. �

The following corollary gives the probability that, after finding

 

∗
N 
, one more cost function associated with δN+1 attains at x ∗

N 
a

alue that exceeds L̄ N . 

orollary 3.1. Under the hypotheses of Theorem 3.1 , 

 

N+1 
{

L N+1 (x ∗N ) > L̄ N 
}

= E [ PS N ] = 

k + d 

N + 1 

. 

roof. In the following computation, the dependence of x ∗
N 

on

(δ1 , . . . , δN ) is indicated explicitly: 

 

N+1 
{

L N+1 (x ∗N (δ1 , . . . , δN )) > L̄ N 
}

= 

∫ 
�N 

P 

{
δN+1 ∈ � : L (x ∗N (δ1 , . . . , δN ) , δN+1 ) > L̄ N 

}
× dP 

N (δ1 , . . . , δN ) 

= 

∫ 
�N 

PS N dP 

N (δ1 , . . . , δN ) 

= E [ PS N ] 

= 

k + d 

N + 1 

, 

here the last equality follows from the fact that the expected

alue of a random variable with distribution Beta (k + d, N + 1 −
 − d) is k + d 

N+1 . �

Corollary 3.1 states that PS N is a random variable whose mean

s k + d 
N+1 . The following corollary claims that the stochastic variability

f PS N vanishes as N grows unbounded and k is proportional to N . 

orollary 3.2. Under the hypotheses of Theorem 3.1 , if N → ∞ and

 grows with N so that lim N→∞ 

k 
N = ε, then PS N → ε in the mean-

quare sense. 

roof. Since PS N has a Beta (k + d, N + 1 − k − d) distribution, its

ean and variance are, respectively, k + d 
N+1 and 

k + d 
N+1 · N+1 −k −d 

(N+1)(N+2) 
.

hen, 

lim 

N→∞ 

E 

[
( PS N − ε ) 2 

]
= lim 

N→∞ 

E 

[
( PS N − E [ PS N ] + E [ PS N ] − ε ) 2 

]
= lim 

N→∞ 

( Var [ PS N ] + 2 E [ ( PS N − E [ PS N ] )( E [ PS N ] − ε) ] 

+ ( E [ PS N ] − ε ) 2 
)

= 0 . 

�

. Practical uses of the results 

In this section, by leveraging on the results in Section 3 , we de-

ive some facts that are directly applicable to real problems. We

tart in Section 4.1 with an explanation of how a suitable trade-off
etween risk and shortfall threshold can be attained, and proceed

n Section 4.2 with an analysis of the performance which is ob-

ained in the long run when the Expected Shortfall scheme is ap-

lied repeatedly. The next Section 5 provides experimental results

f these two setups with real data. 

.1. Risk/threshold tradeoff

For any small β ∈ (0,1), one can compute p β ∈ (0,1) such that 

 

N 
{

PS N > p β
}

= 

∫ 1 

p β

f (p) dp = β, (12)

here f ( p ) is the density of a Beta (k + d, N + 1 − k − d) random

ariable. If N is big enough, f ( p ) is concentrated around its mean
k + d 
N+1 (see Corollaries 3.1 and 3.2 ), with a thin tail. Therefore, even

or very small values of β (say, 10 −6 ), p β is close enough to the

ean. This situation is depicted in Fig. 3 . We interpret 1 − β as

he confidence that PS N takes a value in the interval [0, p β ]. More

xplicitly, the risk that a future cost function L N+1 exceeds the level
¯
 N is guaranteed to be less than p β with confidence 1 − β . If β is

hosen to be very small, PS N ≤ p β holds true with “practical cer-

ainty”. 

Grounded on the above reasoning, to obtain a suitable

isk/threshold tradeoff one can use the following procedure: given

 cost functions, one solves Problem (3) for different values of

 , say k 1 < ��� < k i < ��� < k r . Correspondingly, s/he obtains r differ-

nt solutions x ∗N 
(1) , . . . , x ∗N 

(r) , and r different shortfall thresholds

¯
 

(1) 
N 

, . . . , ̄L (r) 
N 

. Then, s/he computes the quantiles p (i ) 
β

defined as in

q. (12) . It holds that 

 

N 
{ 

PS (1) 
N 

> p (1) 
β

or . . . or PS (r) 
N 

> p (r) 
β

} 

≤
r ∑ 

i =1 

P 

N 
{ 

PS (i ) 
N 

> p (i ) 
β

} 

= 

r ∑ 

i =1 

β = rβ. 

et β ′ := r β . As we have done above, we interpret 1 − β ′ as a con-

dence which, for big N , is sufficiently close to 1 to attain “prac-

ical certainty”. The shortfall thresholds L̄ (i ) 
N 

, i = 1 , . . . , r, can now

e plotted versus the corresponding quantiles p (i ) 
β

, i = 1 , . . . , r, and

ne can choose a trade-off solution with her/his rule of preference.

n view of the above discussion, the risk that a future cost function

 N+1 exceeds at any of the solutions x ∗
N 

(i ) the corresponding short-

all threshold L̄ (i ) 
N 

is less than p (i ) 
β

with confidence at least 1 − β ′ 

“practical certainty”). In other words, the whole plot of ( ̄L (i ) 
N 

, p (i ) 
β

) ,

 = 1 , . . . , r, is guaranteed with “practical certainty”, and hence the

pecific choice ī made is guaranteed that P { L N+1 ( x 
∗
N 

( ̄i ) ) > L̄ ( ̄i ) 
N 

} ≤
p ( ̄i ) 
β

with “practical certainty”. See Section 5 for an application of

his setup to a problem in finance. 

.2. Sliding windows 

Consider now an application in which a sequence of i.i.d. cost

unctions L 1 , . . . , L i , . . . is observed progressively in time, and one

olves, one after another, a sequence of problems {P N, j } ∞ 

j=0 
of the

orm (3) , where each problem involves only the N subsequent

ost functions L j+1 , . . . , L j+ N . The following result ensures that, as

ime goes on, the proportion of problems in which the next cost

unction L j+ N+1 exceeds the “current” shortfall threshold L̄ N, j ap-

roaches k + d 
N+1 . 

heorem 4.1. Let x ∗
N, j 

be the solution of Problem (3) where, instead

f L , i = 1 , . . . , N, one uses the cost functions L , i = j + 1 , . . . , j + N,
i i 
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Fig. 3. Quantiles of the Beta distribution. The vertical segment marks the quantile level p β . 
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T

and let L̄ N, j be the corresponding shortfall threshold. Then, almost

surely, 

lim 

T →∞ 

1 

T 

T −1 ∑ 

j=0 

1 { L j+ N+1 (x ∗
N, j 

) > ̄L N, j } = 

k + d 

N + 1 

. 

Proof. For any T , let τ be the greatest integer such that τ (N + 1) ≤
T , and denote the event { L j+ N+1 (x ∗

N, j 
) > L̄ N, j } as E j . Then, 

1 

T 

T −1 ∑ 

j=0 

1 { L j+ N+1 (x ∗
N, j 

) > ̄L N, j } = 

1 

T 

T −1 ∑ 

j=0 

1 E j 

= 

τ

T 

( 

1 

τ

τ−1 ∑ 

i =0 

1 E i (N+1)+0 
+ 

1 

τ

τ−1 ∑ 

i =0 

1 E i (N+1)+1 
+ · · · + 

1 

τ

τ−1 ∑ 

i =0 

1 E i (N+1)+ N 

) 

+ 

1 

T 

T −1 ∑ 

j= τ (N+1) 

1 E j . 

Now, each of the N + 1 terms within parentheses is an average of

τ independent and identically distributed random variables. There-

fore, since T → ∞ implies τ → ∞ , by the strong law of large num-

bers almost surely each term tends to E 

[
E j 

]
, which equals k + d 

N+1 

(see Corollary 3.1 ). Moreover, 1 
T 

∑ T −1 
j= τ (N+1) 1 E j → 0 and 

τ
T → 

1 
N+1 .

Summing up, 

lim 

T →∞ 

1 

T 

T −1 ∑ 

j=0 

1 { L j+ N+1 (x ∗
N, j 

) > ̄L N, j } 

= 

1 

N + 1 

(
k + d 

N + 1 

+ · · · + 

k + d 

N + 1 

)
+ 0 = 

k + d 

N + 1 

almost surely . 

�

The sequential scheme described above can be refined so that

a player can decide whether or not to enter a game depending on

observations collected up to the current instant of time j + N. Pre-

cise probabilistic guarantees hold also in this case. To be specific,

suppose that the value of L̄ N, j is inspected at each time and, if this
alue is below a guard level Ḡ , the player enters the game (for ex-

mple s/he invests, see Section 5 for an application). A posteriori,

he game is “won” if it happens that L j+ N+1 (x ∗
N, j 

) ≤ Ḡ , and it is lost

f L j+ N+1 (x ∗
N, j 

) > Ḡ . More generally, the guard level Ḡ can depend

n the observations collected up to time j + N and it can also be

ime-varying; hence, it will be denoted by Ḡ j in what follows. The

ollowing corollary provides a guarantee on the long-run average

roportion of lost games. 

orollary 4.1. Almost surely, 

im sup 

T →∞ 

1 

T 

T −1 ∑ 

j=0 

1 { ̄L N, j ≤Ḡ j and L j+ N+1 (x ∗
N, j 

) > ̄G j } ≤
k + d 

N + 1 

. (13)

roof. Note that 

 ̄L N, j ≤ Ḡ j } ∩ { L j+ N+1 (x ∗N, j ) > Ḡ j } ⊆ { L j+ N+1 (x ∗N, j ) > L̄ N, j } , 
o that 

 { ̄L N, j ≤Ḡ j and L j+ N+1 (x ∗
N, j 

) > ̄G j } ≤ 1 { L j+ N+1 (x ∗
N, j 

) > ̄L N, j } . 

he result now follows by an application of Theorem 4.1 . �

Note that Eq. (13) bounds the proportion of times in which the

layer enters the game and s/he incurs a loss L j+ N+1 (x ∗
N, j 

) greater

han Ḡ j . Eq. (13) , of course, does not bound the ratio of times in

hich s/he incurs a loss greater than to Ḡ j over the number of

imes in which s/he plays. If Ḡ j is pushed down to low values, for

xample, the latter ratio can be arbitrarily close to 1. 

. Application example: portfolio optimization 

In this section, we consider again the setup of Example 1.1 .

heorem 3.1 gives in this context the following result. 
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(  
roposition 5.1. Suppose that δ1 , . . . , δN are independent and iden-

ically distributed random vectors 7 sampled from a probability distri-

ution on R 

n a that admits density 8 . Define L̄ N := L (k + n a −1) (x ∗N ) . Then

he probability of the event { L N+1 (x ∗N ) > L̄ N } , i.e., the probability that

he future portfolio loss L N+1 (x ∗
N 
) is greater than L̄ N , has a distribu-

ion Beta (k + n a − 1 , N + 2 − k − n a ) . 

roof. We want to apply Theorem 3.1 . Note, first, that the sim-

lex X is a compact subset of an affine subspace of dimension

 = n a − 1 of R 

n a , and that the cost functions L i are affine, and

ence convex over X . Therefore, a solution x ∗N always exists. Since,

oreover, the vectors of the rates of return δ1 , . . . , δN admit den-

ity, the piecewise linear function 

1 
k 

∑ k 
i =1 L (i ) is non-flat with prob-

bility 1 around its minimizer, so that its minimizer x ∗
N 

is almost
7 The independence of rates of return over disjoint periods (e.g. trading days) is 

 consequence of the Black–Scholes model often assumed as a hypothesis in the 

iterature. See for example (Hull, 2009, Section 13.3) . Instead, the assumption that 

1 , . . . , δN are identically distributed is realistic when the market can be assumed 

tationary over the time frame of observation, which is a limiting assumption. 
8 This assumption is a valid approximation in many cases. 

L  

a  

{  

t

J

urely unique. Moreover, again due to the fact that the distribu-

ion of the vectors of the rates of return δ1 , . . . , δN admits density,

 + 2 cost functions L i pass through the same point with probabil-

ty 0. Hence, Assumptions 3.1 and 3.2 hold. The result now follows

y an application of Theorem 3.1 . �

Proposition 5.1 is next illustrated by means of real data. 

We consider the 1001 close prices from October 10, 2011 to Oc-

ober 1, 2015 of n a = 10 companies in the S&P500 index. 9 From

he close prices, we compute N = 10 0 0 vectors of rates of return

1 , . . . , δ10 0 0 , and select a portfolio according to (3) for various val-

es of k . 

Fig. 4 (a) shows, for k = 1 , . . . , 100 , the optimal value of

3) , dashed line, and the corresponding shortfall thresholds
¯
 

(1) 
10 0 0 

, . . . , ̄L ( 100 ) 
10 0 0 

, solid line. Proposition 5.1 asserts that, for

ny fixed k , the distribution of the probability of the event

 L 1001 ( x 
∗
10 0 0 

(k ) ) > L̄ (k ) } is a Beta (k + 9 , 992 − k ) . Let β = 10 −7 .

10 0 0 

9 These were the 10 companies in the index with the highest market capitaliza- 

ion at the beginning of 2015, namely AAPL , XOM , MSFT , JNJ , WMT , WFC , GE , PG , 
PM , CVX . 
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Fig. 4 (b) shows, for each k = 1 , . . . , 100 , the shortfall threshold

L̄ (k ) 
10 0 0 

versus the (1 − 10 −7 ) -quantile of the corresponding Beta dis-

tribution ( risk at confidence 1 − 10 −7 ). E.g. for k = 50 one reads

that the shortfall threshold is � 1% and the risk is � 10.5%, which

is interpreted as a bound on the probability to incur a loss larger

than 1%. This plot represents an important source of information

that can be used to make a suitable choice of k . According to the

theory of Section 4.1 , a plot like the one in Fig. 4 (b) is guaranteed

with a confidence 1 − 100 β = 1 − 10 −5 , so that the risk to incur

a loss above the corresponding threshold for the particular choice

made is also guaranteed with confidence 1 − 10 −5 . 

We further consider the sliding window situation described in

Section 4.2 . This time we consider the 5002 close prices from

November 11, 1995 to October 1, 2015 of the same n a = 10 com-

panies as before. We solve, in succession, 40 0 0 optimization prob-

lems with N = 10 0 0 periods each, and, with k = 50 , compute L̄ N, j 

for j = 1 , . . . , 40 0 0 . We take Ḡ j = Ḡ = 1 . 5% for any j . If L̄ N, j ≤ Ḡ ,

we “enter the game”, that is we invest. The game is lost when

L j+ N+1 (x ∗
N, j 

) > Ḡ . Corollary 4.1 says that 

lim sup 

T →∞ 

1 

T 

T −1 ∑ 

j=0 

1 { game is entered at time j and game is lost } 

≤ k + n a − 1 

N + 1 


 5 . 9% . 

(14)

The solid line in Fig. 5 shows the empirical result when this

scheme is applied to the real data. 

Before closing this section, we illustrate Theorem 4.1 on the

same dataset used for the sliding window example. Fig. 6 gives the

average number of times when L j+ N+1 (x ∗
N, j 

) > L̄ N, j , compared with

the value k + n a −1 
N+1 
 5 . 9% . This also corresponds to applying the slid-

ing window scheme with Ḡ j = L̄ N, j , so that one always enters the

game. 

6. Conclusions 

In this paper we have considered the minimization of the em-

pirical Expected Shortfall (ES) computed from a sample of N con-

vex functions defined over a subset of R 

d , independently sam-

pled according to a probability P and denoted L 1 (x ) , . . . , L N (x ) . We

have shown that L̄ N = the (k + d) th order statistic of the sam-

ple L 1 (x ∗N ) , . . . , L N (x ∗N ) , where x ∗N is the optimal solution of the ES

problem, can be interpreted as a risk threshold. The main result
f the paper is that the probability of exceeding L̄ N with a fur-

her function L N+1 is a random variable with universal distribution

eta (k + d, N + 1 − k − d) irrespective of P . This result allows one

o formulate risk certificates of practical utility. In the last section,

hese certificates have been applied to an example in portfolio op-

imization with real financial data. 
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