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CONSISTENCY OF THE SCENARIO APPROACH*
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Abstract. This paper is meant to prove the consistency of the scenario approach a la Calafiore,
Campi, and Garatti with convex constraints. Scenario convex problems are usually stated in two
equivalent forms: first, as the minimum of a linear function over the intersection of a finite random
sample of independent and identically distributed convex sets, or second, as the min-max of a finite
random sample of independent and identically distributed convex functions. The paper shows that,
under fairly general assumptions, as the size of the sample increases the minimum attained by the
solution of a problem of the first kind converges almost surely to the minimum attained by a suitably
defined “essential” robust problem (or diverges if such a robust problem is infeasible), and that the
minimum attained by the solution of a scenario problem of the second kind converges almost surely
to the minimum of the pointwise essential supremum taken over all the possible convex functions (or
diverges if such essential supremum takes the only value +00). In both cases, if the solution of the
essential problem exists and is unique, the solution of the scenario problem converges to it almost
surely.
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1. Introduction. Robust convex optimization deals with programs of the fol-
lowing form:
min ¢'6
(1) 0co
subject to 6 € ©; for all 6 € A,

where O is a closed convex subset of R%, A is an arbitrary set (possibly infinite), and
to every & € A there is associated a closed convex subset O5 C ©. Any Oy, § € A,
is interpreted as an additional constraint to the nominal problem mingee ¢'6, i.e.,
a constraint that may appear in a practical instance but whose actual occurrence is
not known in advance; the solution of (1) is thus a safeguard against all the possible
deviations from the nominal problem.

In practical applications dealing with all the possible constraints s, 6 € A, may
be overkill, and discarding a small fraction of constraints, i.e., a small subset of A, is
often acceptable. The set A models the lack of knowledge in an optimization endeavor,
and in science and engineering the natural way to model uncertainty is through prob-
ability; thus, from now on, I will assume that (A, F,P) is a probability space, where
P describes the chance of a constraint set ©; to occur. Moreover, (AN, FN PY) will
denote the N-fold Cartesian product of A equipped with the product o-algebra FV
and the product probability PV = P x .- x P (N times). A point in (AN, FN PY)
will thus be a sample (6, ..., §V)) of elements drawn independently from A ac-
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cording to the same probability P. One possible approach to weaken problem (1) by
accepting a small portion of constraints, i.e., a subset of A with small probability ¢,
to be violated, is the following so-called chance-constrained problem:

min ¢’ 6
(2) 9c0
subject to P[{d €A : 0 €©Os}]>1—e.

Let me provide a visual explanation of the difference between robust and chance-
constrained problems with a toy example.

Ezample 1. Suppose that A = [—1,1], and consider the problem

min x+y
(3) (z,y)ER?

subject to (x — 0)* +y* < 4 for all § € A.

Clearly, (3) is an instance of problem (1), where 6 = (z,y) and O; is the closed ball
with center (4, 0) and radius 2. A pictorial view of the problem is shown in Figure 1(a),
where the set A x {0} containing the center of each closed ball is the thick line segment
at the center of the plot. The whole point of robust programming is that each ball may
be the “true one” that will show up in reality; some balls represent favorable situations
(the leftmost ones) and other bad situations, but in order to take into account all the
constraint sets, feasible points are a priori confined to their intersection: the feasible
set of problem (3) is indeed the white oval at the center of the plot, and its solution
is marked with a bullet (o). Suppose now that A = [—1,1] is equipped with a density
and that we are allowed to improve the solution discarding a subset B C A with small
probability P [B] = e. The corresponding chance-constrained problem is

min x+y
(4) (z,y)ER?

subject to P[{d €A : (z—0)°+y* <4}] >1—-e.

The setup is shown in Figure 1(b): the feasible set has been enlarged, and the solution
has improved a bit, at the cost of neglecting the set B C A depicted in light gray.
The balls ©5 with a center (d,0) such that § € B (partially visible on the right
with light gray background) do not contain the solution e; the main point of chance-
constrained programming is that the probability € that one such ball pops up in
reality, dooming the solution to be wrong, is small; in real-world applications this risk
is often acceptable. 0

Chance-constrained programming is now a well-known subject in stochastic opti-
mization; it has been studied systematically for the first time in the work of Prékopa
(see, e.g., the seminal work [14] and the references therein; see [17, Chapter 1] for an
introduction and some motivating examples). A well-known drawback of problem (2)
is that it is usually hard to solve, because its feasible set is not necessarily convex de-
spite the convexity of the sets Os. (In this respect, Example 1 is really a toy problem.)
Another aspect of (2) that seems innocuous but that I consider a drawback—being
often unrealistic in practice—is that it requires the exact knowledge of P and of the
mapping § — Oj.

Another way to weaken problem (1) is, in Marco Campi’s words, to “let the data
speak,” to solve a random problem with finitely many constraints, and to provide a
high-confidence guarantee on its solution. This method is called the scenario approach
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Fic. 1. Ezample 1: (a) Robust problem (3), (b) Chance-constrained problem (4).
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F1G. 2. Instance of scenario program with sample size N = 15; the solution 0}, is marked with
e. The centers (4,0), 6 € B, of the balls ©; that do not contain 0}, are plotted in light gray.

and was introduced in [3], initially aiming at robust control design. (See also [7] for a
nice introduction.) Its fundamental ideas develop as follows: it is supposed that the
experimenter can observe a finite sample of independent and identically distributed
constraint sets {©s0) }, extracted according to PY; s/he forms the problem

min ¢' 6
(5) 0co
subject to 6 € O50) foralli=1,...,N

and computes its solution 0%. Each element ©;u) of the finite sample is called a
scenario, and problem (5) is called a scenario program; an instance of (5), along the
lines of Example 1, is shown in Figure 2. Before observing the constraints, the solution

v may be regarded as a random vector over A™ | and hence the set B C A mapping
to constraints {Os}sep that do not contain 0% is a random set, and its probability
P [B] is a random variable over AY. The scenario approach attaches to 0% a certificate
of this form:

the probability that P [B] < € is always greater than or equal to 1 — 3,

where ( is a parameter that depends only on the sample size N and the dimension
d of the problem, and that decreases very quickly as the sample size increases. After
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observing the constraints, when the solution 6% has been computed, the experimenter
can claim that P [B] < e with confidence 1 — 3.1

The scenario approach has a number of advantages over chance-constrained pro-
gramming. First, every realization of problem (5) is convex and, the sample of con-
straint sets being finite, usually simple to solve. Second, for any fixed e € (0,1),
the sample size N has a logarithmic dependence on the confidence parameter
(N ~ log(1/8)), and hence to decrease 8 of k orders of magnitude it is sufficient
to increase N by a factor k; this allows one to attain wery high confidence (e.g.,
1—3=1-10"19) or, so to say, “practical certainty,” with a relatively small sample
size N. Third, and most important, the true fundamental assumption of the scenario
approach is just that 61, ..., (") are independent and identically distributed; except
for this, the guarantees on 0%, provided by the various developments of the theory are
all universal, in the sense that they hold irrespective of P and of the mapping 6 — Os.
(In other words, the knowledge of P and ¢ — O; is not required.) Furthermore, the
theory of convex scenario optimization provides insight about chance-constrained pro-
gramming: indeed a “hot” research topic is the connection between the probabilistic
guarantees on the solution of (5) and the feasibility of (2); see, e.g., [5], [13] for recent
developments. To formalize the above discussion, consider the following definition.

DEFINITION 1. Let 8 € ©. The point 0 violates the constraint set ©5 if 0 ¢ Oy.
The violation probability of 8 is defined as follows:

V() =P[{6eA : 0¢0Os}.

For any € € (0,1), 0 is said to be e-robust if V(0) < e. |

When this does not generate ambiguity, throughout the paper I will adopt the
notation P [# € As] and P [fs(0) € B] to denote the probabilities P [{d € A : 0 € As}]
and P [{d € A: f5(0) € B}], respectively, it being understood that P[] captures the
variable §. With this convention the violation probability of § reads V(6) = P [ ¢ ©s].

Consider problem (5), and denote 0% its solution; since 0% is a random variable
over (AN, FN PN) 5o is its violation probability V(0% ). (Measurability issues are
addressed in [13].) The following theorem is a milestone of the scenario approach with
convex constraints.

THEOREM 2 (Campi, Garatti). For any e € (0,1), irrespective of P and of the
mapping § — Os, the following bound holds:

k

d—1
(6) PN [0 exists and V(03) > ] <) <N ) b1 —e)NF = 5. O
k=0

For the proof of Theorem 2, the reader is referred to the paper [4].? It is shown, there,
that the bound (6) is tight, i.e., that there exists a class of so-called nondegenerate

problems for which (6) holds with equality; for such problems, V(6% ) is a random
variable with Beta(d, N+1—d) density, irrespective of P. (For nondegenerate problems

LFor comparison, recall that in chance-constrained programming P [B] = ¢ is a constant, fixed in
advance.

2Strictly speaking, Theorem 2 does not require that the solution 6% to problem (5), when it
exists, is unique; nevertheless, it is customary in the scenario approach literature to assume that it
is possible to isolate a single solution, when there are many, by means of a “tie-break” rule. I will
adhere to this convention and refer to “the solution 63,” rather than “a solution 0%, although in
the following this will be needed only to make Theorem 2 work properly.
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F1a. 3. Solution of the robust problem (W) and of the essential robust one (o).

in min-max form—see section 2.1-—much more is known; see, e.g., [9] for a recent
more general result.) The logarithmic dependence between 8 and N descends from
the definition § := i;é (]]Z)Ekﬂ — ¢)N=F; for a detailed discussion see, e.g., the
introduction of [4] and the comparison with [3] therein.

Theorem 2 says that when 03 exists it is e-robust with confidence 1 — 3. If
¢ is small and N big enough so that the confidence 1 — (8 is very high— “practical
certainty”—one can say that the scenario minimum CTH}‘V is “close enough” to the
“robust minimum” (from a risk-analysis perspective, albeit not necessarily in the
metric sense); and I dare say, in statistical jargon, that c'@% is a good estimator of
the “robust minimum.” I claim that, under fairly general hypotheses, this estimator
is also consistent—hence the title of the paper—i.e., CTG}‘V converges to the robust
minimum as N — oco. But there is a big caveat here. Unless the probability P and
the mapping § — ©; are particularly well-behaved, the true robust minimum is not
the solution of problem (1); it is instead the solution of the following one, that I like
to call the essential robust problem:

min ¢' 0
(7) 0€©
subject to P[0 € Bs] = 1.

The meaning of the solution of (7) and its fundamental difference with the solution of
(1) are illustrated in Figure 3, along the lines of Example 1. Suppose that the sample
space A = [—1,1] of Example 1, equipped, e.g., with a uniform density, is augmented
with two points §; = —3/2 and &y = 3/2 in such a way that P [{0:1}] =P [{02}] = 0.
Despite the fact that the balls centered at (d1,0) and (d2,0) show up with probability
0 and are completely inessential, the original robust problem must take them into ac-
count; its solution is marked with m in the plot. On the other hand, the essential robust
problem (7) disregards the negligible event {1, d2}; its solution is marked with .
To make my claim more rigorous, let 8** be a solution of the essential robust
problem (7). By saying that 6% is consistent I mean that, under fairly general as-
sumptions, ¢ 0% — ¢’ ** almost surely as N — oo, and that if §** is unique (e in
Figure 3), then also 83 — 0** almost surely. This is precisely the main message of the
paper. The message can, and will, be translated in the language of min-max optimiza-
tion; such a translation will lead to more intuitive assumptions and to simpler proofs;
besides, it will make some justice of the otherwise arbitrary adjective “essential.”
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Structure of the paper. Section 2 is meant to show that the solution of the
scenario program (5) is equivalent to the solution of a min-max problem, and to the
introduction of a function L whose minimization is equivalent to the solution of the
essential robust problem (7). Section 3 is dedicated to the proof of some fundamental
properties of L (to start with, convexity and lower semicontinuity). Section 4 contains,
among other properties of the function L and of the violation probability V, the rig-
orous statement and the proof of the main results of the paper (Theorems 14 and 15).
In section 5 I “translate” the assumptions of Theorems 14 and 15, which are stated
with respect to min-max optimization, back to the language of problems (5)—(7), and
restate the main result with respect to these problems (Theorem 17). The discussion
preceding and following Theorem 17 shows that ¢’ 8% — +o0 if and only if problem
(7) is infeasible, and that in turn this happens if and only if ;2 ©s5u) = @ almost
surely. Section 6 concludes the paper with some final remarks and acknowledgments.

2. Formalization of the problem: min-max optimization. To establish
the main convergence results, I find it convenient to express constraints in terms of
convex functions rather than convex sets, and to recast scenario programs as min-
max programs. In this section I will show that the two approaches are equivalent,
then show that the concept of max needed to recast the robust problem is somewhat
subtler than one would expect at first sight, formalize two assumptions that will be
used throughout the paper, state the main results, and try to provide some insight
about the assumptions and their consequences, along with a brief comparison with
some recent results in the literature.

2.1. Scenario min-max problems. Let (A, F,P) and (AN, F¥ P¥) be the
probability spaces defined at the beginning of section 1, let X be a closed convex
subset of R?, and suppose that to each § € A there is associated a convex function
f5 + X — R, taking values in the ertended real set R = R U {+oco}. Consider the
following min-max problem:

let  fn(x) = max  fso(2);
(8) z:Al-»-N R
find yy = min fy(z), =z =arg min fy(z),
TeEX zeX

where (61, ...,6(")) € AN .3 The epigraphical form of (8) is as follows:

min
(9) (z,y) (X XR)
subject to  fsi)(z) <y foralli=1,...,N.

On one hand, problem (9) is a particular, (d+ 1)-dimensional instance of problem (5);
this follows immediately letting © = X x R, § = (z,%), ¢' 0 =y, and O5 = {(x,y) €
X xR : fs(x) <y}, and assuming, by convention, that 400 must be understood as
the minimum of problem (9) if such problem is infeasible. On the other hand, every
problem in the form (5) can be formulated as a min-max problem in the form (8). To

3Following the literature of the scenario approach, I assume that a single solution zy € X can
be isolated by means of a “tie-break” rule even if many solutions exist, although this is not really
relevant to my discussion and is only necessary to make Theorem 2 work properly. Thus, in the rest
of the paper arg mingcx fN (z) will always denote an element of X, not a subset of X as it would
naturally mean.
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do this, let X = O, x =6, and for all § € A define fs5 : © — R as follows:*

7O if0 e Oy,

.
J5(0) = ¢ 0+ To,(0) 400 otherwise.
Then problems (5), (8), and (9) are equivalent, i.e., they yield exactly the same
solutions x%, = 0%, yi = ¢' 0%, and hence any result about the convergence of the
solution (x%,y%) of (8), as N — oo, reflects on a similar result about the convergence
of the solution (8%,c"0%) of (5), and vice versa.

In the setting of problem (9), the violation probability of (z,y) reads V(z,y) =
P [fs(x) > y], and since problem (9) is (d + 1)-dimensional, the bound established by
Theorem 2, provided that the solution (2%, yx) exists, becomes

d
(10) PN V(zk,yx) > €] < Z (‘:) ekl — )Nk,
k=0

Since Theorem 2 lays the foundation for the main results of this paper, and since
for the bound (10) to make sense it is necessary to ensure that a solution of (8) exists
at least for N big enough, I need to introduce two assumptions that will be sufficient
for this to hold. The first assumption goes as follows.?

AsSsUMPTION 1. The domain X C R? is convex and closed; for all § € A, fs :
X — R is conver and lower semicontinuous. For allx € X, 6 — f5(x) is P-measurable
(i.e., f(y(x) is a random variable). 0

An immediate consequence of Assumption 1 is that fN is convex and lower semicon-
tinuous for all N € N. Without further mention, let us agree that Assumption 1 will
be in force throughout the whole paper. Here follows the second assumption.

ASSUMPTION 2. For all N € N, fN is PN -almost surely proper.6 Moreover, there
exists N € N such that L
PN |fy is coercive} > 0. a

Remark. If the functions fs are themselves coercive for all 6 € A, then the coer-
civity of f n follows automatically for all N € N. There are conditions that ensure this
property, which are very easy to check but otherwise rather conservative. One such
condition is, of course, that the domain X is compact. Another condition, assuming

4Here T () is the “indicator function of convex analysis,” which takes the value 0 if z € A and
the value +oco otherwise. Later in the paper the “indicator function of probability theory” 14(z),
taking the value 1 if x € A and the value 0 otherwise, will also show up and be denoted 1(z € A)
for the sake of readability.

5For future reference, let me recall here some standard terminology and notation about R-valued
functions. A function F : X — R is lower semicontinuous if, for all Z € X, F(zZ) < liminf,—z F(z).
For t € R, the t-sublevel set of F' is the set {x € X' : F(x) < t}. The following are well-known facts
(see, e.g., [12]): F is lower semicontinuous if and only if all its t-sublevel sets are closed; the pointwise
supremum F(x) = sup, ¢ 4 Fo(z) of an arbitrary family of lower semicontinuous functions Fy, is lower
semicontinuous. The effective domain of a function F : X — R is the set dom F = {z € X : F(z) <
+oo}; the closure of dom F is denoted dom F. A function F : X — R is proper if it has a nonempty
effective domain, i.e., if it does not take the only value +co. A function F : X — R is coercive if for
all t € R there exists a compact set C C X including the ¢-sublevel set of F: {x € X : F(z) <t} C C.
Of course, if X is compact, then F : X — R is automatically coercive.

6The assumption that f N is almost surely proper implies that fs is proper for almost all § € A.
In general the converse is false: for instance, if fs(x) = Z5,54.1)(z), where & takes the values 0 and 2

with equal probability 1/2, then fo(z) = 400 for all z € R with probability 1/2.
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for simplicity that X = R?, is that lim |, _ f5(z) = +oc for all § € A.” But here
we need substantially less: a practical way to check Assumption 2 is indeed to isolate
finitely many events, say, A1,..., Ay C A, each with positive probability, such that
for any choice of 6) € A;, i = 1,..., N, the function fy(z) = max;_;  y fso(2)
tends to +oo (or “bumps” against the boundary of X) as ||z| — oc. 0

Ezample 2. Let § = (a,b), where a and b are both random variables with uniform
density in [—1,1]. Let X =R and f5 : R — R be defined as follows:

f5(z) = ax +0b.

Clearly, fi(z) = f5u (z) (an affine function) cannot be coercive, since all its sublevel
sets are unbounded (or empty, in the negligible event a(!) = 0). On the other hand,
folz) = max{fsa (), fs (x)} is coercive when fsu, and fs have opposite slopes
(then fo is a “V-shaped” function). This happens with probability 1/2, and hence
Assumption 2 holds with N = 2. In view of the above remark, the key property here
is that the functions fs5 with positive slope (event Aj, with probability 1/2) tend to
+0o when © — +oo, and those with negative slope (event As, also with probability
1/2) tend to +oo when  — —oo; these are the only directions along which z can
tend to infinity when X = R. 0

2.2. A “meaningful min-max”: Main results of the paper. The objective
of this paper is to prove the almost sure convergence of the empirical minimum y3,
to, roughly speaking, the “min-max of all the functions f5 for 6 € A.” But what is
“the maximum of all the functions f5,” exactly, supposed to mean, since it is clear
that a true maximum may not even exist?® The first rigorous answer that comes to
mind is, of course,

S(x) = sup fs(x).
dEA
S has many nice properties that one would demand from stochastic optimization: it is
convex, lower semicontinuous, and by construction fN(x) < S(z) for all x € X. Since
the fN’s form a nondecreasing sequence of functions, it is licit to wonder whether, as
N — o0, fN — S in some sense, and maybe whether

(11) yy = min fy(z) = minS(z).

Unfortunately, in any useful probabilistic sense the claim (11) is in general false, as
the following example shows.

Ezample 3. Suppose that § is a random variable with uniform density in [0, 1].
Let X =R and f5 : R — R be defined by

|| +2—3d if 6 =1/n for some n € N,
(12) f()Z{

|x| + 6 otherwise.

Here S(z) = |z|+2 and mingex S(x) = 2. However, since § has a density, it holds that
P[6 = 1/n for some n € N] = 0, and hence fy(z) > |z| + 1 happens with probability
0, and almost surely mingecx fn () <1 for all N € N. A pictorial view of the family
{fs}sea and of S is shown in Figure 4. d

"Indeed, assume that lim| 4|00 f6(#) = +o0. Then, by definition of limit, for all ¢ € R there
exists M > 0 such that fs5(z) > t when ||z|| > M. Hence the sublevel set {x € X : f5(z) <t} is a
subset of the closed ball {x € X : ||z|| < M}, which is always compact since R? is finite-dimensional.

8In the following Example 3, for instance, maxsca fs(x) does not exist for any x € X.
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Fic. 4. Gray lines: functions fs(z) defined in (12); dashed black line: supremum S(z); solid
black line: essential supremum L(zx) (see Definition 3).

Since in the scenario approach P and the functions fs (or the sets ©s) are un-
known, we cannot exclude that even a single f5, extracted with probability 0, dom-
inates all the other functions f5, 6 € A, thus driving the minimum of S by itself
alone. Indeed S is a “useless supremum.” The useful supremum is instead the upper
boundary of the region where all the mass of the functions lies. In Example 3, all the
mass of the functions lies below the upper bound |x| + 1, which is actually the least
such upper bound; anything above |z| + 1 is negligible and must be discarded in our
discussion. The reader can now safely expect that the minimum of fN converges to
mingegr || + 1 = 1. In fact this is what happens almost surely: |z| 4 1 is the “useful
supremum”! This example leads to the following definition.

DEFINITION 3. Let the function L : X — R be defined as follows:
L(z)=inf{y eR : P[fs(x) >y] =0}.

In measure theory L(z) is known as the essential supremum of the function § —
f5(z) and denoted ess supsca f5(z). Thus, L is the (z-)pointwise essential supremum
of the family of functions {fs}sea. The function L is precisely the useful supremum:
it is immediate to check that, in Example 3, L(z) = |z| + 1 (see Figure 4, solid black
line). Note that, even if fn is proper for all N and for any choice of (CIN
L (as well as S) can take the value +oo for all x € . The main results of the paper
(Theorems 14 and 15) assert that, under Assumptions 1 and 2,

e if L = +oo0, then y} — +oo almost surely;’

e otherwise min I < 400 exists, and y3 — min L almost surely;

o if, moreover, argmin L is unique, then 3 — argmin L almost surely.
For the same reasons why, in general, the solution y3 does not converge to minS,
in general the minimum ¢’ 6% attained by the solution of (5) does not converge to
the minimum of problem (1). It converges instead to the minimum attained by the
solution—mnow let me call it essential robust solution—of problem (7). The connection
with the main results is fairly intuitive; all it requires is to translate the meaning of L,
and Assumptions 1 and 2, to the domain 6, 0, ©5 of problems (5)—(7). Once this job

9More rigorously, P>-almost surely, where P is a probability on the space of infinite sequences
of elements in A, compatible with PN for all N; for more details, refer to the beginning of section 4.
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F1G. 5. Ezample 4: (a) functions fs(x) as in (13), (b) functions fs(x) as in (14).

is done, the main results of the paper can be stated as follows (Theorem 17): under
the equivalent of Assumptions 1 and 2,

e if problem (7) is infeasible, then c¢"@% — +oc almost surely;

e otherwise, a solution 6** of (7) exists and CTQI*V — ¢ 6** almost surely;

e if, moreover, §** is unique, then 63 — 0** almost surely.
I will discuss in detail this version of the main results in section 5.

2.3. Discussion of the assumptions and comparison with literature.
Suppose that Assumption 1 holds and that fN is proper and coercive for N big
enough. Since fN is proper, coercive, and lower semicontinuous, it attains a finite
minimum in X. This is the assertion of the Tonelli-Weierstrass theorem (see, e.g.,
[2, Proposition 3.2.1]), a generalization of the “classical” Weierstrass’s theorem. But
actually the true targets of Assumption 2 are the coercivity of L (Proposition 11)
and the existence of compact sublevel sets. From my point of view, Assumption 1
is natural in any convex optimization problem; but Assumption 2 is truly the sub-
stantial requirement here, and I conjecture that nothing can be established about the
convergence of yy; if the fN’s are not, in a way or another, coercive for N big enough,
and if L does not have compact sublevel sets. The following example illustrates the
kind of issues that may arise.

Ezample 4. Let p € (0,1) and 6 be a random variable with geometric distribution
P[0 =n]=p(1—p)". Let X =R and f5: R — R be defined by

(13) fala) = {‘5” e

0 otherwise

(see Figure 5(a)). Letting 6y = max;—1,__ n 5@ we have fN(a:) =y —z for x <
SN, 0 otherwise. No function fx is coercive, and convergence fails: while y} =

mingex fN(x) = 0 for all N and for any possible extraction of 6(1), ... 6(N) it is
immediate to recognize that L(z) = +oo for all z € X. Let instead f5 : R — R be
defined by

(14) fs(z) = {_1/(5 +1) otherwise

(see Figure 5(b)). In this case, letting oy = max;—1, N 5 as before, it holds that
/

)
fn(@) = =1/(6n + 1) — x for & < 0, =1/(8x + 1) otherwise, and L(z) = —z for
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x < 0, 0 otherwise. Neither L nor any fy is coercive, but this time y% = —1/(0y +1)
converges to 0 = min L almost surely. 0

On the same subject, it is worth comparing the results presented here with the
work of Shapiro and others on sample average approximation (SAA) estimators; see,
e.g., [11], [17]. Roughly speaking, this paper proves for the min-max problem what
in [17, section 5.1.1] is proved about the minimum of the sample average (of random
real-valued convex functions). Letting fy(z) = & ZZV:I fsa (x) and F(z) = E[fs5(7)]
it is shown there that under fairly general hypotheses, as N — co, min fy — minF
and arg min fy — arg min F almost surely. One of these hypotheses recurs in different
forms: [17, Theorem 5.3], “there exists a compact set C' € R? such that [...] the set
S of optimal solutions of the true problem is nonempty and is contained in C,” or
[17, Theorem 5.4], “the set S of optimal solutions of the true problem is nonempty
and bounded.” (The “true problem” is to find [arg] min F.) Both these requirements
go in the same direction as the coercivity of F: we all need the existence of compact
sublevel sets!

However, differently from SAA, neither the law of large numbers nor the central
limit theorem applies to min-max stochastic problems; hence, whereas averaging typi-
cally ensures that the mean square error (MSE, that is; the expected squared deviation
from the “true” minimum) decreases with rate 1/N as happens for SAA [17, Theorem
5.7], here the MSE’s decrease rate can be arbitrarily low; in other words, although
YN = min fn does converge to min L almost surely as N — oo, the convergence can
be arbitrarily slow, as the following example shows.

Ezample 5. Let a > 0 and b = 1/a. Suppose that § is a random variable with

exponential density gs(t) = ae~® for t € [0,+00). Let X = [-1,1] and f5 : X = R
be defined by

Here L(z) = 22 and min,cy L(z) = 0; letting 0y = max;—;__n 6@, it holds that
fn(x) =22 — e 9%/2 and y%, = mingey fy(z) = —e /2. The cumulative distribu-
tion function of each 6() is Gy (t) = P [6(” <t] =1—e~*, and hence the cumulative
distribution function of dy is G5, (t) = PV [6n < t] = (1 —e™*)", and its density is
g5, (t) = Na(1 — e~*")N~=1e=a! The MSE of y} with respect to its own limit is

E[(minL —y%)?] =E [e‘sN}
+oo
= / et Na(l —e ™) N=1emt gt (let u = e=)

= N/ Va1 —u)N1 du (= Nx Euler’s Beta(1/a 4 1, N) function)

I'(N+1)
(N+b+ 1)
V2rN NN =N
27(N + b) (N + b)(N+D) e~ (N+)
N N \Y 1 .
= . . e T(h+1
N+b <N+b> o ¢ T+
1 1 . L(b+1)
. . . 1N~ ——— 2,
b (N +b)b (b+1) N

(now use Stirling’s approximation)

r(b+1)
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Since the parameter b = 1/a can be chosen arbitrarily small, the decrease rate MSE ~
ﬁ can be arbitrarily low. 0

The search for performance bounds on the approximation error with respect to
the robust solution, which in min-max form would read min S — y3;, is another “hot”
research topic in the scenario approach literature. Letting aside the question of what
are the minimal requirements on P and on the mapping § — fs sufficient to ensure
that L = S, which may be interesting per se,'® I would like to mention that results
of this kind, coming in the form

(15) for big enough N, PV mi}rcl S(x)—yy <e|>1-p
TE

with very high confidence 1 — 3, are now available; see, for example, the recent paper
[13] by Mohajerin Esfahani, Sutter, and Lygeros, partially building on the previous
work [10] by Kanamori and Takeda. But everything comes at a price, and the current
price for the performance bound (15) is the requirement of significant knowledge about
P and § — f5. For example, both [13] and [10] assume the uniform Lipschitz continuity
of 6 — fs(x) over X! In this paper I prefer to assume the least possible knowledge
about P and § — f5: therefore the distinction between S and L must remain, and
with only Assumptions 1 and 2 I maintain that there is not and there cannot be any
guarantee on the convergence speed of yy — min L. With respect to Example 5,

pN mi)r(lL(:L’) —yn > €:| =pY {eng/z > 5}
EAS

=PN [6y < —loge®] = G5, (—loge?) = (1 — 52a)N,

which may be arbitrarily close to 1 because a may be arbitrarily large; hence no
performance bound in the form (15) can be established at all.!?

3. Fundamental properties of L. This section is dedicated to the proof of
some fundamental properties of L that would be trivial about S, namely, that L
is convex and lower semicontinuous and that fN < L almost surely. The proof of
the latter statement requires two technical lemmas about proper, convex, and lower
semicontinuous functions that I did not find in the “standard” literature. Let me
start the discussion by resuming in a lemma the most intuitive facts about L.

LEMMA 4. For all x € X,
1. P[f5(x) > L(z)] = V(z, L(z)) = 0;
2. P[fs(z) < L(z)] = 1;
3. if y < L(z), then Py < f5(x) < L(x)] > 0;
4. if D C A and P [D] =1, then L(x) < supscp f5(z).

10Let, e.g., (A, m) be a metric space, T' be the topology induced by m, F be the Borel o-algebra
generated by T', P be a probability on (A, F), and f(y(z) : A — R be a (F, Borel(R))-measurable
function. Are there “nice” sufficient conditions such that ess supsc A f5(z) = supsea f5(x)? A simple
sufficient condition is that § — f5(z), understood as a function between metric spaces, is continuous,
and that the support of P is the whole A (i.e., every open subset of A has positive probability); but
I guess that this condition can be weakened. Moreover, one could argue that the condition actually
needed in the minimization endeavor is that L(z) = S(x) at the minimum points x of L: if this
holds, since L(z) < S(z) for all z € X anyway, a minimum point of L is also a minimum point of S.

1 The paper [13] also ensures the coercivity of all the fN’s by assuming thatO X is compact.

12The fundamental requirement of [13] that fails to hold in Example 5, thus preventing us from
establishing performance bounds, is that P must have bounded support. In Example 5 the support
of P is [0, +00).
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Proof. To prove point 1 note that, by the definition of L, for all y > L(z) it
holds that P[fs(z) >y] = 0. If fs(x) > L(x), then there exists n € N such that
fs(x) > L(z) + 1/n; hence

{0eA : fi(x)> L)} c {6 €A : fs(z) > L)+ ;}
and therefore

P [fs() > L(x)] <P [U {#10)> 1w + 1]

IN

Tip [fg(x) > L(z) + H ~0.

Point 2 is now trivial, since the event {fs(z) < L(x)} is the complement of the
event {fs5(z) > L(x)}. To prove point 3 suppose, for the sake of contradiction, that
Plg < fs(xz) <L(xz)] = 0. Then

Plfs(x) >yl =Py < f5(x) <L(2)} U{fs(z) > L(x)}]
=Py < fs(x) <L(z)] + P[fs(x) > L(z)] = 0,

and hence § € {y € R : P[fs(x) > y] = 0}; but now § < L(x) and the definition of
L(x) yield a contradiction. To prove point 4, let § = supsep fs(x). Any § € A such
that fs(z) > § belongs to the complement of D, and hence P [fs(z) > §] = 0, and
ge{y €eR:P[fs(x) > y] =0}. The claim follows from the definition of L(z). O

The following Propositions 5 and 6 establish the most important properties of
L, its convexity and its lower semicontinuity. These are the counterparts, for the
pointwise essential supremum, of two well-known facts: the pointwise supremum of
an arbitrary family of convex (resp., lower semicontinuous) functions is itself convex
(resp., lower semicontinuous).

PrOPOSITION 5. L is convez.

Proof. For the sake of contradiction, suppose that L is not convex, so that there
exist x1,x2 € X and A € (0,1) such that AL(z1) 4+ (1 — A\)L(z2) < L(Azy + (1 — X)z2).
By Lemma 4 (point 2) there exist sets D; C A, Dy C A, both with probability 1,
such that fs(z1) < L(z) for all § € Dy and fs(x2) < L(xs) for all § € Ds; on the
other hand, by Lemma 4 (point 3) there exists a set B C A with P [B] > 0 such that
for all 6 € B

(16)  AL(z1) + (1 — ML(22) < fs(hz1 + (1 — Naz) < Ly + (1 — \)aa).

Let B =B N Dy N Dy and note that, since P [B] = P[B] > 0, B is not empty. But
for any 6 € B it holds that fs(x1) < L(x1), fs(z2) < L(z2), and by convexity of f5

sz + (1 = N)w2) < Afs(@r) + (1= N) fs(z2)
< AL(z1) + (1 = A)L(22),

which is in contradiction with (16). The contradiction stems from the assumption
that L is not convex, and this concludes the proof. 0
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PROPOSITION 6. L is lower semicontinuous.

Proof. Fix T € X. Let (2,)22, be a sequence of points in X’ converging to Z; let
moreover

Dp={6€A : fs(zn) <L(xn)}; D= () Dn

n=1
Since P [D,] = 1 for all n (Lemma 4, point 2), also P [D] = 1. For all § € D, the
lower semicontinuity of f5 implies

f5(z) <liminf f5(z,) < liminf L(z,,),
n— oo

n—oo

and therefore, by Lemma 4 (point 4),

L(z) < sup f5(Z) < liminf L(x,).
5€D n—oo
This holds for all the sequences (z,,)5%; converging to , and hence L is lower semi-
continuous at Z; the claim follows since  was chosen arbitrarily. a0

LEMMA 7. Suppose that a function L : R? — R is proper, convex, and lower
semicontinuous. Then for all T € dom L
liminf L(x) = L(Z).

T—T
zedom L

Remark. It is a well-known fact that any proper convex function L is actually
continuous in the interior of its effective domain [12, Corollary 2.1.3], but here I am
particularly interested in what happens at the boundary of dom L; on the other hand,
I do not assume that dom L has nonempty interior. O

Proof. The claim is trivially true if L takes the value 400 everywhere but at one
point. Otherwise, dom L has a (nonempty, convex) relative interior.'® Suppose that

(17) liminf L(z) = lim = L(z) = +o0.
rxEdom L rx€dom L

(This can only happen if  belongs to the relative boundary of dom L.) Let € be any
point in the relative interior. (The line segment [Z, £] lies in dom L.) By [15, Corollary
7.5.1], and by uniqueness of the limit (17),

L(z) = lim LOAZ + (1 — A)é) = 400 = liminf L(z).
Aot zexd_o)rflL

Suppose, on the other hand, that
liminf L(z) = M < +o0.

Tr—T
zc€dom L

Let (2,)52 1 be a sequence in dom L converging to Z and such that lim,_, . L(z,) =
M. By convexity, for each n,

L(z/2+ x,/2) < L(Z)/2 + L(xn)/2,

13The relative interior of a set S C R? is the interior of S with respect to the topology of the
smallest affine subspace of R? that contains S; the relative boundary of S is its boundary with
respect to the same topology. For instance, the smallest affine subspace of R? containing a line
segment [Z1,Z2] C R? is the affine subspace £, of dimension 1, generated by #1 and Z3. The relative
interior of [Z1,Z2] is the segment (Z1,Z2) (without the endpoints), and its relative boundary is the
set {Z1,Z2}. See, e.g., [15] for further details.
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and hence

M < liminf L(2/2 + 2,/2) < lim L(2)/2 + L(z,)/2 = L(@)/2 + M2,

n— oo

M < L(z).

Since it also holds that L(Z) < M by lower semicontinuity, L(Z) = M this concludes
the proof. 0

LEMMA 8. Suppose that a function L : R? — R is proper, convex, and lower
semicontinuous. Then there exists a finite or countable set S C dom L such that for
all x € dom L

liminf L(z) = L(Z).
zes

Remark. From the standpoint of this paper, Lemmas 7 and 8 are only propaedeu-
tic to the proof of Proposition 9; therefore their statements involve a function L :
R? — R. Nevertheless, to my understanding, they can be generalized without sub-
stantial changes at least to functions L : V — R, where V is any separable Banach
space. 0

Proof. For any i € N, there exists a finite or countable covering B; = {B(c;, 1/i)}32,

of dom L made of open balls with centers ¢; and radius 1/i; let B = |J;2, B;. From
each open ball B(c;j,1/i) € B; select a point x;; € dom L such that

inf L(z) < L(x;;) < inf L(x)+1/i
z€B(cj,1/1) ( ) ( J) x€B(c;,1/1) ( ) /
and form the set S; = {x;; }?‘;1.14 Let S = ;2 Si- The set S C dom L is everywhere
dense in dom L, and at most countable.
Fix now Z € dom L. By definition,

liminf L(z) = lim inf L(z).
méTajriL n—oo  xeB(Z,1/n)Ndom L\{z}

Note that the clauses “Ndom L” and “\{Z}” are both inessential, the first one because
L = 40 outside dom L, and the second one because by Lemma 7 the limit inferior is
< L(Z). So let me simplify notation:

18 liminf L(x) = lim inf L(x).
( ) xezd_ofrilL ( ) n—oo xeB(Z,1/n) ( )

For each n € N, by construction, there exists an open ball B(c,,r,) € B such
that Z € B(cy,ry) and B(ep,r,) C B(Z,1/n). The corresponding point z,, € S taken
in the construction at the beginning of the proof satisfies

19 L(xy,) > inf  L(xz) > inf  L(x);

(19) ( )_QGB(%M) ( )_IGB(M/M (x)

on the other hand for each n there exists h,, € N big enough such that B(z,1/(n +
hn)) € B(ep, m); by construction it follows that

20 Liz,) < inf L(x)+r, < inf L(z) + 1/n,
( ) (l‘) zGBl(rcln,rn) (Z‘) " mGB(i,llr/l(n+hn)) (Z‘) /n

147 know that an engineer invoking the axiom of choice may sound a bit booming, but. .. there it
is.
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because r,, < 1/n. As n — oo, , — Z, and both the right-hand sides of (19)
and (20) converge to the limit inferior (18) (possibly to +oo, with a slight abuse of
terminology). Thus we have
liminf L(z) < lim L(x,) = liminf L(z) < liminf L(x),

T—T n—oo T—T T—T

eSS r€dom L zeS
where the first inequality holds because {z,,}22; C S and the second one holds because
S C dom Lj; hence

liminf L(z) = liminf L(z),

r—x Tr—x
€S r€dom L
and the claim follows by an application of Lemma 7. O

Remarks. (A) The only case in which the set S built in Lemma 8 is finite is when
dom L contains only one point Z (of course in this case S = {Z}): if dom L contains at
least two points, then S must be countably infinite. (B) The statement “for all z € X,
for almost all § € A, fs(x) < L(x)” is trivial. Much less trivial is a statement like
“for almost all § € A, for all z € X, f5(x) < L(z),” because the clause “almost all” is
preserved only by countable intersections, but X C R¢ is either trivial or uncountable,
and hence the quantifiers “all 2”7 and “almost all §” cannot be interchanged freely.
Of the second kind is the following proposition, that indeed relies essentially on the
countability of S established by Lemma 8. a0

PROPOSITION 9. For all N, PN -almost surely fn(z) < L(z) for all z € X.

Proof. The claim is trivial if L = +o00, and hence suppose that L is proper. (It
is also convex and lower semicontinuous by Propositions 5 and 6.) Since X C R¢,
without loss of generality we can extend L to the whole of R?, letting L(z) = 4oo for
all x € R?\ X. Consider now the countable, everywhere dense subset S = {z,, }nen C
dom Lh whose existence with respect to L is established by Lemma 8. Let

D, ={6€A : fs(zn) <L(zn)}, D= ﬂDn;
n=1

since P [D,,] = 1for alln € N, also P [D] = 1. Fix N; for any choice of s 6N e

D, it holds that

In(zn) = max fso (xn) < L(zy) for all z, € S.

Now let £ € X. If Z € dom L, the lower semicontinuity of fN and Lemma 8 imply

fv(@) <liminf fy(2) < liminf fiv(2) < liminf L(z) = L(2).
7o ved 1ed

If instead Z ¢ domL, then fy(Z) < L(Z) = +oo trivially. Since the choice of Z is
arbitrary, fy(7) < L(Z) for all z € X. This happens for all (M ..., 60Ny e DN =

D x ---x D (N times). But now, since s ..., 6N are supposed to be independent
random elements (or, which is the same, PV is the product measure P x --- x P),

and hence the uniform upper bound is almost sure; this proves the claim. 0
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4. Convergence of the solution (x};,yx;). This section establishes another
fundamental property of L, namely, that it is coercive if Assumption 2 holds, two
properties of the violation probability V, one probabilistic (V(z%,yy) — 0 almost
surely) and one analytical (V is, in a sense, lower semicontinuous), and finally the
main results of the paper: if Assumptions 1 and 2 hold, then y3, — minL almost
surely, and if #** = argminL is unique, then =} — z** “almost surely” (Theorem
14); the case for L = 400 is covered by Theorem 15. The first thing I need to do is to
assign a rigorous meaning to the clause “almost surely”, that I have tacitly left vague
from the beginning for the sake of readability.

To this purpose, turn now to consider the probability space of infinite sequences
extracted independently from (A, F,P), which I will denote (A%, F>° P>). An ele-
ment §%° = (§(7)%2, € A is an infinite sequence of elements in A; F* is the smallest
o-algebra of subsets of A containing the sets

g = {(5<1>7...,5<N>,...) eA® (W, .. My e 5<N>}

for all N € N and £™) € FN; and P* is a probability function such that
P [EM] = pN [eM)]

for all N € N and €M) e FN: since PN, N € N, are all product measures, such
probability exists and is unique in view of Ionescu-Tulcea’s theorem [1_87 Theorem 2,
p. 249]. Moreover, let FN = {EWV) ¢ Fo . ¢WN) ¢ FIN)Y: then (f(N))jvozl is a

filtration in F*°. Fix an arbitrary € X, and if for a certain N the solution (z%;,yk)
does not exist, let by convention (z%,yx) = (T, —00);!® with this convention, the

sequence of solutions ((x7,y7),...,(z%,yN),--.) is a stochastic process adapted to
(f(N))]OVozl, and P> is compatible with P also in the following sense: for all N € N

and for any Borel set B C (X x R)V,
P [ {(z},y)2 € (X xR)™ : (x},y))iL, € B} | =PV [(2],47)/L, € B].
Consider now the random variable

N = min {N eN : (ay,yy) exists with yy > —oo}.

O o0

N is a stopping time with respect to the filtration (.7? v )) _,- The following lemma

N=
ensures that, under Assumption 2, N is P>-almost surely finite.

LEMMA 10. If Assumption 2 holds, then P*-almost surely there exists N e N
such that fg is coercive. For all N > N, fn is coercive and attains a finite minimum.

Proof. Let p= py |:fN is coercive| > 0. For £ =0,1,2,..., the sets

By = _ max s is not coercive p € AF+HIN
=k NAL,...,(k+1)N

15Here, —oo is just a placeholder to mark the nonexistence of a solution and to ensure that in this
case (z%,yn) € X XR; it does not mean that fy is unbounded from below. Visualize § with uniform
density in [-1,1], X =R, and f5(z) = e97; if 6§, ..., 6(N) are all positive, then infzex fy(z) =0
is not attained.
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form a sequence of independent events, each with probability 1 — p. Therefore

pe [for all k e N, _ max _ fse is not coercive}
i=kN+1,...,(k+1)N

= lim PEFTLN [for all k < K, _ max _ fsw is not coercive]
K—o00 i=kN+1,...,(k+1)N

K
= lim H plk+DN _ max _ fse) 1s not coercive
K—oo o i=kN+1,...,(k+1)N

= lim (1-p)K+l =0,

K—oo
and hence P>-almost surely there exists k finite such that max;_py1,.. (h+1)n f5
is coercive, and a fortiori f(,i 1)y = max,—y  (41)n fs 18 coercive. The first claim

follows letting N = (k+1)N. Then, for all N > N, fn is proper, lower semicontinuous,
and coercive (because fy(z) > fy(x) for all z € X). Hence

Yy = min fy(z) < +oo and zly = arg min fy(z)
reX reX
exist by the Tonelli-Weierstrass theorem. O
PROPOSITION 11. If Assumption 2 holds, then L is coercive.

Proof. If L takes the only value +o0o, the claim is trivial, since any sublevel set
of L is the empty set. Assume, therefore, that L is proper, and suppose for the
sake of contradiction that it is not coercive. Then there exists ¢ € R such that the
set C = {x € X : L(z) < t} is nonempty and not compact. The set C is anyway
closed, because L is lower semicontinuous [12, Proposition 2.2.5]; therefore, by the
Heine-Borel theorem [16, Theorem 2.41], C is unbounded.

Proposition 9 ensures that, for all N € N,

poo [fN(x) < L(z) for all z € X} —pN [fN(x) < L(z) for all z € X} ~1.

Hence the event D € F°° defined as follows,
x A
D= ﬂ {fN(ﬂi) < L(zx) for all x € X} ,
N=1

has also probability 1. Therefore

P>_almost surely, for all N, fy(z) < L(z) for all z € X
= almost surely, for all N, {x € X : fy(z) <t} D {zred : Lx)<t}=C
= almost surely, for all N, {z € X : fy(z) <t} is unbounded.

On the other hand, by Lemma 10, P°°-almost surely there exists N finite such that f N
is coercive, and hence P>®-almost surely there exists N such that {z € X : fN(m) <
t} is compact. That {x € X : fN(x) < t} is both compact and unbounded is a
contradiction, stemming from the assumption that L is not coercive. 0

The following two propositions establish an asymptotic property of V(z%,yk)

and an analytic property of the function V (in essence, very similar to lower semicon-
tinuity).
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PROPOSITION 12.

lim V(zy,yny) =0 P-almost surely.
N —o00

Proof. Fix € € (0,1). By Lemma 10, P>-almost surely there exists N e N such
that for all N > N the solution (x%,y} ) exists. For all such N, by Theorem 2 (see

(10)),

P [V(zly, yn) > €] = PV V(e yx) > €]
(21)

Since as N — oo

(d+1)(N +1)4 (1 —g)N+1=d 1
(d+1)Na+1(1 —g)N-d (

by the ratio test
Z P> V(zy, yn) Z d+1)NH(1 - )V 4 < .

Therefore, by the Borel-Cantelli lemma [18, p. 255],
P [V(zx,yn) > € infinitely often] = 0.
Actually this holds for all € € (0,1], the case € = 1 being trivial, and hence

P [there exists h € N s.t. V(z}y,yn) > 1/h infinitely often]

= P> U {V(zy,yn) > 1/h infinitely often}
h=1

< Z P> [V(z},yx) > 1/h infinitely often] = 0.
=1
Since the event {there exists h € N such that V(z},y5) > 1/h infinitely often} has
probability 0, the complementary event {for all h € N there exists N € N such that
0 < V(z¥,yn) < 1/h for all N > N} has probability 1; the latter is included in the

event {for any ¢’ € (0,1) there exist h € N and N < oo such that 0 < V(z},yx) <
1/h <&’ for all N > N}, that is,

(22) {500 €A™ ¢ lim V(zh,yk) = o},

and hence (22) has also probability 1; this proves the claim. d
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Remark. Equation (21) is the only point of this paper that makes use of the bound
(10) provided by Theorem 2; the reader will of course notice that the second inequality
is rather loose. Indeed I have chosen to present Theorem 2 in the introduction because
that result provides the state-of-the-art bound for the scenario approach with convex
constraints, but an inequality similar to (21), and equally sufficient for my purposes,
would follow also from the pioneering result by Calafiore and Campi [3], which in the
present context would read

(23) pN V(zy,yn) > €] < (d]—i\—fl) (1—g)N-d=1 |

PROPOSITION 13. Suppose that (xn)F_q s a sequence in X converging to Too asS
N — oo and that (yn)F_; is a nondecreasing sequence in R such that yny <7 < 400
for all N € N. Then
N—o0

In particular
liminf V(zn,yn) > V(Zoo, Yoo ),
N —oc0

where Yoo = My 00 YN -

Proof. Consider random variables of the form 1(f5(zn) > ). First note that, for
alld € Aand N e N, I(fs(xn) > 9) < L(fs(xn) > yn), since yn < 7.

Now fix § € A and note that the indicator function can only take the values 0
and 1; therefore if liminfy_, o L(fs(zn) > 7) = 0, it must hold that fs(zxn) < 7 for
infinitely many NN; then, by lower semicontinuity,

[5(2o0) < liminf fs(zn) < 7.
N—oo

By contraposition, if fs5(xe) > ¥, then liminfy_ o 1(fs(zn) > g) = 1. It follows
that

]l(f(;(.’lﬁoo) > g) < lim inf ]l(f(;(l‘N) > g) < liminf]l(fg(mN) > yN).
N—o0 N—o00
Finally
liminf V(zy,yn) = liminf P [fs(zn) > yn]
N—00 N—o00

= liminf/A 1(fs(xn) > yn) dP

N—oc0

Z/IEninfl(fg(xN)>yN) dp

A — 00

2/ 1(f5(2a0) > §) dP = V(2me, 7),
A

where the first inequality is due to Fatou’s lemma [18, p. 187]. The second claim
follows trivially letting § = yoo. 0

We are now ready to prove the main results of the paper.

THEOREM 14. Suppose that Assumptions 1 and 2 hold and that L is proper. Then

1. L attains its minimum y** = mingex L(z) < +00 at at least one point x** €
X;
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2. irrespective of the uniqueness of x**, it holds that

lim yy =y** P°-almost surely;
N—o0

3. if, moreover, x** is unique, then

lim 2z} = 2™ P*-almost surely.
N—o0

Proof. Since L is proper, lower semicontinuous, and also coercive by Proposition
11, by the Tonelli-Weierstrass theorem there exists in X at least one minimum point
x** of L attaining a finite minimum y** = L(z**) < +o00. This proves point 1.

To prove point 2 first note that, by Lemma 10, there exists a set D; C A with
probability 1 such that, for all 6> € Dj, there exists N e N such that f X 1s coercive.
Moreover, by Proposition 12, there exists a set Do C A with probability 1 such
that, for all 6> € Dy, V(z%,yy) — 0 as N — co. And by Proposition 9 the set

Dy = {for all N e N, fy(z) < L(z) forall z € X}

= ﬁ {fN(a:) < L(z) for all z € X}

N=1

has probability 1. Let D = D; N Dy N D3 (hence also P [D] = 1).

Fix a §* € D and the corresponding N. For N > N , the f ~v’s form a nondecreas-
ing sequence of coercive functions, all bounded from above by L, and their minima
yx form a nondecreasing sequence of real numbers bounded from above by y**, which
therefore has a limit y% . Let C = {x € X' : fN(x) < y**}. C is nonempty because it
contains at least the minimum point z**, closed because fN is lower semicontinuous,
and bounded because fN is coercive. Thus, C' is nonempty and compact. For all
N > N, since fy(z) > fN(ac) for all z € X, it holds that {z € X : fy(z) < y™} C C.
Therefore z3; € C for all N > N, and since C' is compact there exists a converging
subsequence (2, )72, of the sequence (z})%_ .- Let 23, = limy,o 2, ; of course it
holds also that lim_s o yj‘\,k = y% . Now

Plfs(x3) > yo] = V(5 v5)
< klin;o V(zy,,yn,) (Proposition 13)

=0 (because 6°° € Da).
Hence P [f5(z%,) > y%] =0, and consequently
(24) L(z3,) = inf{y e R : P[fs(23) >yl =0} <yl

Since y** = min L, it follows that y%, > y**; on the other hand y% < y** by construc-
tion. Therefore limy_,o Y5 = ¥**; and since the choice of §°° € D was arbitrary and
P>°[D] = 1, this proves point 2.

To prove point 3, suppose that ** is unique. Fix §*° € D and the corresponding
N , consider the nonempty compact set C as in the proof of point 2, and recall that
xy € Cforall N > N. Suppose also, for the sake of contradiction, that z7; does not
converge to **. Then there exists n > 0 such that the set {x € X : ||z — **| > n}

contains infinitely many terms of the sequence (x*N)?:N Since {||z — =**|| > n}
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is closed, the intersection K = {||lz — 2**|] > n} N C is nonempty and compact,
and hence from the sequence (x}"\,)?z 5 We can extract a converging subsequence
(T, )72, of elements in K and let x%, = limy o 7}, . (Again, it also holds that
limy, 0 YN, = Y5-) But then z3, € K, and hence ||z, — 2**|| > 7 so that x}, # z**.
Finally,

Yy =L(z™) < L(z%,) (uniqueness of the minimum point)
<yi (inequality (24)).

That limy_,00 Y& > ¥** is a contradiction (indeed y3, < y** for all N), stemming
from the assumption that 3 does not converge to **. Hence limy_,o £}y = 2** for
all §°° € D; this concludes the proof of the theorem. 0

THEOREM 15. Suppose that Assumptions 1 and 2 hold and that L takes the only
value +00. Then

lim yy = +oo P-almost surely.
N— 00

Proof. Construct the set D C A, with probability 1, exactly as in the proof
of Theorem 14, and fix §* € D and the corresponding N. For N > N, the fN’s
form a nondecreasing sequence of coercive functions, and their minima y3 form a
nondecreasing sequence of real numbers. For the sake of contradiction suppose that,
for all N, y& < g for a certain § € R. Let C = {z € X : fN(:c) < g}; the set C' is
nonempty and compact, and for all N > N, since fN(x) > fN(x) for all z € X, it
holds that {z € X : fy(x) < §} C C. It follows that 2% € C for all N > N, and
due to the compactness of C' there exists a converging subsequence (z7, )32, of the
sequence (z3)3_ - Let z3, =limy_,o x, ; We have

Pfs(x3) > 9] = V(2% 7)
< kllrrgo V(zy, yn,) (Proposition 13)

=0 (because 6°° € D).
Hence P [f5(z%,) > §] = 0, and consequently
L(zZ) =inf{y € R : P[f5(2) >y] =0} <.

This is a contradiction (L(z%,) = +0o0), stemming from the assumption that the
sequence (yj‘v)?:N is bounded from above; hence limy_,o Y5 = +00. Since §*° € D
is arbitrary and P [D] = 1, this proves the theorem. |

5. Back to the scenario approach. This section is meant to apply Theorems
14 and 15 to the scenario problem (5) and to the essential robust problem (7) intro-
duced in Section 1; let therefore X = © C R¢ and = = . Recall from section 2.1 that
the solution of (5) is equivalent to the minimization of fy(6) = maxi—1..n f5w (),
where

7O if o€ Oy,

400 otherwise,

(25) f5(0) = c'o + Zo,(0) = {

and denote

0 = arg min i (0),
6ee

L) _ Tpx
yn = min fy(6) = c Oy
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Assumption 1 requires that for all § € A the function f5 is convex and lower
semicontinuous. Since the term ¢ is linear, this is the same as requiring that Ze,
is convex and lower semicontinuous; and since O is the O-sublevel set of Zg, this is,
in turn, equivalent to the requirement that ©; is convex and closed. Hence in the
present setting Assumption 1 can be restated as follows.

ASSUMPTION 3. The set © C R? is convex and closed; for all § € A, Os is conver
and closed. For all 0 € ©, the event {0 € ©s} belongs to F.

Assumption 2 requires that f N is almost surely proper. Since fN(O) < 400 if and
only if 6 belongs to all the sets Oy, this is equivalent to the requirement that the
intersection of these sets is nonempty. Moreover, the assumption requires that the
probability of the event { fN is coercive} is nonzero for a certain N. I v 1s coercive
when its t-sublevel set is either empty (when ¢ < min fg) or bounded (equivalently,
compact, since f v 1s lower semicontinuous and all its sublevel sets are closed). Thus,
for the problem at hand, Assumption 2 can be restated as follows.

ASSUMPTION 4. For all N € N, PN-almost surely ﬂf\il Osiy # . Moreover,
there exists N € N such that the event

N
for some t € R, the set m O N{c"h <t} is nonempty and bounded
i=1

has nonzero probability.

Next, I need to translate in the language of problems (5)—(7) the distinction
between when L is proper and when it takes the only value +oc. This is done in the
following lemma.

LEMMA 16. If the functions fs, 6 € A, are defined as in (25), then L is proper
if and only if there exists 8 € © such that P [0 € @5] =1, d.e., if and only if the
essential robust problem (7),

min c¢' 6
EG)

subject to P[0 € ©s] =1
is feasible. If L is proper, the solution of problem (7) is argmingeo L(6).

Proof. For any y € R, fs(8) > y if and only if ¢ > y or 6§ ¢ ©s. Therefore
P[fs(0) >y] =P[c"0 >y or b ¢ O], and we recover three inequalities:

Pfs(6) >yl <1(c'0>y)+ P[0 ¢ O],
(26) Pfs(0) >y] > 1(c"0 > y),
P[fs(0) >yl > P[0 ¢ O]

If P[0 ¢ ©s5] =0 (equivalently P[0 € ©5] = 1), then the first two inequalities in (26)
imply P [f5(0) > y] = 1(c"0 > y), and hence P [fs(f) > y] =0 if and only if ¢ < y
and, by definition,

L) =inf{yeR : P[f;(0) >y| =0} =inf{yeR : c'<y}=c"0
If instead P[0 ¢ ©s] > 0, then the third inequality in (26) implies P [fs(0) > y] > 0
for all y € R and, again by definition,

L(6) =inf {y €R : P[f5(6) >y] =0} = inf & = +oc.
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Summing up,

T : _
L(Q):{ce if P[0 € O] =1,
+o00 otherwise.

Thus, if there exists § € © such that P [é € @5] =1, then L(#) = ¢' 0 and L is proper;
otherwise L takes the only value 400, and this proves the first claim. From the last
observation it is also clear that

min ¢'0 subject to P[0 €O =1

0o
= Igniél L(9) subject to L(0) < +o0
€
=min L(#) (ifLi :
min (#) (if L is proper);
the second claim follows immediately. O

Remark. At first sight, it might seem that the problem of finding arg mingeco L(6),
that is. the unconstrained minimization of a convex and lower semicontinuous func-
tion, being conceptually simpler than the constrained minimization in problem (7),
could be simpler also computationally, i.e., more convenient to solve by means of nu-
merical methods. This is in general false. Letting aside the choice of a method to
minimize L, the true difficulty here is the computation of L: indeed deciding whether
L(6) = ¢"0 or L(0) = +oo for a given § may be an intractable problem.!6 The reason
of the computational difficulty is made explicit by the following example, proposed
by Ben-Tal and Nemirovski in [1, section 3.2.2, p. 787]. Consider the robust problem

min ¢' 0
(27) oeR™
subject to 0" diag(8)%0 < 1 for all § € A,

where A is a parallelotope in R™ centered at the origin; assume that A is equipped
with, say, a uniform distribution. The corresponding essential robust problem is

min c'o
(28) fcR™
subject to P [HTdiag((S)zO < 1] =1.

Both (27) and (28) are feasible (the former because § = 0 satisfies the constraint
0T diag(0)%0 < 1 for all § € A, and the latter because P [A] = 1); actually, the two
problems are the same.'” But, for instance, deciding the robust feasibility of the point
§=1[111--- 1T, that is, deciding whether or not L(f) is finite, amounts to verifying
that ||d]|2 < 1 for all § € A, and this is known to be a NP-hard problem. (Refer to
[1] for more details.) O

From the standpoint of section 1 the following theorem may also be thought of as
the main result of the paper. Nevertheless, in view of Lemma 16 and of the previous
discussion, it is clearly just a restatement of Theorems 14 and 15, and therefore I
leave it without proof.

16The same story can be told about the computation of the convex and lower semicontinuous
function S, whose minimization corresponds to the solution of the robust problem (1).

17Problems (27) and (28) coincide because the mapping § + 0T diag(8)26 is continuous for all 8
and, assuming uniform distribution, the support of P is the whole A: this implies L = S, as has
already been mentioned in a footnote.
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THEOREM 17. Suppose that Assumptions 3 and 4 hold. If the essential robust
problem (7) is feasible, then
1. problem (7) admits a solution 0**;
2. irrespective of the uniqueness of 6**, it holds that

lim ¢

To}kv _ CTQ**
N—o0

P>°-almost surely;
3. if, moreover, 0** is unique, then
2 2 )

lim 6% =60 P™-almost surely.
N —o00

If instead problem (7) is infeasible, then

lim ¢'@y = 400 P>-almost surely. 0
N— 00

To conclude the discussion, I will try to provide a bit more insight about the
possible infeasibility of the essential robust problem. It has already been observed, in
a comment below Definition 3, that the requirement that fN is almost surely proper
(Assumption 2) does not exclude that L = +00 so that limy .0 fn(f) = 400 almost
surely for all 8 € O. In pretty much the same way, ﬂf\;l Os) # @ does not exclude
that N2, ©54 = &; indeed this is what happens almost surely in the “bad” case
where problem (7) is infeasible and ¢"@% — +oo. This connection is clarified by the
following result.

PROPOSITION 18. Under the hypotheses of Theorem 17, problem (7) is infeasible
if and only if

oo
m Osi =@ P-almost surely.
i=1

A necessary condition for this to hold is that ﬂf\;l Oy is PN -almost surely unbounded
for all N.

Proof. Suppose that problem (7) is infeasible. Consider a 6*° € A* such that
Niz, Os0 is not empty. For any such §°° there exists 6 € ();2; Osa), and it holds
that imy 00 Yy < ¢"6 < 4o00. Hence, by the last claim of Theorem 17, the set of
all such 6 has probability 0. Vice versa, suppose that almost surely ()~ Q50 = @
and, for the sake of contradiction, that there exists § € © such that P [5 € @5] =1.
Then, by independence,

pee [9 S ﬂ @5(1')

i=1

N
_ 1 N |p )
= ]\;gnoo P [9 S ﬂ @5(1)

i=1

N
= ngnoolj[l P [é S @5(1’)] =1,

i.e., almost surely 6 € ﬂf; O;), which is a contradiction. Hence such a @ does
not exist, and problem (7) is infeasible; this proves the first claim. To prove the
second claim suppose again that almost surely (2, ©54) = @ and, for the sake of
contradiction, that ﬂf\;l Os» is bounded with nonzero probability for a certain V.
Let C = ﬂgf{lw Ose). The sets (Ck)52, form a nonincreasing sequence - - - Cy_1 2
Ci 2 Cg41 - -+ of nonempty closed sets; but since

N

ﬂ O is bounded} >0 forall k € N,

N
pN ﬂ Osknti) 1S bounded} = PN
i=1

i=1
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P°°-almost surely there exists k € N such that ﬂf\il Osin+iy is bounded. Hence,
for k > k the intersections Cj, are nonempty and compact. It follows [16, Corollary
to Theorem 2.36] that (72, Os) = Npeo Ck # @, P>¥-almost surely. This is a
contradiction stemming from the assumption that P [ﬂf\il O;c) is bounded] > 0;
hence PV [ﬂfil O;) is bounded] = 0 for all N, and this concludes the proof. 0

Remarks. (A) If problem (7) is infeasible, then, of course, problem (1) is also
infeasible, because P [A] = 1. (B) The main point of the second claim of Proposition 18
is to help establish feasibility by contraposition: for example, if P [©; is bounded] > 0
or, more generally, if there exist finitely many events, say, A1,..., Ay C A, each
with positive probability, such that for any choice of §¢) € A;, i = 1,..., N, the set
Os1) N -+ N Oy is bounded, then problem (7) must be feasible. Moreover, if these
events exist the second part of Assumption 4 is automatically enforced, because if
ﬂfil ©s» is bounded there always exists t € R such that ﬂfil Qs C {c'8 < t}.
The message of Proposition 18 and of this remark is illustrated in the following, final,
example. 0

Ezample 6. Let p € (0,1), © = R2, 0 = (21, 22), ' = 21+ x5, and consider three
cases. (A) Suppose that § = (r,7), where r is a binary variable taking values 1,2 with
equal probability 1/2 and =y is a random variable independent of r with geometric
distribution P [y = n] = p(1 — p)™. Let moreover

O — {(xl,xQ)ERQ : xlzfy} ifr=1,
o {($1,$2)€R2 : x227} if r=2.

Letting Gn1 = max;_;___y. po—1 7" and G2 = max;_;__n. n—p ¥, it holds

that ﬂf\il Os5 = {1 > Gn1, 2 > Gn2}. In this case, P*-almost surely, as N —

oo both Gn,; and G2 tend to 400, the minimum CTG*Z‘V = Gn,1 + Gn2 also tends

to 400, and, as claimed by Proposition 18, (1,2, ©s5w = @; and of course ﬂfv:l O

is PV-almost surely unbounded for all N. A pictorial view of this case is shown in
Figure 6(a).

(B) Suppose that § = (r,~) as before, but this time let
o, (r1,72) €R? : 1y 2—#
(501,:132) S Rz i) Z

ifr=1,
1 o
7ﬁ lf r=2.
(See Figure 6(b).) As before ﬂfil O;y is PN-almost surely unbounded for all N,
but now ¢"% = —1/(Gn1 + 1) — 1/(Gna2 + 1) tends almost surely to 0 (i.e., the
minimum attained by problem (7)), and @ # (2, 5@ = the first quadrant of the
21,2 plane. This point shows that the unboundedness of ﬂfil Osi) for all N is only
necessary for the infeasibility of (7), not sufficient.
(C) Finally, suppose that r is a ternary variable taking values 1,2, 3 with equal
probability 1/3, § = (r,) as before, and

(x1,72) € R? : ZE1Z*# ifr=1,
O = (21,72) € R? : xQZ—ﬁ if r=2,

{(xl,x2)€R2 :oxp <5, x2§5} if r = 3.

(See Figure 6(c).) It is immediate to check that ﬂf\il O;y # & for all N. Moreover,
although ©; is unbounded for every § € A, the events A; = {§ € A : r = 1},
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FiG. 6. Instances of finite-sample problems for each case in Example 6. Light gray: ﬂfil O50i) 5
dark gray: N2, Osciy; © = O3, ® = essential robust solution. (a) The essential robust problem is

infeasible. (b) The essential robust problem is feasible but ﬂfvzl O5¢i) s PN -almost surely unbounded
for all N. (c) The essential robust problem is feasible and ﬂfvzl O s compact.

Ay ={6 € A:r =2} and A3 = {0 € A : r = 3}, each with positive probability,
are such that if 60 € A;, i = 1,2,3, then the set Os) N Og2) N Oy is always
bounded. According to the second claim of Proposition 18, this is enough to establish
the feasibility of problem (7). P>-almost surely, the solution 6% converges to the
origin (i.e., the solution of (7)) and ;2 O = [0,5] x [0, 5]. O

6. Conclusions. In this paper I have shown that the solution of a convex sce-
nario program, subject to independent and identically distributed constraints that,
almost surely, sooner or later confine it to a compact set (coercivity), converges almost
surely to the solution of a suitably defined essential robust problem. Future work may
be dedicated

e to searching for weak enough conditions such that the scenario solution con-
verges to the solution of the robust problem, i.e., nice sufficient conditions to
ensure that L(z) = S(z) at least at the minimum points z = 2** of L;

e to weakening the convexity hypothesis. On one hand, it should not be difficult
to show that the convergence proved here holds also for certain families of
nonconvex problems, for example, the one considered in [13, section IV].
On the other hand, the scenario approach can be applied also to nonconvex
problems, albeit with a different a posteriori assessment method (see, e.g., [6],
[8]), but to my knowledge no general a priori bounds like (10) or (23), powerful
enough to exploit the Borel-Cantelli lemma (proof of Proposition 12), exist
without the assumptions of convexity and finite-dimensionality (X C R?).
Convexity has also been used to prove that, for all N, almost surely f N <L
(Proposition 9), but I conjecture that a wuniform bound is not necessary to
establish the main results.
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