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Abstract—The scenario approach is a general methodol-
ogy for data-driven optimization that has attracted a great
deal of attention in the past few years. It prescribes that one
collects a record of previous cases (scenarios) from the
same setup in which optimization is being conducted and
makes a decision that attains optimality for the seen cases.
Scenario optimization is by now very well understood for
convex problems, where a theory exists that rigorously cer-
tifies the generalization properties of the solution, that is,
the ability of the solution to perform well in connection to
new situations. This theory supports the scenario method-
ology and justifies its use. This paper considers nonconvex
problems. While other contributions in the nonconvex setup
already exist, we here take a major departure from previ-
ous approaches. We suggest that the generalization level is
evaluated only after the solution is found and its complex-
ity in terms of the length of a support subsample (a notion
precisely introduced in this paper) is assessed. As a conse-
quence, the generalization level is stochastic and adjusted
case by case to the available scenarios. This fact is key to
obtain tight results. The approach adopted in this paper ap-
plies not only to optimization, but also to generic decision
problems where the solution is obtained according to a rule
that is not necessarily the optimization of a cost function.
Accordingly, in our presentation we adopt a general stance
of which optimization is just seen as a particular case.

Index Terms—Nonconvex optimization, robust control,
robust decision-making, scenario approach, stochastic
programming.

I. INTRODUCTION AND GOAL OF THE PAPER

MANY problems in the theory and practice of systems
and control can be formulated as decision problems. For

instance, in PID controller tuning, the proportional, integral and
derivative gains may be seen as decision variables that must be
selected so as to satisfy given performance specifications. In
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optimal input design, instead, the decision variable is the input
signal, which must be decided so as to minimize some given
cost functional. Likewise, optimal state filtering can be seen as
a decision problem where one minimizes the state prediction
error (e.g., in the mean square sense), and the decision variables
are the filter parameters.

In this paper, we deal with data-driven decision-making
where a procedure generates a decision based on a collection
of observations coming from previous experience. The observa-
tions are used to account for the variability of the conditions to
which the decision can possibly be applied.

Some definitions help to rapidly focus on the main ideas.
Let Δ be a probability space, endowed with a σ-algebra D
and a probability measure P. An element δ ∈ Δ is interpreted
as a potential situation to which the decision can be applied,
while P describes the chance of such a situation to occur. More-
over, let (Δm ,Dm , Pm ) be the m-fold Cartesian product of Δ
equipped with the product σ-algebraDm and the product proba-
bility Pm = P× · · · × P (m times). A point in (Δm ,Dm , Pm )
is thus a sample (δ(1) , . . . , δ(m )) of m elements drawn indepen-
dently from Δ according to the same probability P.1 Each δ(i)

is regarded as an observation, and in the following we will also
call it a scenario. A set Θ, called the decision space, contains
the decisions. It can possibly be infinite, and no particular struc-
ture, e.g., that of vector space or convex set, is assumed. The
decision-maker is equipped with a procedure to make a decision
based on (δ(1) , . . . , δ(m )).2 Later, we shall provide various
examples of procedures. Formally, the procedure is mod-
eled as a family of functions Am : Δm → Θ, indexed by the
size m = 0, 1, . . . of the sample,3 and the decision θ∗m :=
Am (δ(1) , . . . , δ(m )) is called the scenario decision.

The following assumption is in force throughout this paper.
Assumption 1: To every δ ∈ Δ there is associated a con-

straint set Θδ ⊆ Θ, which identifies the decisions that are
admissible for the situation represented by δ. For all m =

1One could as well introduce a probability space (Ω,F , P ) and define δ(i)

as independent random elements over this probability space. This is completely
equivalent to the construction considered in this paper, since (Ω,F , P ) can be
taken as (Δ∞,D∞, P∞), which always exists thanks to the Ionescu–Tulcea
theorem, [35].

2The decision-maker has access to (δ(1) , . . . , δ(m ) ), and her/his decision is
therefore based on knowledge that comes from experience. S/he is not required
instead to know P in order to apply the results of this paper, that is, all theoretical
certificates hold independently of P.

3For m = 0,A0 has no argument and it is meant that it gives a fixed element
in Θ.
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1, 2, . . . and for any sample (δ(1) , . . . , δ(m )), it holds that
Am (δ(1) , . . . , δ(m )) ∈ Θδ ( i ) for all i = 1, . . . ,m. �

Remark 1: The requirement that Am (δ(1) , . . . , δ(m )) ∈
Θδ ( i ) for all i is natural in many problems where this require-
ment prescribes that the decision is admissible for all the col-
lected situations, see, e.g., the examples below. Note that this
requirement establishes a link, albeit weak, between the func-
tions . . . ,Am−1 ,Am ,Am+1 , . . .. �

Remark 2: The requirement that Am is a function amounts
to requiring that the solution to the decision problem is unique.
To conform to this condition, when a decision problem admits
multiple solutions, one has to implement a “tie-break rule” to
single out one solution. For example, if Θ is a normed vector
space, a simple tie-break rule is to choose the solution with
minimum norm. In this paper, the tie-break rule is seen as an
inherent part of the decision process, included in Am . �

The present setup is quite broad and encompasses problems
of various kinds. We next give some examples (optimization,
feasibility, etc.) that are of particular interest to us. A more
concrete example in control is presented in Section IV. In
Section V, we come back to the generality of the setup in-
troduced by Assumption 1 and show that this assumption can
be applied also to problems that are not born in an optimization
context.

Example 1 (Optimization): Let Θ be a subset of Rd (R is the
set of real numbers), f : Θ→ R be any function and, for each
δ ∈ Δ, let Θδ be a subset of Rd . Given (δ(1) , . . . , δ(m )) ∈ Δm ,
consider the following constrained optimization program:

min
θ∈Θ

f(θ)

subject to θ ∈ Θδ ( i ) for all i = 1, . . . ,m. (1)

Assuming that a unique solution θ∗m exists, possibly after ap-
plying a tie-break rule, (1) defines a mapAm that associates θ∗m
to (δ(1) , . . . , δ(m )). �

When f , Θ, and Θδ are convex, program (1) is a convex
scenario program in the form that has been studied in [5], [6],
and [11]. These seminal papers have introduced the so-called
scenario approach, which, as witnessed by many contributions,
e.g., [12], [15]–[17], [22], [28], [29], [33], [39], and [43], has
rapidly gained recognition, and has found application to various
problems in control, [21], [31], [36], and [37]. The optimization
program (1) is much more general than the setup of [5], [6],
and [11] since no assumptions on f , Θ, and Θδ are made. It
includes mixed-integer constrained optimization as a particu-
lar case, which we shall consider more in detail in Section IV.
An example of application to a control problem is given in
Section IV-A, while system identification problems along a sim-
ilar approach have been considered in [14].

Example 2 (Algorithms for optimization): In Example 1, the
decision is the solution to an optimization problem. However,
obtaining the optimal solution can be difficult, especially in
a nonconvex setting. In practice, one often uses a numerical
algorithm Am to compute a solution θ̃∗m that can as well be a
suboptimal solution. The algorithm Am can be seen as a map
from (δ(1) , . . . , δ(m )) to θ̃∗m , and the theory of this paper can be
applied to the suboptimal solution θ̃∗m returned by Am . �

Example 3 (Feasibility problems): Suppose that one wants
to find a feasible point for a set of constraints, that is,

find θ ∈ Θ

subject to θ ∈ Θδ ( i ) for all i = 1, . . . ,m,

and that a rule is set to determine one such feasible point. Again,
this defines a map θ∗m = Am (δ(1) , . . . , δ(m )). �

A. Goal of the Paper

Up to here, we have considered m scenarios to introduce
Assumption 1 where m was a running variable and the re-
quirement Am (δ(1) , . . . , δ(m )) ∈ Θδ ( i ) , i = 1, . . . , m, had to
hold for any m. We henceforth call N the actual, fixed, num-
ber of scenarios that we observe in a given application. The
goal of this paper is to study how well a scenario decision
θ∗N = AN (δ(1) , . . . , δ(N )) generalizes to yet unseen situations
δ ∈ Δ. This is important to certify how “robust” θ∗N is against
new situations in which θ∗N may be applied. To explain what
“how well” means, we start by introducing the terminology that
θ∗N generalizes to δ ∈ Δ if θ∗N ∈ Θδ ; in the opposite, we say
that θ∗N violates δ. “How well” is formalized in probabilistic
terms as follows.

Definition 1: The violation probability of a given decision
θ ∈ Θ is defined as

V(θ) := P {δ ∈ Δ : θ /∈ Θδ}.
For a given reliability parameter ε ∈ (0, 1), we say that θ ∈ Θ
is ε-feasible (or ε-robust) if V(θ) ≤ ε. �

The violation of the scenario decision V(θ∗N ), which is the
composition of V(·) with θ∗N = AN (δ(1) , . . . , δ(N )) is a random
variable defined over ΔN . We want to study the distribution of
V(θ∗N ) and find a suitable confidence bound 1− β for the va-
lidity of the relation V(θ∗N ) ≤ ε.4 Depending on the problem at
hand, violating a constraint means that a control performance (a
settling time, a certain level of noise rejection, etc.), a prediction
result (the next point is within a given prediction interval), or
a correct classification (the case at hand is classified within the
right class) is not achieved, and knowing a bound on V(θ∗N ) pro-
vides guarantees on the chance of this to happen. In the context
of optimization (Example 1), establishing that V(θ∗N ) ≤ ε can
be interpreted as an assessment of the feasibility of θ∗N for a
chance-constrained problem at level ε, see, e.g., [4], [19], [27],
[30], [32], and [34] for contributions on chance-constrained op-
timization. We do not further dwell on the interpretation of
the violation probability and for this we refer the reader to the
existing literature, e.g., [9], [10], [13], and [18]. In particular,
paper [6] discusses a number of applications to control. Later, in
Sections IV and V, we shall exhibit various examples to illustrate

4The perspective of this paper, as suggested by the fact that θ∗N is required to
belong to all the Θδ ( i ) ’s, is that the smaller the violation, the better the solution.
In some cases, especially in optimization, this may not be true, since too small
a violation may correspond to obtaining a poor performance. If this is the case,
alternative approaches can be adopted to accommodate the requirement that
V(θ∗N ) should not be too small. For instance, one may want to allow that θ∗N
fails to belong to some of the Θδ ( i ) ’s, see, e.g., [12] and [22]. This is not further
investigated here and is left for future research.
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Fig. 1. In this nonconvex program, all constraints are of support since
eliminating any one of them generates a new feasible point that outper-
forms the solution with all constraints in place.

the theory of this paper, and this will provide further examples
of the concept of violation.

B. Discussion on Existing Results

The distribution of V(θ∗N ) has been the object of intense study
for the case when θ∗N is obtained as the solution of a convex
optimization program, [5], [6], and [11]. The deepest result is
established in [11], where it is shown that the distribution of
V(θ∗N ) is dominated by a Beta distribution, namely,

PN {V(θ∗N ) > ε} ≤ β, (2)

where

β =
d−1∑

i=0

(
N

i

)
εi(1− ε)N−i (3)

and d is the number of optimization variables. This result is
tight in that (2) holds with equality for a whole class of convex
optimization problems, those named fully-supported in [11].
Moreover, the result is distribution-free, that is, it holds for
any P, which is important to make the theory of [11] practi-
cal and applicable in a purely observation-based framework,
where no information on P is available other than that carried
by δ(1) , . . . , δ(N ) .

The fundamental fact on which the theory of [11] stands is
that the number of support constraints5 in a convex optimization
problem with d optimization variables never exceeds d. This fact
fails to be true in nonconvex optimization; an example is given
in Fig. 1, where the removal of any of the six constraints gen-
erates a new solution. Hence, routes alternative to that used in
[11] have to be pursued in a nonconvex context. Some previ-
ous attempts to address a nonconvex setup are the following.
Paper [1] uses concepts from the statistical learning literature
[40]–[42] to bound the probability that V(θ∗N ) ≤ ε in noncon-
vex scenario optimization. While inspiring, this approach suf-
fers from the conservatism inherent in the Vapnik–Chervonenkis

5A constraint θ ∈ Θδ ( i ) is said to be a support constraint if the program
obtained by removing that constraint, while keeping all the others, has a solution
different from the solution of the initial program.

theory, [38]. A nonconvex cost function optimized under con-
vex constraints is instead considered in [23]. In this paper, the
feasibility domain is restricted to a region that is obtained as
the convex hull of few points to enable the application of the
result from [11]. Again, the result is conservative, besides being
applicable to a restricted class of problems only. Papers [7], [20]
consider mixed-integer problems, and a theory akin to that of
[11] is applied after showing that the number of support con-
straints can be a priori upper bounded in mixed integer problems.
However, this bound turns out to be very large.

C. Approach of This Paper

In this paper, we address the evaluation of the feasibility
of θ∗N along a different route, which, in a somewhat different
context, has been recently discovered by two of the authors of the
present contribution, [8]. We abandon the idea that the number
of support scenarios is computed a priori; instead, we assume
that after computing θ∗N one is able to isolate a subsample of
scenarios sufficient to yield the same solution θ∗N that is obtained
with all the scenarios in place (we show that this task can be
accomplished at a relatively low computational cost). In the new
approach, the reliability guarantee depends on the cardinality s∗N
of the subsample of scenarios, and the smaller the cardinality,
the higher the reliability. More precisely, the obtained result
takes the form

PN {V(θ∗N ) > ε(s∗N )} ≤ β (4)

that closely resembles (2), but with the fundamental difference
that ε is here no longer fixed in advance and it depends on s∗N .
Along this approach, the assertion on V(θ∗N ) is adjusted to the
seen scenarios and this by and large improves over previous
evaluations established for the nonconvex case.

It is worth remarking that the result in (4) does not allow us
to a priori compute a number N of scenarios sufficient to obtain
a chance-constrained solution at a given level ε. This is because
the level depends on the probabilistic outcome and can only be
a posteriori computed. This sets a fundamental difference with
the results of [11] where a priori conditions are established such
that, with high confidence, the solution is a chance-constrained
solution at a specified level ε. While this fact may appear to
weaken the quality of the result established here compared with
previous achievements in a convex setup, we remark that this
is due to the generality of the problem considered in this paper,
where an a priori bound on the number of support scenarios does
not exist. On the other hand, a posteriori establishing the level of
violation has great importance in the practical use of scenario-
based solutions because, based on the a posteriori value for the
violation probability and also in the light on the cost value that
has been achieved, one can decide whether the solution is or is
not satisfactory and therefore is or is not adopted.

It is further worth highlighting that the fundamental dif-
ference between the present paper and [8] is that the latter
paper deals with optimization problems under a crucial non-
degeneracy assumption. In the language of this paper (see
Definition 2 in the next Section II), such assumption is phrased
as: with probability 1, the problem has a unique irreducible
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support subsample, consisting precisely of the support con-
straints. In paper [8], the emphasis is on convex optimization
problems where this assumption is very mild. In contrast, in a
nonconvex setup this assumption is very restrictive, a fact that
is discussed in detail in [8, Sec. 8]. In this paper, we succeed
in removing the nondegeneracy assumption. Moreover, the re-
sults we obtain are very general and apply to generic decision
problems and not only to optimization. However, we must also
mention that the theory of this paper does not allow one to re-
cover as a particular case the results of [11], which is instead
possible by using the results of [8]. This is the price we pay for
generality, and it is a fact that the results in [11] fail to be true
at the level of generality adopted in this paper. See Appendix A
where a more detailed discussion on this point is provided.

D. Structure of the Paper

Section II provides the technical background and states the
main result in formal terms. After the proof of the main result is
given in Section III, Section IV revisits mixed-integer scenario
optimization in the light of the new theory of this paper. A more
general perspective is then taken in Section V, which presents
a collection of other problems to which the results of this paper
can be applied.

II. GENERALIZATION RESULT

We start with the definition of support subsample.
Definition 2: Given a sample (δ(1) , . . . , δ(N )) ∈ ΔN , a sup-

port subsample S for (δ(1) , . . . , δ(N )) is a k-tuple of elements
extracted from (δ(1) , . . . , δ(N )), i.e., S = (δ(i1 ) , . . . , δ(ik )) with
i1 < i2 < · · · < ik , which gives the same solution as the origi-
nal sample, that is,

Ak (δ(i1 ) , . . . , δ(ik )) = AN (δ(1) , . . . , δ(N )).

�
A support subsample S = (δ(i1 ) , . . . , δ(ik )) is said to be ir-

reducible if no element can be further removed from S leaving
the solution unchanged. In general, multiple irreducible support
subsamples can be found for the same sample (δ(1) , . . . , δ(N )).

To apply the results of this paper, the user has to determine a
support subsample for the problem at hand. Clearly, the whole
sample (δ(1) , . . . , δ(N )) is itself a support subsample. In general,
the smaller the support subsample, the stronger the generaliza-
tion result; the goal is therefore that of determining a small
support subsample, possibly an irreducible one, or even the ir-
reducible support subsample with minimal length. Finding a
minimal-length irreducible support subsample can be compu-
tationally intensive and it may require brute-force exploration.
We stress, however, that, while failing to find a minimal-length
support subsample leads to results that are not the strongest
possible, the conclusions of this paper hold rigorously for non-
minimal support subsamples as well. A greedy algorithm to
search for a support subsample, which in many cases is compu-
tationally efficient and effective, is as follows (|L| denotes the
length of a sequence L, and L\δ(i) is the subsequence obtained
by removing δ(i) from L):

1) Set L← (δ(1) , . . . , δ(N )) and compute the solution
θ∗N ← AN (L).

2) For all i = 1, . . . , N .
� Set L′ ← L \ δ(i) and compute the solution θ̄ ←
A|L ′ |(L′).

� If θ̄ = θ∗N , then set L← L′.
3) Output the set {i1 , . . . , ik}, i1 < · · · < ik , of the indexes

of the elements in L.
For scenario optimization programs in the form (1), it is easy

to prove that this algorithm returns an irreducible (although
possibly not minimal) support subsample. For more general
scenario decision problems there is no guarantee that the algo-
rithm returns an irreducible support subsample. In these cases,
one can iterate over the above algorithm, each time initializing
with the value of L returned by step 3 of the previous itera-
tion; this procedure will eventually converge to an irreducible
support subsample. The greedy algorithm requires to solve a
decision problem N times. At worst, each time one has to deal
with N scenarios while, in typical cases, the size of the scenario
set decreases as elements δ(i) get removed from L. In some
situations, solving even one problem is time-consuming (e.g.,
when one deals with a nonconvex optimization problem) so that
running the greedy algorithm can become computationally in-
tensive. In these cases, alternative algorithmic choices can be
conceived to achieve better computational efficiency at the price
of obtaining a larger support subsample, but we do not dwell
on further describing this issue here because it is problem de-
pendent. It may also be of interest to note that in some specific
problems (see, e.g., the problems in Section V), there is not
even the need to run any greedy algorithm, since the size of
the minimal support subsample is immediately evident from the
structure of the problem.

An algorithm to determine a support subsample like
the one above-mentioned can be regarded as a function
BN : (δ(1) , . . . , δ(N )) 
→ {i1 , . . . , ik}, i1 < · · · < ik , such that
(δ(i1 ) , . . . , δ(ik )) is a support subsample. Let

s∗N := |BN (δ(1) , . . . , δ(N ))|
be the cardinality of BN (δ(1) , . . . , δ(N )), i.e., the length of the
support subsample (δ(i1 ) , . . . , δ(ik )). Since BN (δ(1) , . . . , δ(N ))
is a random variable over ΔN , so is s∗N .

We are now ready to state our main result.
Theorem 1: Suppose that Assumption 1 holds true, and set a

value β ∈ (0, 1) (confidence parameter). Let ε : {0, . . . , N} →
[0, 1] be a function such that

ε(N) = 1;

N−1∑

k=0

(
N

k

)
(1− ε(k))N−k = β. (5)

Then, for any AN , BN , and probability P, it holds that

PN {V(θ∗N ) > ε(s∗N )} ≤ β. (6)

�
The proof of Theorem 1 is postponed to Section III.
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Fig. 2. Plot of ε(k) in (7) for N = 500 (dash-dotted line), N = 1000
(dashed line), and N = 2000 (solid line) (β = 10−6 ).

A simple choice of ε(·) obtained by splitting β evenly among
the N terms in the sum (5) is

ε(k) :=

⎧
⎪⎪⎨

⎪⎪⎩

1 if k = N,

1− N −k

√
β

N
(
N
k

) otherwise.
(7)

Fig. 2 shows a plot of this ε(k) for N = 500, N = 1000, and
N = 2000, with β = 10−6 .

The interpretation of Theorem 1 is as follows. The decision-
maker computes the decision θ∗N along with the length s∗N of
the support subsample. The violation of θ∗N is judged to be no
bigger than ε(s∗N ). For example, with N = 1000 and β = 10−6 ,
if the support subsample has s∗N = 6 elements, then from the
graph in Fig. 2 one obtains ε(6) = 5.4% and the claim is that θ∗N
is 5.4%-feasible. If, instead, s∗N = 11, then ε(11) = 7.7% and
the claim would be that θ∗N is 7.7%-feasible. Theorem 1 asserts
that the claim is true with high confidence 1− β, that is, with
confidence 1− 10−6 in the present case. When β is so close
to 0 to become practically negligible, one achieves “practical
certainty” that the claim is true.

For a given problem, s∗N is stochastic since it depends on
the scenarios δ(1) , δ(2) , . . . , δ(N ) , so that the conclusion drawn
about the violation of the solution depends on the stochastic
realization. This is not surprising and reflects the fact that the
solution itself is stochastic. In the example in Section IV, s∗N
has a tendency to be small as compared with N , and the same
happens in various problems of the type discussed in Section V.
Still, in general it is not always possible to find a support sub-
sample that has a priori a small cardinality for any N and it is
indeed possible that s∗N goes to∞ as N →∞. An example is
offered by the problem in Section V-C where, if the probability
distributes over infinitely many symbols, then s∗N goes to ∞
as N grows unbounded. On the other hand, it should also be
noted that the fact that s∗N goes to ∞ does not mean that the
violation goes to 1 since the violation is governed by the mutual
size of s∗N and N according to the result in Theorem 1. Finally,
there are cases where s∗N goes to∞ at the same rate as N for
which one cannot draw any good conclusion about the viola-
tion rate (and indeed the violation rate remains high even for
very large values of N ); the reader is referred to the last part of
Section V-C for an example. The fundamental message con-
veyed by Theorem 1 is that one does not need to a priori up-
per bound s∗N and the violation can be judged by a posteriori

Fig. 3. Plot of the ε(k) in (7) versus k for N = 500 and for β = 10−6 ,
10−8 , 10−10 , and 10−12 .

computing the value taken case by case by s∗N . In other words,
given the specific realization of the program one has just solved,
the value taken by s∗N can be computed, and, based on this
value, one can draw useful conclusions on the actual violation
probability for the program at hand. This sets the fundamental
contribution of the paper: even if one cannot a priori claim a
chance-constrained result, the actual level of violation probabil-
ity can be a posteriori evaluated for the obtained solution.

Remark 3: Note that ε(k) in (7) satisfies

ε(k) = 1− exp

(
log

(
N −k

√
β

N
(
N
k

)
))

= 1− exp
(
− 1

N − k
log

1
β
− 1

N − k
log N

(
N

k

))

≤ 1
N − k

log
1
β

+
1

N − k
log N

(
N

k

)
, (8)

where the last inequality follows from the relation 1− e−x ≤ x.
This inequality reveals that ε(k) has a logarithmic dependence
on β, so that a very small value for β (“practical certainty”) can
be obtained without significantly affecting ε(k). This is clearly
visible in Fig. 3, which displays the graphs of the ε(k) in (7) for
different values of β when N = 500. The weak dependence on
β was one of the main advantages of the scenario approach for
convex optimization problems [2], [6] and is here preserved.

Remark 4: Choices for ε(·) other than (7) are possible and,
at times, advisable. For example, if from the structure of the
problem it was known that s∗N is always less than some s̄, then
it would make sense to deliberately ignore all the situations
where s∗N ≥ s̄, thus allowing for stronger claims when s∗N < s̄.
One possible choice, where β is split evenly among the terms
of (5) corresponding to k < s̄, is

ε(k) :=

⎧
⎪⎪⎨

⎪⎪⎩

1 if k ≥ s̄,

1− N −k

√
β

s̄
(
N
k

) otherwise.
(9)

Nevertheless, we notice here that any possible improvement
over the ε(·) in (7) has an almost negligible payoff. This is
easily understood because, even assigning the whole β to just
one k [thus providing the maximum possible improvement for



4072 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 12, DECEMBER 2018

the corresponding ε(k)], yields

ε(k) = 1− N −k

√
β(
N
k

)

that is only marginally different from the ε(k) in (7) [repeating
the computation in (8) one gets log

(
N
k

)
in place of log N

(
N
k

)
].

For example, with N = 1000 and β = 10−6 , for the choice in
(7) we have ε(10) = 7.26%, while assigning the whole β to
k = 10 yields ε(10) = 6.61%.

III. PROOF OF THEOREM 1

Let Ik be a selection of k indexes {i1 , . . . , ik}, i1 < · · · < ik ,
from {1, . . . , N}, and let

θIk
= Ak (δ(i1 ) , . . . , δ(ik )).

Consider the subsets ΔN
0 , . . . ,ΔN

N defined as follows:

ΔN
k =

{
(δ(1) , . . . , δ(N )) ∈ ΔN : |BN (δ(1) , . . . , δ(N ))| = k

}
.

The subsets ΔN
0 , . . . ,ΔN

N form a partition of ΔN . Let us re-
fine such a partition by defining for each k = 0, . . . , N and for
any Ik the set ΔN

k,Ik
⊆ ΔN

k according to the following rule:

(δ(1) , . . . , δ(N )) ∈ ΔN
k,Ik

if and only if BN (δ(1) , . . . , δ(N )) =
Ik . It holds that ΔN

k =
⋃

Ik
ΔN

k,Ik
and

ΔN =
N⋃

k=0

⋃

Ik

ΔN
k,Ik

.

Let moreover

B = {(δ(1) , . . . , δ(N )) ∈ ΔN : V(θ∗N ) > ε(s∗N )}
and

BIk
= {(δ(1) , . . . , δ(N )) ∈ ΔN : V(θIk

) > ε(k)}.
We have that

B = ΔN ∩B =
N⋃

k=0

⋃

Ik

ΔN
k,Ik
∩ {V(θ∗N ) > ε(s∗N )}

= [in ΔN
k,Ik

, s∗N = k and θ∗N = θIk
]

=
N⋃

k=0

⋃

Ik

ΔN
k,Ik
∩ {V(θIk

) > ε(k)}

= [ε(N) = 1 so that {V(θIN
) > ε(N)} = ∅]

=
N−1⋃

k=0

⋃

Ik

ΔN
k,Ik
∩ {V(θIk

) > ε(k)}

=
N−1⋃

k=0

⋃

Ik

ΔN
k,Ik
∩BIk

.

Now focus on any selection Ik of k indexes; to fix ideas,
consider Ik = {1, . . . , k}. Since the definition of B{1,...,k}
only involves the first k components, B{1,...,k} is a cylin-
der with base in Δk , the Cartesian product of the first k

sets Δ. Suppose that (δ̄(1) , . . . , δ̄(k)) is a point in the base
of such a cylinder; then, a necessary condition for a point
(δ̄(1) , . . . , δ̄(k) , δ(k+1) , . . . , δ(N )) to belong to ΔN

k,{1,...,k} ∩
B{1,...,k} is the satisfaction of the constraints θ{1,...,k} ∈
Θδ (k + 1 ) , . . . , θ{1,...,k} ∈ Θδ (N ).6 On the other hand, by the def-
inition of B{1,...,k}, for any (δ̄(1) , . . . , δ̄(k)) in the base of the
aforementioned cylinder, it holds that

V(θ{1,...,k}) = P
{
δ ∈ Δ : θ{1,...,k} /∈ Θδ

}
> ε(k).

Therefore, by the independence of δ(k+1) , . . . , δ(N ) , we obtain

PN−k
{

(δ(k+1) , . . . , δ(N )) : (δ̄(1) , . . . , δ̄(k) , δ(k+1) , . . . , δ(N ))

∈ ΔN
k,{1,...,k} ∩B{1,...,k}

}

≤ PN−k

{
N⋂

i=k+1

{
(δ(k+1) , . . . , δ(N )) : θ{1,...,k} ∈ Θδ ( i )

}}

=
N∏

i=k+1

P
{

δ(i) : θ{1,...,k} ∈ Θδ ( i )

}

≤
N∏

i=k+1

(1− ε(k)) = (1− ε(k))N−k .

Integrating over the base of the cylinder B{1,...,k} now yields

PN
{

ΔN
k,{1,...,k} ∩B{1,...,k}

}

≤ (1− ε(k))N−k Pk
{

base of B{1,...,k}
}

≤ (1− ε(k))N−k .

Recall that the choice Ik = {1, . . . , k}was made for the sake of
exemplification. In fact, using the same argument, we obtain that
PN {ΔN

k,Ik
∩BIk

} ≤ (1− ε(k))N−k for any Ik . Therefore, by
subadditivity

PN {V(θ∗N ) > ε(s∗N )} = PN {B}

≤
N−1∑

k=0

∑

Ik

(1− ε(k))N−k

=
[

there are

(
N

k

)
choices of Ik

]

=
N−1∑

k=0

(
N

k

)
(1− ε(k))N−k = β.

�

6Note that, contrary to scenario optimization, in the general setup
of this paper this condition is not sufficient to guarantee that
(δ̄(1) , . . . , δ̄(k ) , δ(k+1) , . . . , δ(N ) ) ∈ ΔN

k ,{1 , . . . ,k } ∩B{1 , . . . ,k } since it may
happen that, after adding some satisfied constraints, the decision procedure
A returns a solution which is not θIk

anymore. Hence, the condition of con-
straint satisfaction is here only necessary. This is one reason why arguments
like those used in [11] are not applicable in the context of this paper.
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IV. EXAMPLE: MIXED-INTEGER SCENARIO OPTIMIZATION

AND APPLICATION TO CONTROL WITH QUANTIZED INPUT

We have already observed that our setup contains as a partic-
ular case mixed-integer scenario optimization problems. These
are programs of the form

min
θ∈Θ ′∩(Rd 1 ×Zd 2 )

f(θ)

subject to θ ∈ Θδ ( i ) for all i = 1, . . . , N, (10)

where Θ′ ⊆ Rd1 +d2 is a closed subset and Z is the set of integer
numbers. Program (10) is an instance of (1) where Θ = Θ′ ∩
(Rd1 × Zd2 ). Its peculiarity is that the optimization vector θ
is partitioned in two parts, the second of which has integer
components, namely θ = (θ1 , θ2), where θ1 ∈ Rd1 and θ2 ∈
Zd2 .

Mixed-integer restrictions to decision variables are often en-
countered in practice, and scenario programs as in (10) find
application in manifold contexts. On the other hand, developing
a generalization theory for mixed-integer scenario optimization
along “classical” routes where one a priori bounds the length of
the support subsample leads to conservative results. In [7], it is
shown that, when f(θ) = cT θ, Θ′ is convex and Θδ are convex
for all δ, the length of a minimal support subsample is bounded
by (d1 + 1)2d2 − 1, see also [3]. The exponential growth in
d2 poses severe limitations to the applicability of this result to
problems other than those with a low-dimensional optimization
vector [20]. Things get worse if the convexity assumption on Θ′

and Θδ is relaxed since no bounds to the length of the minimal
support subsample are available in this case.

Despite the large a priori bound (d1 + 1)2d2 − 1, often a
support subsample with way fewer elements than (d1 + 1)2d2 −
1 is a posteriori found. Hence, by adjusting the value of ε to the
length of the support subsample computed a posteriori as the
theory developed in this paper suggests, one can draw significant
conclusions about the violation of the solution θ∗N .

All these aspects are more concretely presented on an example
for the control of an uncertain linear system with quantized
inputs.

A. Control with Quantized Inputs

Consider the discrete-time uncertain linear system

x(t + 1) = Ax(t) + Bu(t), x(0) = x0 , (11)

where x(t) ∈ R2 is the state variable, u(t) ∈ R is the control
input, B = [0 0.5] is deterministic, and A ∈ R2×2 is uncertain,
with independent Gaussian entries with means

Ā =

[
0.8 −1
0 −0.9

]

and standard deviation 0.02 each. Here, we identify a ma-
trix A with a δ in the general theory. The initial state of
the system is x0 = [1 1]. Moreover, due to actuation con-
straints, the input is chosen from a finite set: u(t) ∈ U :=
{−5, . . . ,−1, 0, 1, . . . , 5}.

Fig. 4. Final state for 1000 systems: (a) no control action and (b) nom-
inal controller.

The control objective is that of driving the system state
close to the origin in T = 8 time instants by choosing a
suitable input sequence u(0), . . . , u(T − 1). Since x(T ) =
AT x0 +

∑T −1
t=0 AT −1−tBu(t), if we let

R =
[
B AB · · · AT −1B

]

and

u =
[
u(T − 1) u(T − 2) · · · u(0)

]
,

then the problem can be formulated as that of selecting u in or-
der to make ‖AT x0 + Ru‖∞ = ‖x(T )‖∞ as small as possible,
where ‖ · ‖∞ is the maximum norm. Finite-horizon, open-loop
problems like this one are common as single steps of more com-
plex receding-horizon MPC schemes; other times, they arise as
stand-alone problems in sensor-less environments in which no
feedback is possible (e.g., positioning of an end-effector when
no exteroceptive sensors are available). The example here is a
toy version of these problems used for the purpose of illustrating
the theory.

Fig. 4 shows the final states x(8) for N = 1000 draws
of A(i) when: (a) no control action is applied (u(t) = 0 for
t = 0, . . . , 7); (b) the optimal control sequence for the nominal
system (Ā, B), which is û = [−2 3 − 2 4 3 −5 2 −5],
is applied.

Fig. 4(a) shows that relying on the state contraction property
alone does not suffice to get close to the origin in 8 time instants,
and Fig. 4(b) gives evidence of the fact that relying on a nominal
controller design is inappropriate because there is too much
dispersion due to uncertainty in the final state. Hence, some
robustness must be incorporated in the design.

To this purpose, we resorted to the scenario approach. Pre-
cisely, N = 1000 scenarios A(i)’s were used to construct the
scenario program

min
h∈R,u∈U

h

subject to
∥∥∥(A(i))T x0 + R(i)u

∥∥∥
∞
≤ h for all i = 1, . . . , N,

(12)

that aims at finding a discrete control sequence u so as to mini-
mize the largest deviation (for the various A(i)’s) of x(8) from
the origin. Program (12) is a mixed-integer program in the form
(10), with d1 = 1 corresponding to h and d2 = 8 corresponding
to u. It can be tackled by means of standard numerical solvers
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Fig. 5. Final state for 1000 systems: (a) scenario controller and
(b) validation test.

like those supported by the optimization modeling interfaces
YALMIP [26] and CVX [24], [25]. We used YALMIP equipped
with IBM ILOG CPLEX and the solution was (h∗,u∗) with
h∗ = 0.0257 and u∗ = [1 − 1 − 4 3 5 − 4 − 2 4].

Fig. 5(a) displays the final states x(8) for the 1000 A(i)’s
used in (12) (note the different scale on the axes of this figure as
compared to Fig. 4) when the controller obtained from (12) is
used. The same figure also represents the box in the maximum
norm of size h∗ = 0.0257.

The final states plotted in Fig. 5(a) refer to situations that have
been used in (12) to determine (h∗,u∗). A natural question to
ask is how well u∗ performs when it is applied to a new matrix A.
This question refers to the robustness of the method against cases
that have not been incorporated in the design. In answering this
question, we feel advisable to compare alternative approaches.
The upper bound of [7] to the length of the minimal support
subsample is (d1 + 1)2d2 − 1 = 511, which is too large to draw
any meaningful conclusion. On the other hand, by resorting to
the greedy algorithm BN of Section II – which here consists in
removing one constraint

∥∥∥(A(i))T x0 + R(i)u
∥∥∥
∞
≤ h

at a time in succession and to discard it if the solution remains
the same – we were left with an irreducible support subsample
with length s∗1000 = 3. Hence, choosing β = 10−6 (practical cer-
tainty), and using the function ε(·) in (7), we found ε(s∗1000) =
ε(3) = 0.039. According to Theorem 1, with confidence at least
1− β, the solution (h∗,u∗) is ε(s∗1000)-feasible, which in the
present context means that ‖x(T )‖∞ = ‖AT x0 + Ru∗‖∞ > h∗

happens with probability at most ε(s∗1000). In our case, this be-
comes P{‖x(8)‖∞ > 0.0257} ≤ 3.9%, i.e., x(8) is in the box
in Fig. 5(a) with probability at least 96.1%.7 To further illus-
trate this point, Fig. 5(b) shows the final state reached by a new
sample of 1000 simulations.

The whole problem was then repeated 100 times, each time
with a new sample of 1000 scenarios A(i) . Different u∗ were
obtained, but h∗ was always within the range [0.0211, 0.0326],
and s∗1000 was always between 3 and 7, resulting in ε(s∗1000)
within the interval [0.039, 0.0591]. We also verified whether
the claim P{‖x(8)‖∞ > h∗} ≤ ε(s∗1000) was true and this was
so in all the experiments. This behavior was expected since

7Notice that to rigorously obtain this result we do not have to require that our
software returns the optimal solution to the problem.

TABLE I
EMPIRICAL FREQUENCIES WITH WHICH s∗N TOOK VALUE 3, . . . , 7 FOR

N = 250, N = 500, AND N = 1000

Length of s∗N 3 4 5 6 7

Emp. frequency – N = 250 16% 32% 38% 10% 4%
Emp. frequency – N = 500 9% 35% 40% 13% 3%
Emp. frequency – N = 1000 5% 26% 35% 26% 8%

Theorem 1 guarantees that P{‖x(8)‖∞ > h∗} ≤ ε(s∗1000) holds
true with very high confidence 1− 10−6 .

Finally, the sensitivity of s∗N to the sample size N was tested
via Monte Carlo simulation with N = 250, 500, and 1000. The
value of s∗N was always between 3 and 7, and Table I gives
the empirical frequencies with which s∗N took each of these
values. One can notice a slight tendency to have longer support
subsamples for larger values of N . This tendency is however
very moderate and the growth of N outdoes that of s∗N so that
the guarantee ε(s∗N ) turns out to be systematically better for
larger values of N .

V. MISCELLANEA OF OTHER PROBLEMS

This section is meant to illustrate the generality of the theory
and a selection of decision problems taken from various fields,
including number theory, computer science, and geometry, is
presented to which the results of this paper are applied.

A. Greatest Common Divisor (GCD) and Least Common
Multiple (LCM)

Let Δ = N = {1, 2, 3, . . .}, equipped with a discrete prob-
ability P. Let Θ = N and, for any δ ∈ Δ, let Θδ be the set
of all the divisors of δ, that is, Θδ = {n ∈ N : n | δ} where
n | δ means that n divides δ. Consider an independent sam-
ple (δ(1) , . . . , δ(N )) and construct the following scenario-based
optimization problem8

θ∗N = arg max n
n∈N

subject to n | δ(i) for all i = 1, . . . , N.

Its unique solution is of course the GCD of the numbers
δ(1) , . . . , δ(N ) .

In this problem, θ∗N violates Θδ if θ∗N does not divide δ. Hence,
the interpretation of the statement PN {V(θ∗N ) > ε(s∗N )} ≤ β
in Theorem 1 is that the probability of extracting a number not
divisible by θ∗N is with confidence 1− β less than or equal to
ε(s∗N ), s∗N being the cardinality of the smallest subsample of
(δ(1) , . . . , δ(N )) having the same GCD as (δ(1) , . . . , δ(N )).

Similarly, let Δ = N, Θ = N, Θδ = {n ∈ Θ : δ | n} be the
set of all the multiples of δ. The corresponding scenario-based

8This optimization problem can be cast within the framework of Exam-
ple 1 in Section I by taking f (θ) = −θ. Similarly, in the examples of
Sections B–D, we make reference to the optimization program in Example 1.
Section E, instead, presents a decision problem that cannot be formulated in the
form of Example 1.



CAMPI et al.: GENERAL SCENARIO THEORY FOR NONCONVEX OPTIMIZATION AND DECISION MAKING 4075

optimization problem

θ∗N = arg min
n∈N

n

subject to δ(i) | n for all i = 1, . . . , N

yields the LCM of (δ(1) , . . . , δ(N )) as its unique solution.
Theorem 1 establishes that the probability of extracting a num-
ber that does not divide θ∗N is with confidence 1− β less than or
equal to ε(s∗N ), s∗N being the length of the smallest subsample
of (δ(1) , . . . , δ(N )) having the same LCM as (δ(1) , . . . , δ(N )).

To illustrate this application we generated N = 4000 integers
from a geometric distribution with p = 0.85 and obtained for
the LCM problem a support subsample of length 12, whose
elements were 23, 27, 29, 31, 32, 33, 34, 38, 39, 41, 42, 50. The
corresponding LCM was θ∗4000 = 5920545668637600. Using
Theorem 1 with β = 10−6 and the ε(·) in (7), we obtain that a
further extraction will divide the LCM that has been found with
probability at least 1− ε(12) = 1− 2.52% = 97.48%.

B. Subspaces and Bases

Let Δ be a vector space (not necessarily finite-dimensional),
equipped with a probability. Let Θ be the set of all the linear sub-
spaces of Δ, and, for any δ ∈ Δ, let Θδ = {θ ∈ Θ : δ ∈ θ}. Let
moreover f(θ) = dim θ, the dimension of the subspace θ. Con-
sider now an independent random extraction (δ(1) , . . . , δ(N ))
and consider the following scenario-based problem

θ∗N = arg min
θ∈{subspace of Δ}

dim θ

subject to δ(i) ∈ θ for all i = 1, . . . , N,

whose unique solution is

θ∗N = span {δ(1) , . . . , δ(N )}.
An irreducible support subsample for this problem is a sub-
sample of (δ(1) , . . . , δ(N )) whose elements form a basis for
span {δ(1) , . . . , δ(N )}, and the length of such a subsample is
s∗N = dim θ∗N . Theorem 1 establishes that the probability of ex-
tracting a vector that is not a linear combination of δ(1) , . . . , δ(N )

is with confidence 1− β less than or equal to ε(dim θ∗N ).
As an example of use of this result, suppose that a linear

system dx(t)
dt = Ax(t) + Bu(t), with x(t) ∈ Rd and u(t) ∈ R,

is fed by a process u generated by a random source. The matrices
A and B and the structure of the random generator of u are
unknown. The system is initially at rest (x(0) = 0) and we
can observe the state x(T ) at a final time T . Suppose that the
system is operated N = 1000 times, where each time the input
process is generated independently of the other experiments,
and that 1000 final states x(1)(T ), . . . , x(1000)(T ) are recorded
and the smallest subspace θ∗1000 of Rd containing all final states
is computed. If θ∗1000 turns out to be a proper subspace of Rd ,
we may think that the system is not completely reachable or that
the source generating u is not sufficiently exciting. If the system
is not completely reachable, future inputs u will generate final
states x(T ) that do not explore the whole state space Rd . In any
case, irrespective of whether the system is reachable or not, we
can apply the theory of this paper with a given β and claim that

x(T ) ∈ θ∗1000 holds with probability at least 1− ε(dim θ∗1000).
For example, for d = 300 and β = 10−6 , if dim θ∗1000 = 7, then
the claim is that x(T ) ∈ θ∗1000 with probability at least 94.1%.

C. Unseen Symbols of an Alphabet

Let Δ be a possibly infinite, but countable, alphabet, equipped
with a discrete probability. Let Θ be the set of all the finite
subsets of Δ, and for any δ ∈ Δ let Θδ = {θ ∈ Θ : δ ∈ θ}. Let
moreover f(θ) = |θ|, the cardinality of θ. Given an independent
random extraction (δ(1) , . . . , δ(N )), the scenario-based problem
is written as

θ∗N = arg min
θ∈{finite subset of Δ}

|θ|

subject to δ(i) ∈ θ for all i = 1, . . . , N.

It prescribes to find the smallest subset of the alphabet that
contains all the observed symbols and its unique solution is of
course θ∗N = {δ(1) , . . . , δ(N )}.9 An irreducible support subsam-
ple of this problem is a subsample of (δ(1) , . . . , δ(N )) containing
all the elements appearing in {δ(1) , . . . , δ(N )} exactly once. Its
length s∗N is the number of distinct symbols observed.

The interpretation of Theorem 1 in this case is that the prob-
ability of the set of all unseen symbols is with confidence 1− β
less than or equal to ε(number of already seen symbols). This
example has practical relevance in many problems in communi-
cation and other, more exotic, fields, e.g., bounding the probabil-
ity of finding a new species of insect, given that s∗N species have
been observed after capturing N insects in a closed ecosystem
under study.

We ran a simulation with a Poisson distribution with λ =
3 over a list of symbols, and randomly extracted N = 1000
symbols. The number of distinct symbols in the extraction was
equal to 11. By an application of Theorem 1 with β = 10−6

and using the ε(·) in (7) we obtain ε(11) = 7.69%, which is
interpreted as an upper bound to the probability of seeing a new
symbol at the next extraction.

A final remark is that if one moves up from considering a
countable alphabet to an uncountable one so that each symbol
in the alphabet has probability zero of being drawn, then each
new extraction will not coincide with a previously extracted
symbol with probability 1. Hence, the violation will be equal to
1 no matter how large N is. In this case, s∗N = N and applying
Theorem 1 coherently gives ε(N) = 1.

D. Largest Substring

Let Δ = Σ∗ be the set of all strings of finite, but otherwise
arbitrary, length from a given alphabet Σ (including the empty
string), equipped with a discrete probability. Let Θ = Σ∗, Θδ be
the set of all the substrings of δ, and f(θ) = −length(θ). Given
an independent sample of strings (δ(1) , . . . , δ(N )), consider the

9This is the set containing all the sampled symbols where a symbol that has
been sampled twice or more times only appears once in the set.
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Fig. 6. Centered r-ball covering.

following scenario-based problem

θ∗N = arg max
θ∈Σ∗

length(θ)

such that θ is a substring of δ(i) for all i = 1, . . . , N,

whose solution is the largest substring common to all the strings
δ(1) , . . . , δ(N ) . A solution always exists (possibly, it is the empty
string since, e.g.,ABC andXYZ do not have nonempty substrings
in common), but it is not necessarily unique (e.g., ABCDEFXYZ
andABCUVWXYZ have bothABC andXYZ as largest substrings).
Suppose then that a lexicographical order is employed as a tie-
break rule.

Theorem 1 establishes that the probability of extracting a
string that does not contain θ∗N as a substring is with confidence
1− β less than or equal to ε(s∗N ), where s∗N is the smallest
number of strings from δ(1) , . . . , δ(N ) having θ∗N as the largest
substring.

As an example of practical application of this setup one can
consider text analysis. Various texts of similar nature (e.g.,
emails, reviews) are analyzed and their common substring is
determined. If for example 500 texts are analyzed and they have
the largest substring θ∗500 in common with a minimal support
subsample of length 11 (i.e., any group of 10 or less texts have
in common a longer substring), then, by choosing β = 10−4 ,
we can claim that the probability that a future text of the same
kind will contain s∗500 is at least 1− ε(11) = 87.3%.

E. Ball Coverings

For any c ∈ R2 and r > 0, consider the closed ball B(c, r) =
{p ∈ R2 : ‖p− c‖ ≤ r}. Given a finite set of points P =
{p1 , . . . , pN } in R2 and a fixed radius r > 0, a centered r-
ball covering of P is a finite collection of balls Bj = B(cj , r),
j = 1, . . . , n, such that each ball is centered at a point in P (i.e.,
cj is equal to pi for some i), and such that P ⊂ ∪n

j=1Bj . See
Fig. 6.

Let now Δ = R2 equipped with a probability P and let
(δ(1) , . . . , δ(N )) be an independent sample from Δ. For a fixed
r > 0, consider the following problem:

find θ∗N , which is a minimal centered r-ball covering of
{δ(1) , . . . , δ(N )},
where minimal means that the number of balls of the cover-
ing is the minimum possible.10 Since {B(δ(i) , r)}Ni=1 is an

10Note that, due to the requirement that the balls must be centered at points
taken from (δ(1) , . . . , δ(N ) ), this problem cannot be formulated in the form of
an optimization program as in Example 1 in Section I.

admissible covering, a solution to the problem always exists.
The solution, however, may not be unique (for instance, in Fig. 6,
the rightmost ball can be also centered in the other point con-
tained in it to obtain another covering with the same number
of balls). We decide to single out one solution by selecting the
covering whose ball centers have the minimum mean distance
from the origin. If P admits density, this tie-break rule isolates
a single covering with probability 1.

A practical interpretation of the ball covering problem is the
following. Suppose that a service provider must install n sta-
tions in order to serve N users. Each station must be maintained
by a user (hence it must be located at the user’s position), and
every other user is served if his/her location is within a distance
of r from at least one station. The overall goal is to minimize
the number of stations, while the proposed tie-break rule min-
imizes the average distance from the provider’s headquarters.
Given a solution, one can find a support subsample and apply
Theorem 1 to establish the probability of observing a new user
who is not within a distance of r from the deployed stations.
If for example, with 1500 users, one finds that the support sub-
sample is 12, with β = 10−6 , one obtains ε(12) = 5.8%, and
the claim is that a new user is not served with probability less
than 5.8%.

APPENDIX A
SCENARIO OPTIMIZATION VS. SCENARIO DECISION PROBLEMS

In this appendix, we further elaborate on the discussion at
the end of Section I and show that the results of [11] cannot be
recovered in the context of this paper. This is done by exhibiting
an example where the irreducible support subsample has always
length 2, but the cumulative probability distribution of the vio-
lation is not dominated by a Beta (2, N − 1) distribution as it
would be if (2) and (3) taken from [11] were valid.

Let Δ = {δ ∈ R2 : ‖δ‖ = 1}, equipped with the uniform
probability P over the unitary circumference. Let Θ = R2 .
For any δ ∈ Δ, consider the line Tδ tangent to the circum-
ference at δ, and let Θδ be the closed half-plane with bound-
ary Tδ that contains the origin (and hence the whole circum-
ference). Let (δ(1) , . . . , δ(N )), with N ≥ 2, be an independent
sample of points/tangents from P, and consider the following
problem:

among all the points of intersection of two tangent lines, find
the intersection θ∗N that satisfies all the constraints θ ∈ Θδ ( i ) ,
i = 1, . . . , N , and that has maximum distance from the origin.
In a typical situation, the intersection of the sets Θδ ( i ) is a
polyhedron [see Fig. A1(a)], in which case the solution of the
problem is the feasible point furthest away from the center of
the circumference. It may happen, however, that all the points
δ(1) , . . . , δ(N ) lie on the same half-circumference, so that the
intersection of the sets Θδ ( i ) is an unbounded polytope [see
Fig. A1(b)]. In this second case, the previous interpretation for
θ∗N is not valid any more, and for this reason this problem
cannot be reformulated as an optimization program in the form
of Example 1 in Section I.

A peculiarity of this problem is that s∗N = 2 with
probability 1. As a matter of fact, it is immediate to recog-
nize that there is a unique irreducible support subsample, given
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Fig. A1. Feasible set: (a) polyhedron and (b) unbounded polytope.

Fig. A2. PN {V(θ∗N ) > ε} for the problem at hand (solid line) vs.∑1
i=0

(
N
i

)
εi (1 − ε)N −i (dashed line) for N = 10.

by the two observations (δ(i1 ) , δ(i2 )) corresponding to the two
tangent lines passing through the solution θ∗N .

Then, one may be tempted to believe that (2) and (3) with
d = 2 hold true for the problem at hand. After all, the only as-
sumption required in [11] within the context of scenario convex
optimization to prove (2) and (3) with d = 2 is that s∗N ≤ 2.
This result is however wrong as shown in Fig. A2, where, for
N = 10, PN {V(θ∗N ) > ε} for the problem at hand is plotted11

and compared with
∑1

i=0

(
N
i

)
εi(1− ε)N−i for N = 10, which

is the dominating distribution in (2) and (3). It can be seen from
the figure that, for a given ε, the probability that V(θ∗N ) > ε is
for the problem at hand larger than that given by (2) and (3).
Hence, within the general setup of this paper, results as strong
as those in [11] cannot be obtained. The very reason for this
is that in the present example one condition is missing that is
instead always satisfied in convex optimization (and, indeed,
even in optimization without convexity conditions): what fails
to be true is that adding a satisfied constraint may result here in
a change of the solution [in Fig. A1(b) this is, e.g., the case if a
tangent with slope high enough is added at the top of the circle],
while this is instead not possible when θ∗N is the solution to an
optimization program.
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