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CONSISTENCY OF THE SCENARIO APPROACH∗
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Abstract. This paper is meant to prove the consistency of the scenario approach à la Calafiore,
Campi, and Garatti with convex constraints. Scenario convex problems are usually stated in two
equivalent forms: first, as the minimum of a linear function over the intersection of a finite random
sample of independent and identically distributed convex sets, or second, as the min-max of a finite
random sample of independent and identically distributed convex functions. The paper shows that,
under fairly general assumptions, as the size of the sample increases the minimum attained by the
solution of a problem of the first kind converges almost surely to the minimum attained by a suitably
defined “essential” robust problem (or diverges if such a robust problem is infeasible), and that the
minimum attained by the solution of a scenario problem of the second kind converges almost surely
to the minimum of the pointwise essential supremum taken over all the possible convex functions (or
diverges if such essential supremum takes the only value +∞). In both cases, if the solution of the
essential problem exists and is unique, the solution of the scenario problem converges to it almost
surely.

Key words. scenario approach, stochastic programming, convex programming, sample-based
optimization, min-max optimization

AMS subject classifications. 90C15, 90C25, 90C47

DOI. 10.1137/16M109819X

1. Introduction. Robust convex optimization deals with programs of the fol-
lowing form:

(1)
min
θ∈Θ

c>θ

subject to θ ∈ Θδ for all δ ∈ ∆,

where Θ is a closed convex subset of Rd, ∆ is an arbitrary set (possibly infinite), and
to every δ ∈ ∆ there is associated a closed convex subset Θδ ⊆ Θ. Any Θδ, δ ∈ ∆,
is interpreted as an additional constraint to the nominal problem minθ∈Θ c>θ, i.e.,
a constraint that may appear in a practical instance but whose actual occurrence is
not known in advance; the solution of (1) is thus a safeguard against all the possible
deviations from the nominal problem.

In practical applications dealing with all the possible constraints Θδ, δ ∈ ∆, may
be overkill, and discarding a small fraction of constraints, i.e., a small subset of ∆, is
often acceptable. The set ∆ models the lack of knowledge in an optimization endeavor,
and in science and engineering the natural way to model uncertainty is through prob-
ability; thus, from now on, I will assume that (∆,F ,P) is a probability space, where
P describes the chance of a constraint set Θδ to occur. Moreover, (∆N ,FN ,PN ) will
denote the N -fold Cartesian product of ∆ equipped with the product σ-algebra FN
and the product probability PN = P × · · · × P (N times). A point in (∆N ,FN ,PN )
will thus be a sample (δ(1), . . . , δ(N)) of elements drawn independently from ∆ ac-
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cording to the same probability P. One possible approach to weaken problem (1) by
accepting a small portion of constraints, i.e., a subset of ∆ with small probability ε,
to be violated, is the following so-called chance-constrained problem:

(2)
min
θ∈Θ

c>θ

subject to P [{δ ∈ ∆ : θ ∈ Θδ}] ≥ 1− ε.

Let me provide a visual explanation of the difference between robust and chance-
constrained problems with a toy example.

Example 1. Suppose that ∆ = [−1, 1], and consider the problem

(3)
min

(x,y)∈R2
x+ y

subject to (x− δ)2 + y2 ≤ 4 for all δ ∈ ∆.

Clearly, (3) is an instance of problem (1), where θ = (x, y) and Θδ is the closed ball
with center (δ, 0) and radius 2. A pictorial view of the problem is shown in Figure 1(a),
where the set ∆×{0} containing the center of each closed ball is the thick line segment
at the center of the plot. The whole point of robust programming is that each ball may
be the “true one” that will show up in reality; some balls represent favorable situations
(the leftmost ones) and other bad situations, but in order to take into account all the
constraint sets, feasible points are a priori confined to their intersection: the feasible
set of problem (3) is indeed the white oval at the center of the plot, and its solution
is marked with a bullet (•). Suppose now that ∆ = [−1, 1] is equipped with a density
and that we are allowed to improve the solution discarding a subset B ⊂ ∆ with small
probability P [B] = ε. The corresponding chance-constrained problem is

(4)
min

(x,y)∈R2
x+ y

subject to P
[
{δ ∈ ∆ : (x− δ)2 + y2 ≤ 4}

]
≥ 1− ε.

The setup is shown in Figure 1(b): the feasible set has been enlarged, and the solution
has improved a bit, at the cost of neglecting the set B ⊂ ∆ depicted in light gray.
The balls Θδ with a center (δ, 0) such that δ ∈ B (partially visible on the right
with light gray background) do not contain the solution •; the main point of chance-
constrained programming is that the probability ε that one such ball pops up in
reality, dooming the solution to be wrong, is small; in real-world applications this risk
is often acceptable.

Chance-constrained programming is now a well-known subject in stochastic opti-
mization; it has been studied systematically for the first time in the work of Prékopa
(see, e.g., the seminal work [14] and the references therein; see [17, Chapter 1] for an
introduction and some motivating examples). A well-known drawback of problem (2)
is that it is usually hard to solve, because its feasible set is not necessarily convex de-
spite the convexity of the sets Θδ. (In this respect, Example 1 is really a toy problem.)
Another aspect of (2) that seems innocuous but that I consider a drawback—being
often unrealistic in practice—is that it requires the exact knowledge of P and of the
mapping δ 7→ Θδ.

Another way to weaken problem (1) is, in Marco Campi’s words, to “let the data
speak,” to solve a random problem with finitely many constraints, and to provide a
high-confidence guarantee on its solution. This method is called the scenario approach



CONSISTENCY OF THE SCENARIO APPROACH 137

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3 optimization direction

∆

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3 optimization direction

∆ B

(a) (b)

Fig. 1. Example 1: (a) Robust problem (3), (b) Chance-constrained problem (4).
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Fig. 2. Instance of scenario program with sample size N = 15; the solution θ∗N is marked with
•. The centers (δ, 0), δ ∈ B, of the balls Θδ that do not contain θ∗N are plotted in light gray.

and was introduced in [3], initially aiming at robust control design. (See also [7] for a
nice introduction.) Its fundamental ideas develop as follows: it is supposed that the
experimenter can observe a finite sample of independent and identically distributed
constraint sets {Θδ(i)}Ni=1, extracted according to PN ; s/he forms the problem

(5)
min
θ∈Θ

c>θ

subject to θ ∈ Θδ(i) for all i = 1, . . . , N

and computes its solution θ∗N . Each element Θδ(i) of the finite sample is called a
scenario, and problem (5) is called a scenario program; an instance of (5), along the
lines of Example 1, is shown in Figure 2. Before observing the constraints, the solution
θ∗N may be regarded as a random vector over ∆N , and hence the set B ⊂ ∆ mapping
to constraints {Θδ}δ∈B that do not contain θ∗N is a random set, and its probability
P [B] is a random variable over ∆N . The scenario approach attaches to θ∗N a certificate
of this form:

the probability that P [B] ≤ ε is always greater than or equal to 1− β,

where β is a parameter that depends only on the sample size N and the dimension
d of the problem, and that decreases very quickly as the sample size increases. After
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observing the constraints, when the solution θ∗N has been computed, the experimenter
can claim that P [B] ≤ ε with confidence 1− β.1

The scenario approach has a number of advantages over chance-constrained pro-
gramming. First, every realization of problem (5) is convex and, the sample of con-
straint sets being finite, usually simple to solve. Second, for any fixed ε ∈ (0, 1),
the sample size N has a logarithmic dependence on the confidence parameter β
(N ∼ log(1/β)), and hence to decrease β of k orders of magnitude it is sufficient
to increase N by a factor k; this allows one to attain very high confidence (e.g.,
1− β = 1− 10−10) or, so to say, “practical certainty,” with a relatively small sample
size N . Third, and most important, the true fundamental assumption of the scenario
approach is just that δ(1), . . . , δ(N) are independent and identically distributed; except
for this, the guarantees on θ∗N provided by the various developments of the theory are
all universal, in the sense that they hold irrespective of P and of the mapping δ 7→ Θδ.
(In other words, the knowledge of P and δ 7→ Θδ is not required.) Furthermore, the
theory of convex scenario optimization provides insight about chance-constrained pro-
gramming: indeed a “hot” research topic is the connection between the probabilistic
guarantees on the solution of (5) and the feasibility of (2); see, e.g., [5], [13] for recent
developments. To formalize the above discussion, consider the following definition.

Definition 1. Let θ ∈ Θ. The point θ violates the constraint set Θδ if θ /∈ Θδ.
The violation probability of θ is defined as follows:

V(θ) = P [{δ ∈ ∆ : θ /∈ Θδ}].

For any ε ∈ (0, 1), θ is said to be ε-robust if V(θ) ≤ ε.
When this does not generate ambiguity, throughout the paper I will adopt the

notation P [θ ∈ Aδ] and P [fδ(θ) ∈ B] to denote the probabilities P [{δ ∈ ∆ : θ ∈ Aδ}]
and P [{δ ∈ ∆ : fδ(θ) ∈ B}], respectively, it being understood that P [·] captures the
variable δ. With this convention the violation probability of θ reads V(θ) = P [θ /∈ Θδ].

Consider problem (5), and denote θ∗N its solution; since θ∗N is a random variable
over (∆N ,FN ,PN ), so is its violation probability V(θ∗N ). (Measurability issues are
addressed in [13].) The following theorem is a milestone of the scenario approach with
convex constraints.

Theorem 2 (Campi, Garatti). For any ε ∈ (0, 1), irrespective of P and of the
mapping δ 7→ Θδ, the following bound holds:

(6) PN [θ∗N exists and V(θ∗N ) > ε] ≤
d−1∑
k=0

(
N

k

)
εk(1− ε)N−k =: β.

For the proof of Theorem 2, the reader is referred to the paper [4].2 It is shown, there,
that the bound (6) is tight, i.e., that there exists a class of so-called nondegenerate
problems for which (6) holds with equality; for such problems, V(θ∗N ) is a random
variable with Beta(d,N+1−d) density, irrespective of P. (For nondegenerate problems

1For comparison, recall that in chance-constrained programming P [B] = ε is a constant, fixed in
advance.

2Strictly speaking, Theorem 2 does not require that the solution θ∗N to problem (5), when it
exists, is unique; nevertheless, it is customary in the scenario approach literature to assume that it
is possible to isolate a single solution, when there are many, by means of a “tie-break” rule. I will
adhere to this convention and refer to “the solution θ∗N” rather than “a solution θ∗N ,” although in
the following this will be needed only to make Theorem 2 work properly.
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Fig. 3. Solution of the robust problem (�) and of the essential robust one (•).

in min-max form—see section 2.1—much more is known; see, e.g., [9] for a recent
more general result.) The logarithmic dependence between β and N descends from
the definition β :=

∑d−1
k=0

(
N
k

)
εk(1 − ε)N−k; for a detailed discussion see, e.g., the

introduction of [4] and the comparison with [3] therein.
Theorem 2 says that when θ∗N exists it is ε-robust with confidence 1 − β. If

ε is small and N big enough so that the confidence 1 − β is very high—“practical
certainty”—one can say that the scenario minimum c>θ∗N is “close enough” to the
“robust minimum” (from a risk-analysis perspective, albeit not necessarily in the
metric sense); and I dare say, in statistical jargon, that c>θ∗N is a good estimator of
the “robust minimum.” I claim that, under fairly general hypotheses, this estimator
is also consistent—hence the title of the paper—i.e., c>θ∗N converges to the robust
minimum as N → ∞. But there is a big caveat here. Unless the probability P and
the mapping δ 7→ Θδ are particularly well-behaved, the true robust minimum is not
the solution of problem (1); it is instead the solution of the following one, that I like
to call the essential robust problem:

(7)
min
θ∈Θ

c>θ

subject to P [θ ∈ Θδ] = 1.

The meaning of the solution of (7) and its fundamental difference with the solution of
(1) are illustrated in Figure 3, along the lines of Example 1. Suppose that the sample
space ∆ = [−1, 1] of Example 1, equipped, e.g., with a uniform density, is augmented
with two points δ̄1 = −3/2 and δ̄2 = 3/2 in such a way that P

[
{δ̄1}

]
= P

[
{δ̄2}

]
= 0.

Despite the fact that the balls centered at (δ̄1, 0) and (δ̄2, 0) show up with probability
0 and are completely inessential, the original robust problem must take them into ac-
count; its solution is marked with � in the plot. On the other hand, the essential robust
problem (7) disregards the negligible event {δ̄1, δ̄2}; its solution is marked with •.

To make my claim more rigorous, let θ∗∗ be a solution of the essential robust
problem (7). By saying that θ∗N is consistent I mean that, under fairly general as-
sumptions, c>θ∗N → c>θ∗∗ almost surely as N → ∞, and that if θ∗∗ is unique (• in
Figure 3), then also θ∗N → θ∗∗ almost surely. This is precisely the main message of the
paper. The message can, and will, be translated in the language of min-max optimiza-
tion; such a translation will lead to more intuitive assumptions and to simpler proofs;
besides, it will make some justice of the otherwise arbitrary adjective “essential.”
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Structure of the paper. Section 2 is meant to show that the solution of the
scenario program (5) is equivalent to the solution of a min-max problem, and to the
introduction of a function L whose minimization is equivalent to the solution of the
essential robust problem (7). Section 3 is dedicated to the proof of some fundamental
properties of L (to start with, convexity and lower semicontinuity). Section 4 contains,
among other properties of the function L and of the violation probability V, the rig-
orous statement and the proof of the main results of the paper (Theorems 14 and 15).
In section 5 I “translate” the assumptions of Theorems 14 and 15, which are stated
with respect to min-max optimization, back to the language of problems (5)–(7), and
restate the main result with respect to these problems (Theorem 17). The discussion
preceding and following Theorem 17 shows that c>θ∗N → +∞ if and only if problem
(7) is infeasible, and that in turn this happens if and only if

⋂∞
i=1 Θδ(i) = ∅ almost

surely. Section 6 concludes the paper with some final remarks and acknowledgments.

2. Formalization of the problem: min-max optimization. To establish
the main convergence results, I find it convenient to express constraints in terms of
convex functions rather than convex sets, and to recast scenario programs as min-
max programs. In this section I will show that the two approaches are equivalent,
then show that the concept of max needed to recast the robust problem is somewhat
subtler than one would expect at first sight, formalize two assumptions that will be
used throughout the paper, state the main results, and try to provide some insight
about the assumptions and their consequences, along with a brief comparison with
some recent results in the literature.

2.1. Scenario min-max problems. Let (∆,F ,P) and (∆N ,FN ,PN ) be the
probability spaces defined at the beginning of section 1, let X be a closed convex
subset of Rd, and suppose that to each δ ∈ ∆ there is associated a convex function
fδ : X → R, taking values in the extended real set R = R ∪ {+∞}. Consider the
following min-max problem:

(8)
let f̂N (x) = max

i=1···N
fδ(i)(x);

find y∗N = min
x∈X

f̂N (x), x∗N = arg min
x∈X

f̂N (x),

where (δ(1), . . . , δ(N)) ∈ ∆N .3 The epigraphical form of (8) is as follows:

(9)
min

(x,y)∈(X×R)
y

subject to fδ(i)(x) ≤ y for all i = 1, . . . , N.

On one hand, problem (9) is a particular, (d+1)-dimensional instance of problem (5);
this follows immediately letting Θ = X × R, θ = (x, y), c>θ = y, and Θδ = {(x, y) ∈
X × R : fδ(x) ≤ y}, and assuming, by convention, that +∞ must be understood as
the minimum of problem (9) if such problem is infeasible. On the other hand, every
problem in the form (5) can be formulated as a min-max problem in the form (8). To

3Following the literature of the scenario approach, I assume that a single solution x∗N ∈ X can
be isolated by means of a “tie-break” rule even if many solutions exist, although this is not really
relevant to my discussion and is only necessary to make Theorem 2 work properly. Thus, in the rest
of the paper arg minx∈X f̂N (x) will always denote an element of X , not a subset of X as it would
naturally mean.
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do this, let X = Θ, x = θ, and for all δ ∈ ∆ define fδ : Θ→ R as follows:4

fδ(θ) = c>θ + IΘδ(θ) =

{
c>θ if θ ∈ Θδ,

+∞ otherwise.

Then problems (5), (8), and (9) are equivalent, i.e., they yield exactly the same
solutions x∗N = θ∗N , y∗N = c>θ∗N , and hence any result about the convergence of the
solution (x∗N , y

∗
N ) of (8), as N →∞, reflects on a similar result about the convergence

of the solution (θ∗N , c
>θ∗N ) of (5), and vice versa.

In the setting of problem (9), the violation probability of (x, y) reads V(x, y) =
P [fδ(x) > y], and since problem (9) is (d+ 1)-dimensional, the bound established by
Theorem 2, provided that the solution (x∗N , y

∗
N ) exists, becomes

(10) PN [V(x∗N , y
∗
N ) > ε] ≤

d∑
k=0

(
N

k

)
εk(1− ε)N−k.

Since Theorem 2 lays the foundation for the main results of this paper, and since
for the bound (10) to make sense it is necessary to ensure that a solution of (8) exists
at least for N big enough, I need to introduce two assumptions that will be sufficient
for this to hold. The first assumption goes as follows.5

Assumption 1. The domain X ⊆ Rd is convex and closed; for all δ ∈ ∆, fδ :
X → R is convex and lower semicontinuous. For all x ∈ X , δ 7→ fδ(x) is P-measurable
(i.e., f(·)(x) is a random variable).

An immediate consequence of Assumption 1 is that f̂N is convex and lower semicon-
tinuous for all N ∈ N. Without further mention, let us agree that Assumption 1 will
be in force throughout the whole paper. Here follows the second assumption.

Assumption 2. For all N ∈ N, f̂N is PN -almost surely proper.6 Moreover, there
exists N̄ ∈ N such that

PN̄
[
f̂N̄ is coercive

]
> 0.

Remark. If the functions fδ are themselves coercive for all δ ∈ ∆, then the coer-
civity of f̂N follows automatically for all N ∈ N. There are conditions that ensure this
property, which are very easy to check but otherwise rather conservative. One such
condition is, of course, that the domain X is compact. Another condition, assuming

4Here IA(x) is the “indicator function of convex analysis,” which takes the value 0 if x ∈ A and
the value +∞ otherwise. Later in the paper the “indicator function of probability theory” 1A(x),
taking the value 1 if x ∈ A and the value 0 otherwise, will also show up and be denoted 1(x ∈ A)
for the sake of readability.

5For future reference, let me recall here some standard terminology and notation about R-valued
functions. A function F : X → R is lower semicontinuous if, for all x̄ ∈ X , F (x̄) ≤ lim infx→x̄ F (x).
For t ∈ R, the t-sublevel set of F is the set {x ∈ X : F (x) ≤ t}. The following are well-known facts
(see, e.g., [12]): F is lower semicontinuous if and only if all its t-sublevel sets are closed; the pointwise
supremum F (x) = supα∈A Fα(x) of an arbitrary family of lower semicontinuous functions Fα is lower
semicontinuous. The effective domain of a function F : X → R is the set domF = {x ∈ X : F (x) <
+∞}; the closure of domF is denoted domF . A function F : X → R is proper if it has a nonempty
effective domain, i.e., if it does not take the only value +∞. A function F : X → R is coercive if for
all t ∈ R there exists a compact set C ⊆ X including the t-sublevel set of F : {x ∈ X : F (x) ≤ t} ⊆ C.
Of course, if X is compact, then F : X → R is automatically coercive.

6The assumption that f̂N is almost surely proper implies that fδ is proper for almost all δ ∈ ∆.
In general the converse is false: for instance, if fδ(x) = I[δ,δ+1](x), where δ takes the values 0 and 2
with equal probability 1/2, then f̂2(x) = +∞ for all x ∈ R with probability 1/2.
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for simplicity that X = Rd, is that lim‖x‖→∞ fδ(x) = +∞ for all δ ∈ ∆.7 But here
we need substantially less: a practical way to check Assumption 2 is indeed to isolate
finitely many events, say, A1, . . . , AN̄ ⊆ ∆, each with positive probability, such that
for any choice of δ(i) ∈ Ai, i = 1, . . . , N̄ , the function f̂N̄ (x) = maxi=1,...,N̄ fδ(i)(x)
tends to +∞ (or “bumps” against the boundary of X ) as ‖x‖ → ∞.

Example 2. Let δ = (a, b), where a and b are both random variables with uniform
density in [−1, 1]. Let X = R and fδ : R→ R be defined as follows:

fδ(x) = ax+ b.

Clearly, f̂1(x) = fδ(1)(x) (an affine function) cannot be coercive, since all its sublevel
sets are unbounded (or empty, in the negligible event a(1) = 0). On the other hand,
f̂2(x) = max{fδ(1)(x), fδ(2)(x)} is coercive when fδ(1) and fδ(2) have opposite slopes
(then f̂2 is a “V-shaped” function). This happens with probability 1/2, and hence
Assumption 2 holds with N̄ = 2. In view of the above remark, the key property here
is that the functions fδ with positive slope (event A1, with probability 1/2) tend to
+∞ when x → +∞, and those with negative slope (event A2, also with probability
1/2) tend to +∞ when x → −∞; these are the only directions along which x can
tend to infinity when X = R.

2.2. A “meaningful min-max”: Main results of the paper. The objective
of this paper is to prove the almost sure convergence of the empirical minimum y∗N
to, roughly speaking, the “min-max of all the functions fδ for δ ∈ ∆.” But what is
“the maximum of all the functions fδ,” exactly, supposed to mean, since it is clear
that a true maximum may not even exist?8 The first rigorous answer that comes to
mind is, of course,

S(x) = sup
δ∈∆

fδ(x).

S has many nice properties that one would demand from stochastic optimization: it is
convex, lower semicontinuous, and by construction f̂N (x) ≤ S(x) for all x ∈ X . Since
the f̂N ’s form a nondecreasing sequence of functions, it is licit to wonder whether, as
N →∞, f̂N → S in some sense, and maybe whether

(11) y∗N = min
x∈X

f̂N (x)→ min
x∈X

S(x).

Unfortunately, in any useful probabilistic sense the claim (11) is in general false, as
the following example shows.

Example 3. Suppose that δ is a random variable with uniform density in [0, 1].
Let X = R and fδ : R→ R be defined by

(12) fδ(x) =

{
|x|+ 2− δ if δ = 1/n for some n ∈ N,
|x|+ δ otherwise.

Here S(x) = |x|+2 and minx∈X S(x) = 2. However, since δ has a density, it holds that
P [δ = 1/n for some n ∈ N] = 0, and hence f̂N (x) > |x|+ 1 happens with probability
0, and almost surely minx∈X f̂N (x) ≤ 1 for all N ∈ N. A pictorial view of the family
{fδ}δ∈∆ and of S is shown in Figure 4.

7Indeed, assume that lim‖x‖→∞ fδ(x) = +∞. Then, by definition of limit, for all t ∈ R there
exists M > 0 such that fδ(x) > t when ‖x‖ > M . Hence the sublevel set {x ∈ X : fδ(x) ≤ t} is a
subset of the closed ball {x ∈ X : ‖x‖ ≤M}, which is always compact since Rd is finite-dimensional.

8In the following Example 3, for instance, maxδ∈∆ fδ(x) does not exist for any x ∈ X .
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Fig. 4. Gray lines: functions fδ(x) defined in (12); dashed black line: supremum S(x); solid
black line: essential supremum L(x) (see Definition 3).

Since in the scenario approach P and the functions fδ (or the sets Θδ) are un-
known, we cannot exclude that even a single fδ̄, extracted with probability 0, dom-
inates all the other functions fδ, δ ∈ ∆, thus driving the minimum of S by itself
alone. Indeed S is a “useless supremum.” The useful supremum is instead the upper
boundary of the region where all the mass of the functions lies. In Example 3, all the
mass of the functions lies below the upper bound |x| + 1, which is actually the least
such upper bound; anything above |x|+ 1 is negligible and must be discarded in our
discussion. The reader can now safely expect that the minimum of f̂N converges to
minx∈R |x|+ 1 = 1. In fact this is what happens almost surely: |x|+ 1 is the “useful
supremum”! This example leads to the following definition.

Definition 3. Let the function L : X → R be defined as follows:

L(x) = inf {y ∈ R : P [fδ(x) > y] = 0} .

In measure theory L(x) is known as the essential supremum of the function δ 7→
fδ(x) and denoted ess supδ∈∆ fδ(x). Thus, L is the (x-)pointwise essential supremum
of the family of functions {fδ}δ∈∆. The function L is precisely the useful supremum:
it is immediate to check that, in Example 3, L(x) = |x|+ 1 (see Figure 4, solid black
line). Note that, even if f̂N is proper for all N and for any choice of (δ(1), . . . , δ(N)),
L (as well as S) can take the value +∞ for all x ∈ X . The main results of the paper
(Theorems 14 and 15) assert that, under Assumptions 1 and 2,

• if L ≡ +∞, then y∗N → +∞ almost surely;9

• otherwise min L < +∞ exists, and y∗N → min L almost surely;
• if, moreover, arg min L is unique, then x∗N → arg min L almost surely.

For the same reasons why, in general, the solution y∗N does not converge to min S,
in general the minimum c>θ∗N attained by the solution of (5) does not converge to
the minimum of problem (1). It converges instead to the minimum attained by the
solution—now let me call it essential robust solution—of problem (7). The connection
with the main results is fairly intuitive; all it requires is to translate the meaning of L,
and Assumptions 1 and 2, to the domain θ,Θ,Θδ of problems (5)–(7). Once this job

9More rigorously, P∞-almost surely, where P∞ is a probability on the space of infinite sequences
of elements in ∆, compatible with PN for all N ; for more details, refer to the beginning of section 4.
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Fig. 5. Example 4: (a) functions fδ(x) as in (13), (b) functions fδ(x) as in (14).

is done, the main results of the paper can be stated as follows (Theorem 17): under
the equivalent of Assumptions 1 and 2,

• if problem (7) is infeasible, then c>θ∗N → +∞ almost surely;
• otherwise, a solution θ∗∗ of (7) exists and c>θ∗N → c>θ∗∗ almost surely;
• if, moreover, θ∗∗ is unique, then θ∗N → θ∗∗ almost surely.

I will discuss in detail this version of the main results in section 5.

2.3. Discussion of the assumptions and comparison with literature.
Suppose that Assumption 1 holds and that f̂N is proper and coercive for N big
enough. Since f̂N is proper, coercive, and lower semicontinuous, it attains a finite
minimum in X . This is the assertion of the Tonelli–Weierstrass theorem (see, e.g.,
[2, Proposition 3.2.1]), a generalization of the “classical” Weierstrass’s theorem. But
actually the true targets of Assumption 2 are the coercivity of L (Proposition 11)
and the existence of compact sublevel sets. From my point of view, Assumption 1
is natural in any convex optimization problem; but Assumption 2 is truly the sub-
stantial requirement here, and I conjecture that nothing can be established about the
convergence of y∗N if the f̂N ’s are not, in a way or another, coercive for N big enough,
and if L does not have compact sublevel sets. The following example illustrates the
kind of issues that may arise.

Example 4. Let p ∈ (0, 1) and δ be a random variable with geometric distribution
P [δ = n] = p(1− p)n. Let X = R and fδ : R→ R be defined by

(13) fδ(x) =

{
δ − x if x ≤ δ,
0 otherwise

(see Figure 5(a)). Letting δ̄N = maxi=1,...,N δ
(i), we have f̂N (x) = δ̄N − x for x ≤

δ̄N , 0 otherwise. No function f̂N is coercive, and convergence fails: while y∗N =
minx∈X f̂N (x) = 0 for all N and for any possible extraction of δ(1), . . . , δ(N), it is
immediate to recognize that L(x) = +∞ for all x ∈ X . Let instead fδ : R → R be
defined by

(14) fδ(x) =

{
−1/(δ + 1)− x if x ≤ 0,
−1/(δ + 1) otherwise

(see Figure 5(b)). In this case, letting δ̄N = maxi=1,...,N δ
(i) as before, it holds that

f̂N (x) = −1/(δ̄N + 1) − x for x ≤ 0, −1/(δ̄N + 1) otherwise, and L(x) = −x for



CONSISTENCY OF THE SCENARIO APPROACH 145

x ≤ 0, 0 otherwise. Neither L nor any f̂N is coercive, but this time y∗N = −1/(δ̄N +1)
converges to 0 = min L almost surely.

On the same subject, it is worth comparing the results presented here with the
work of Shapiro and others on sample average approximation (SAA) estimators; see,
e.g., [11], [17]. Roughly speaking, this paper proves for the min-max problem what
in [17, section 5.1.1] is proved about the minimum of the sample average (of random
real-valued convex functions). Letting f̄N (x) = 1

N

∑N
i=1 fδ(i)(x) and F(x) = E [fδ(x)]

it is shown there that under fairly general hypotheses, as N → ∞, min f̄N → min F
and arg min f̄N → arg min F almost surely. One of these hypotheses recurs in different
forms: [17, Theorem 5.3], “there exists a compact set C ∈ Rd such that [. . . ] the set
S of optimal solutions of the true problem is nonempty and is contained in C,” or
[17, Theorem 5.4], “the set S of optimal solutions of the true problem is nonempty
and bounded.” (The “true problem” is to find [arg] min F.) Both these requirements
go in the same direction as the coercivity of F: we all need the existence of compact
sublevel sets!

However, differently from SAA, neither the law of large numbers nor the central
limit theorem applies to min-max stochastic problems; hence, whereas averaging typi-
cally ensures that the mean square error (MSE, that is; the expected squared deviation
from the “true” minimum) decreases with rate 1/N as happens for SAA [17, Theorem
5.7], here the MSE’s decrease rate can be arbitrarily low; in other words, although
y∗N = min f̂N does converge to min L almost surely as N → ∞, the convergence can
be arbitrarily slow, as the following example shows.

Example 5. Let a > 0 and b = 1/a. Suppose that δ is a random variable with
exponential density gδ(t) = ae−at for t ∈ [0,+∞). Let X = [−1, 1] and fδ : X → R
be defined by

fδ(x) = x2 − e−δ/2.

Here L(x) = x2 and minx∈X L(x) = 0; letting δ̄N = maxi=1,...,N δ
(i), it holds that

f̂N (x) = x2 − e−δ̄N/2 and y∗N = minx∈X f̂N (x) = −e−δ̄N/2. The cumulative distribu-
tion function of each δ(i) is Gδ(i)(t) = P

[
δ(i) ≤ t

]
= 1−e−at, and hence the cumulative

distribution function of δ̄N is Gδ̄N (t) = PN
[
δ̄N ≤ t

]
= (1− e−at)N , and its density is

gδ̄N (t) = Na(1− e−at)N−1e−at. The MSE of y∗N with respect to its own limit is

E
[
(min L− y∗N )2] = E

[
e−δ̄N

]
=
∫ +∞

0
e−t Na(1− e−at)N−1e−at dt (let u = e−at)

= N

∫ 1

0
u1/a(1− u)N−1 du (= N× Euler’s Beta(1/a+ 1, N) function)

=
Γ(b+ 1) Γ(N + 1)

Γ(N + b+ 1)
(now use Stirling’s approximation)

∼
√

2πN NN e−N√
2π(N + b) (N + b)(N+b) e−(N+b)

Γ(b+ 1)

=

√
N

N + b
·
(

N

N + b

)N
· 1

(N + b)b
· eb · Γ(b+ 1)

∼ 1 · 1
eb
· 1

(N + b)b
· eb · Γ(b+ 1) ∼ Γ(b+ 1)

N b
.
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Since the parameter b = 1/a can be chosen arbitrarily small, the decrease rate MSE ∼
1
Nb

can be arbitrarily low.

The search for performance bounds on the approximation error with respect to
the robust solution, which in min-max form would read min S− y∗N , is another “hot”
research topic in the scenario approach literature. Letting aside the question of what
are the minimal requirements on P and on the mapping δ 7→ fδ sufficient to ensure
that L = S, which may be interesting per se,10 I would like to mention that results
of this kind, coming in the form

(15) for big enough N , PN
[
min
x∈X

S(x)− y∗N ≤ ε
]
≥ 1− β

with very high confidence 1− β, are now available; see, for example, the recent paper
[13] by Mohajerin Esfahani, Sutter, and Lygeros, partially building on the previous
work [10] by Kanamori and Takeda. But everything comes at a price, and the current
price for the performance bound (15) is the requirement of significant knowledge about
P and δ 7→ fδ. For example, both [13] and [10] assume the uniform Lipschitz continuity
of δ 7→ fδ(x) over X 11 In this paper I prefer to assume the least possible knowledge
about P and δ 7→ fδ: therefore the distinction between S and L must remain, and
with only Assumptions 1 and 2 I maintain that there is not and there cannot be any
guarantee on the convergence speed of y∗N → min L. With respect to Example 5,

PN
[
min
x∈X

L(x)− y∗N ≥ ε
]

= PN
[
e−δ̄N/2 ≥ ε

]
= PN

[
δ̄N ≤ − log ε2] = Gδ̄N (− log ε2) =

(
1− ε2a)N ,

which may be arbitrarily close to 1 because a may be arbitrarily large; hence no
performance bound in the form (15) can be established at all.12

3. Fundamental properties of L. This section is dedicated to the proof of
some fundamental properties of L that would be trivial about S, namely, that L
is convex and lower semicontinuous and that f̂N ≤ L almost surely. The proof of
the latter statement requires two technical lemmas about proper, convex, and lower
semicontinuous functions that I did not find in the “standard” literature. Let me
start the discussion by resuming in a lemma the most intuitive facts about L.

Lemma 4. For all x ∈ X ,
1. P [fδ(x) > L(x)] = V(x,L(x)) = 0;
2. P [fδ(x) ≤ L(x)] = 1;
3. if ȳ < L(x), then P [ȳ < fδ(x) ≤ L(x)] > 0;
4. if D ⊆ ∆ and P [D] = 1, then L(x) ≤ supδ∈D fδ(x).

10Let, e.g., (∆,m) be a metric space, T be the topology induced by m, F be the Borel σ-algebra
generated by T , P be a probability on (∆,F), and f(·)(x) : ∆ → R be a (F ,Borel(R))-measurable
function. Are there “nice” sufficient conditions such that ess supδ∈∆ fδ(x) = supδ∈∆ fδ(x)? A simple
sufficient condition is that δ 7→ fδ(x), understood as a function between metric spaces, is continuous,
and that the support of P is the whole ∆ (i.e., every open subset of ∆ has positive probability); but
I guess that this condition can be weakened. Moreover, one could argue that the condition actually
needed in the minimization endeavor is that L(x) = S(x) at the minimum points x of L: if this
holds, since L(x) ≤ S(x) for all x ∈ X anyway, a minimum point of L is also a minimum point of S.

11The paper [13] also ensures the coercivity of all the f̂N ’s by assuming that0 X is compact.
12The fundamental requirement of [13] that fails to hold in Example 5, thus preventing us from

establishing performance bounds, is that P must have bounded support. In Example 5 the support
of P is [0,+∞).
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Proof. To prove point 1 note that, by the definition of L, for all y > L(x) it
holds that P [fδ(x) > y] = 0. If fδ(x) > L(x), then there exists n ∈ N such that
fδ(x) > L(x) + 1/n; hence

{δ ∈ ∆ : fδ(x) > L(x)} ⊆
∞⋃
n=1

{
δ ∈ ∆ : fδ(x) > L(x) +

1
n

}
and therefore

P [fδ(x) > L(x)] ≤ P

[ ∞⋃
n=1

{
fδ(x) > L(x) +

1
n

}]

≤
∞∑
n=1

P
[
fδ(x) > L(x) +

1
n

]
= 0.

Point 2 is now trivial, since the event {fδ(x) ≤ L(x)} is the complement of the
event {fδ(x) > L(x)}. To prove point 3 suppose, for the sake of contradiction, that
P [ȳ < fδ(x) ≤ L(x)] = 0. Then

P [fδ(x) > ȳ] = P [{ȳ < fδ(x) ≤ L(x)} ∪ {fδ(x) > L(x)}]
= P [ȳ < fδ(x) ≤ L(x)] + P [fδ(x) > L(x)] = 0,

and hence ȳ ∈ {y ∈ R : P [fδ(x) > y] = 0}; but now ȳ < L(x) and the definition of
L(x) yield a contradiction. To prove point 4, let ȳ = supδ∈D fδ(x). Any δ ∈ ∆ such
that fδ(x) > ȳ belongs to the complement of D, and hence P [fδ(x) > ȳ] = 0, and
ȳ ∈ {y ∈ R : P [fδ(x) > y] = 0}. The claim follows from the definition of L(x).

The following Propositions 5 and 6 establish the most important properties of
L, its convexity and its lower semicontinuity. These are the counterparts, for the
pointwise essential supremum, of two well-known facts: the pointwise supremum of
an arbitrary family of convex (resp., lower semicontinuous) functions is itself convex
(resp., lower semicontinuous).

Proposition 5. L is convex.

Proof. For the sake of contradiction, suppose that L is not convex, so that there
exist x1, x2 ∈ X and λ ∈ (0, 1) such that λL(x1) + (1−λ)L(x2) < L(λx1 + (1−λ)x2).
By Lemma 4 (point 2) there exist sets D1 ⊆ ∆, D2 ⊆ ∆, both with probability 1,
such that fδ(x1) ≤ L(x1) for all δ ∈ D1 and fδ(x2) ≤ L(x2) for all δ ∈ D2; on the
other hand, by Lemma 4 (point 3) there exists a set B ⊂ ∆ with P [B] > 0 such that
for all δ ∈ B

(16) λL(x1) + (1− λ)L(x2) < fδ(λx1 + (1− λ)x2) ≤ L(λx1 + (1− λ)x2).

Let B̄ = B ∩D1 ∩D2 and note that, since P
[
B̄
]

= P [B] > 0, B̄ is not empty. But
for any δ ∈ B̄ it holds that fδ(x1) ≤ L(x1), fδ(x2) ≤ L(x2), and by convexity of fδ

fδ(λx1 + (1− λ)x2) ≤ λfδ(x1) + (1− λ)fδ(x2)
≤ λL(x1) + (1− λ)L(x2),

which is in contradiction with (16). The contradiction stems from the assumption
that L is not convex, and this concludes the proof.
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Proposition 6. L is lower semicontinuous.

Proof. Fix x̄ ∈ X . Let (xn)∞n=1 be a sequence of points in X converging to x̄; let
moreover

Dn = {δ ∈ ∆ : fδ(xn) ≤ L(xn)}; D̄ =
∞⋂
n=1

Dn.

Since P [Dn] = 1 for all n (Lemma 4, point 2), also P
[
D̄
]

= 1. For all δ ∈ D̄, the
lower semicontinuity of fδ implies

fδ(x̄) ≤ lim inf
n→∞

fδ(xn) ≤ lim inf
n→∞

L(xn),

and therefore, by Lemma 4 (point 4),

L(x̄) ≤ sup
δ∈D̄

fδ(x̄) ≤ lim inf
n→∞

L(xn).

This holds for all the sequences (xn)∞n=1 converging to x̄, and hence L is lower semi-
continuous at x̄; the claim follows since x̄ was chosen arbitrarily.

Lemma 7. Suppose that a function L : Rd → R is proper, convex, and lower
semicontinuous. Then for all x̄ ∈ domL

lim inf
x→x̄

x∈domL

L(x) = L(x̄).

Remark. It is a well-known fact that any proper convex function L is actually
continuous in the interior of its effective domain [12, Corollary 2.1.3], but here I am
particularly interested in what happens at the boundary of domL; on the other hand,
I do not assume that domL has nonempty interior.

Proof. The claim is trivially true if L takes the value +∞ everywhere but at one
point. Otherwise, domL has a (nonempty, convex) relative interior.13 Suppose that

(17) lim inf
x→x̄

x∈domL

L(x) = lim
x→x̄

x∈domL

L(x) = +∞.

(This can only happen if x̄ belongs to the relative boundary of domL.) Let ξ̄ be any
point in the relative interior. (The line segment [x̄, ξ̄] lies in domL.) By [15, Corollary
7.5.1], and by uniqueness of the limit (17),

L(x̄) = lim
λ→1

L(λx̄+ (1− λ)ξ̄) = +∞ = lim inf
x→x̄

x∈domL

L(x).

Suppose, on the other hand, that

lim inf
x→x̄

x∈domL

L(x) = M < +∞.

Let (xn)∞n=1 be a sequence in domL converging to x̄ and such that limn→∞ L(xn) =
M . By convexity, for each n,

L(x̄/2 + xn/2) ≤ L(x̄)/2 + L(xn)/2,

13The relative interior of a set S ⊆ Rd is the interior of S with respect to the topology of the
smallest affine subspace of Rd that contains S; the relative boundary of S is its boundary with
respect to the same topology. For instance, the smallest affine subspace of R3 containing a line
segment [x̄1, x̄2] ⊂ R3 is the affine subspace `, of dimension 1, generated by x̄1 and x̄2. The relative
interior of [x̄1, x̄2] is the segment (x̄1, x̄2) (without the endpoints), and its relative boundary is the
set {x̄1, x̄2}. See, e.g., [15] for further details.
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and hence

M ≤ lim inf
n→∞

L(x̄/2 + xn/2) ≤ lim
n→∞

L(x̄)/2 + L(xn)/2 = L(x̄)/2 +M/2,

M ≤ L(x̄).

Since it also holds that L(x̄) ≤M by lower semicontinuity, L(x̄) = M ; this concludes
the proof.

Lemma 8. Suppose that a function L : Rd → R is proper, convex, and lower
semicontinuous. Then there exists a finite or countable set S ⊆ domL such that for
all x̄ ∈ domL

lim inf
x→x̄
x∈S

L(x) = L(x̄).

Remark. From the standpoint of this paper, Lemmas 7 and 8 are only propaedeu-
tic to the proof of Proposition 9; therefore their statements involve a function L :
Rd → R. Nevertheless, to my understanding, they can be generalized without sub-
stantial changes at least to functions L : V → R, where V is any separable Banach
space.

Proof. For any i ∈ N, there exists a finite or countable covering Bi = {B(cj , 1/i)}∞j=1

of domL made of open balls with centers cj and radius 1/i; let B =
⋃∞
i=1 Bi. From

each open ball B(cj , 1/i) ∈ Bi select a point xij ∈ domL such that

inf
x∈B(cj ,1/i)

L(x) ≤ L(xij) ≤ inf
x∈B(cj ,1/i)

L(x) + 1/i

and form the set Si = {xij}∞j=1.14 Let S =
⋃∞
i=1 Si. The set S ⊆ domL is everywhere

dense in domL, and at most countable.
Fix now x̄ ∈ domL. By definition,

lim inf
x→x̄

x∈domL

L(x) = lim
n→∞

inf
x∈B(x̄,1/n)∩domL\{x̄}

L(x).

Note that the clauses “∩domL” and “\{x̄}” are both inessential, the first one because
L ≡ +∞ outside domL, and the second one because by Lemma 7 the limit inferior is
≤ L(x̄). So let me simplify notation:

(18) lim inf
x→x̄

x∈domL

L(x) = lim
n→∞

inf
x∈B(x̄,1/n)

L(x).

For each n ∈ N, by construction, there exists an open ball B(cn, rn) ∈ B such
that x̄ ∈ B(cn, rn) and B(cn, rn) ⊆ B(x̄, 1/n). The corresponding point xn ∈ S taken
in the construction at the beginning of the proof satisfies

(19) L(xn) ≥ inf
x∈B(cn,rn)

L(x) ≥ inf
x∈B(x̄,1/n)

L(x);

on the other hand for each n there exists hn ∈ N big enough such that B(x̄, 1/(n +
hn)) ⊆ B(cn, rn); by construction it follows that

(20) L(xn) ≤ inf
x∈B(cn,rn)

L(x) + rn ≤ inf
x∈B(x̄,1/(n+hn))

L(x) + 1/n,

14I know that an engineer invoking the axiom of choice may sound a bit booming, but. . . there it
is.
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because rn ≤ 1/n. As n → ∞, xn → x̄, and both the right-hand sides of (19)
and (20) converge to the limit inferior (18) (possibly to +∞, with a slight abuse of
terminology). Thus we have

lim inf
x→x̄
x∈S

L(x) ≤ lim
n→∞

L(xn) = lim inf
x→x̄

x∈domL

L(x) ≤ lim inf
x→x̄
x∈S

L(x),

where the first inequality holds because {xn}∞n=1 ⊆ S and the second one holds because
S ⊆ domL; hence

lim inf
x→x̄
x∈S

L(x) = lim inf
x→x̄

x∈domL

L(x),

and the claim follows by an application of Lemma 7.

Remarks. (A) The only case in which the set S built in Lemma 8 is finite is when
domL contains only one point x̄ (of course in this case S = {x̄}): if domL contains at
least two points, then S must be countably infinite. (B) The statement “for all x ∈ X ,
for almost all δ ∈ ∆, fδ(x) ≤ L(x)” is trivial. Much less trivial is a statement like
“for almost all δ ∈ ∆, for all x ∈ X , fδ(x) ≤ L(x),” because the clause “almost all” is
preserved only by countable intersections, but X ⊆ Rd is either trivial or uncountable,
and hence the quantifiers “all x” and “almost all δ” cannot be interchanged freely.
Of the second kind is the following proposition, that indeed relies essentially on the
countability of S established by Lemma 8.

Proposition 9. For all N , PN -almost surely f̂N (x) ≤ L(x) for all x ∈ X .

Proof. The claim is trivial if L ≡ +∞, and hence suppose that L is proper. (It
is also convex and lower semicontinuous by Propositions 5 and 6.) Since X ⊆ Rd,
without loss of generality we can extend L to the whole of Rd, letting L(x) = +∞ for
all x ∈ Rd \X . Consider now the countable, everywhere dense subset S = {xn}n∈N ⊆
dom L whose existence with respect to L is established by Lemma 8. Let

Dn = {δ ∈ ∆ : fδ(xn) ≤ L(xn)}, D̄ =
∞⋂
n=1

Dn;

since P [Dn] = 1 for all n ∈ N, also P
[
D̄
]

= 1. Fix N ; for any choice of δ(1), . . . , δ(N) ∈
D̄, it holds that

f̂N (xn) = max
i=1,...,N

fδ(i)(xn) ≤ L(xn) for all xn ∈ S.

Now let x̄ ∈ X . If x̄ ∈ dom L, the lower semicontinuity of f̂N and Lemma 8 imply

f̂N (x̄) ≤ lim inf
x→x̄

f̂N (x) ≤ lim inf
x→x̄
x∈S

f̂N (x) ≤ lim inf
x→x̄
x∈S

L(x) = L(x̄).

If instead x̄ /∈ dom L, then f̂N (x̄) ≤ L(x̄) = +∞ trivially. Since the choice of x̄ is
arbitrary, f̂N (x̄) ≤ L(x̄) for all x̄ ∈ X . This happens for all (δ(1), . . . , δ(N)) ∈ D̄N =
D̄× · · · × D̄ (N times). But now, since δ(1), . . . , δ(N) are supposed to be independent
random elements (or, which is the same, PN is the product measure P× · · · × P),

PN
[
D̄N

]
=

N∏
i=1

P
[
D̄
]

= 1,

and hence the uniform upper bound is almost sure; this proves the claim.
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4. Convergence of the solution (x∗
N , y∗

N). This section establishes another
fundamental property of L, namely, that it is coercive if Assumption 2 holds, two
properties of the violation probability V, one probabilistic (V(x∗N , y

∗
N ) → 0 almost

surely) and one analytical (V is, in a sense, lower semicontinuous), and finally the
main results of the paper: if Assumptions 1 and 2 hold, then y∗N → min L almost
surely, and if x∗∗ = arg min L is unique, then x∗N → x∗∗ “almost surely” (Theorem
14); the case for L ≡ +∞ is covered by Theorem 15. The first thing I need to do is to
assign a rigorous meaning to the clause “almost surely”, that I have tacitly left vague
from the beginning for the sake of readability.

To this purpose, turn now to consider the probability space of infinite sequences
extracted independently from (∆,F ,P), which I will denote (∆∞,F∞,P∞). An ele-
ment δ∞ = (δ(i))∞i=1 ∈ ∆∞ is an infinite sequence of elements in ∆; F∞ is the smallest
σ-algebra of subsets of ∆∞ containing the sets

Ē(N) =
{

(δ(1), . . . , δ(N), . . .) ∈ ∆∞ : (δ(1), . . . , δ(N)) ∈ E(N)
}

for all N ∈ N and E(N) ∈ FN ; and P∞ is a probability function such that

P∞
[
Ē(N)

]
= PN

[
E(N)

]
for all N ∈ N and E(N) ∈ FN ; since PN , N ∈ N, are all product measures, such
probability exists and is unique in view of Ionescu-Tulcea’s theorem [18, Theorem 2,
p. 249]. Moreover, let F̄N = {Ē(N) ∈ F∞ : E(N) ∈ F (N)}; then

(
F̄ (N)

)∞
N=1 is a

filtration in F∞. Fix an arbitrary x̄ ∈ X , and if for a certain N the solution (x∗N , y
∗
N )

does not exist, let by convention (x∗N , y
∗
N ) = (x̄,−∞);15 with this convention, the

sequence of solutions ((x∗1, y
∗
1), . . . , (x∗N , y

∗
N ), . . .) is a stochastic process adapted to(

F̄ (N)
)∞
N=1, and P∞ is compatible with PN also in the following sense: for all N ∈ N

and for any Borel set B ⊆ (X × R)N ,

P∞
[ {

(x∗i , y
∗
i )∞i=1 ∈ (X × R)∞ : (x∗i , y

∗
i )Ni=1 ∈ B

} ]
= PN

[
(x∗i , y

∗
i )Ni=1 ∈ B

]
.

Consider now the random variable

ˆ̂N = min {N ∈ N : (x∗N , y
∗
N ) exists with y∗N > −∞} .

ˆ̂N is a stopping time with respect to the filtration
(
F̄ (N)

)∞
N=1. The following lemma

ensures that, under Assumption 2, ˆ̂N is P∞-almost surely finite.

Lemma 10. If Assumption 2 holds, then P∞-almost surely there exists N̂ ∈ N
such that f̂N̂ is coercive. For all N ≥ N̂ , f̂N is coercive and attains a finite minimum.

Proof. Let p = PN̄
[
f̂N̄ is coercive

]
> 0. For k = 0, 1, 2, . . . , the sets

Bk =
{

max
i=kN̄+1,...,(k+1)N̄

fδ(i) is not coercive
}
⊆ ∆(k+1)N̄

15Here, −∞ is just a placeholder to mark the nonexistence of a solution and to ensure that in this
case (x∗N , y

∗
N ) /∈ X ×R; it does not mean that f̂N is unbounded from below. Visualize δ with uniform

density in [−1, 1], X = R, and fδ(x) = eδx; if δ(1), . . . , δ(N) are all positive, then infx∈X f̂N (x) = 0
is not attained.
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form a sequence of independent events, each with probability 1− p. Therefore

P∞
[
for all k ∈ N, max

i=kN̄+1,...,(k+1)N̄
fδ(i) is not coercive

]
= lim
K→∞

P(K+1)N̄
[
for all k ≤ K, max

i=kN̄+1,...,(k+1)N̄
fδ(i) is not coercive

]
= lim
K→∞

K∏
k=0

P(k+1)N̄
[

max
i=kN̄+1,...,(k+1)N̄

fδ(i) is not coercive
]

= lim
K→∞

(1− p)K+1 = 0,

and hence P∞-almost surely there exists k finite such that maxi=kN̄+1,...,(k+1)N̄ fδ(i)

is coercive, and a fortiori f̂(k+1)N̄ = maxi=1,...,(k+1)N̄ fδ(i) is coercive. The first claim
follows letting N̂ = (k+1)N̄ . Then, for allN ≥ N̂ , f̂N is proper, lower semicontinuous,
and coercive (because f̂N (x) ≥ f̂N̂ (x) for all x ∈ X ). Hence

y∗N = min
x∈X

f̂N (x) < +∞ and x∗N = arg min
x∈X

f̂N (x)

exist by the Tonelli–Weierstrass theorem.

Proposition 11. If Assumption 2 holds, then L is coercive.

Proof. If L takes the only value +∞, the claim is trivial, since any sublevel set
of L is the empty set. Assume, therefore, that L is proper, and suppose for the
sake of contradiction that it is not coercive. Then there exists t ∈ R such that the
set C = {x ∈ X : L(x) ≤ t} is nonempty and not compact. The set C is anyway
closed, because L is lower semicontinuous [12, Proposition 2.2.5]; therefore, by the
Heine–Borel theorem [16, Theorem 2.41], C is unbounded.

Proposition 9 ensures that, for all N ∈ N,

P∞
[
f̂N (x) ≤ L(x) for all x ∈ X

]
= PN

[
f̂N (x) ≤ L(x) for all x ∈ X

]
= 1.

Hence the event D ∈ F∞ defined as follows,

D =
∞⋂
N=1

{
f̂N (x) ≤ L(x) for all x ∈ X

}
,

has also probability 1. Therefore

P∞-almost surely, for all N , f̂N (x) ≤ L(x) for all x ∈ X

⇒ almost surely, for all N , {x ∈ X : f̂N (x) ≤ t} ⊇ {x ∈ X : L(x) ≤ t} = C

⇒ almost surely, for all N , {x ∈ X : f̂N (x) ≤ t} is unbounded.

On the other hand, by Lemma 10, P∞-almost surely there exists N̂ finite such that f̂N̂
is coercive, and hence P∞-almost surely there exists N̂ such that {x ∈ X : f̂N̂ (x) ≤
t} is compact. That {x ∈ X : f̂N̂ (x) ≤ t} is both compact and unbounded is a
contradiction, stemming from the assumption that L is not coercive.

The following two propositions establish an asymptotic property of V(x∗N , y
∗
N )

and an analytic property of the function V (in essence, very similar to lower semicon-
tinuity).
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Proposition 12.

lim
N→∞

V(x∗N , y
∗
N ) = 0 P∞-almost surely.

Proof. Fix ε ∈ (0, 1). By Lemma 10, P∞-almost surely there exists N̂ ∈ N such
that for all N ≥ N̂ the solution (x∗N , y

∗
N ) exists. For all such N , by Theorem 2 (see

(10)),

(21)

P∞ [V(x∗N , y
∗
N ) > ε] = PN [V(x∗N , y

∗
N ) > ε]

≤
d∑
k=0

(
N

k

)
εk(1− ε)N−k

≤
d∑
k=0

Nd+1(1− ε)N−d

= (d+ 1)Nd+1(1− ε)N−d.

Since as N →∞

(d+ 1)(N + 1)d+1(1− ε)N+1−d

(d+ 1)Nd+1(1− ε)N−d
=
(

1 +
1
N

)d+1

(1− ε)→ (1− ε) < 1,

by the ratio test

∞∑
N=N̂

P∞ [V(x∗N , y
∗
N ) > ε] ≤

∞∑
N=N̂

(d+ 1)Nd+1(1− ε)N−d <∞.

Therefore, by the Borel–Cantelli lemma [18, p. 255],

P∞ [V(x∗N , y
∗
N ) > ε infinitely often] = 0.

Actually this holds for all ε ∈ (0, 1], the case ε = 1 being trivial, and hence

P∞ [there exists h ∈ N s.t. V(x∗N , y
∗
N ) > 1/h infinitely often]

= P∞
[ ∞⋃
h=1

{V(x∗N , y
∗
N ) > 1/h infinitely often}

]

≤
∞∑
h=1

P∞ [V(x∗N , y
∗
N ) > 1/h infinitely often] = 0.

Since the event {there exists h ∈ N such that V(x∗N , y
∗
N ) > 1/h infinitely often} has

probability 0, the complementary event {for all h ∈ N there exists N̄ ∈ N such that
0 ≤ V(x∗N , y

∗
N ) ≤ 1/h for all N ≥ N̄} has probability 1; the latter is included in the

event {for any ε′ ∈ (0, 1) there exist h ∈ N and N̄ < ∞ such that 0 ≤ V(x∗N , y
∗
N ) ≤

1/h ≤ ε′ for all N ≥ N̄}, that is,

(22)
{
δ∞ ∈ ∆∞ : lim

N→∞
V(x∗N , y

∗
N ) = 0

}
,

and hence (22) has also probability 1; this proves the claim.
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Remark. Equation (21) is the only point of this paper that makes use of the bound
(10) provided by Theorem 2; the reader will of course notice that the second inequality
is rather loose. Indeed I have chosen to present Theorem 2 in the introduction because
that result provides the state-of-the-art bound for the scenario approach with convex
constraints, but an inequality similar to (21), and equally sufficient for my purposes,
would follow also from the pioneering result by Calafiore and Campi [3], which in the
present context would read

(23) PN [V(x∗N , y
∗
N ) > ε] ≤

(
N

d+ 1

)
(1− ε)N−d−1.

Proposition 13. Suppose that (xN )∞N=1 is a sequence in X converging to x∞ as
N →∞ and that (yN )∞N=1 is a nondecreasing sequence in R such that yN ≤ ȳ < +∞
for all N ∈ N. Then

lim inf
N→∞

V(xN , yN ) ≥ V(x∞, ȳ).

In particular
lim inf
N→∞

V(xN , yN ) ≥ V(x∞, y∞),

where y∞ = limN→∞ yN .

Proof. Consider random variables of the form 1(fδ(xN ) > ȳ). First note that, for
all δ ∈ ∆ and N ∈ N, 1(fδ(xN ) > ȳ) ≤ 1(fδ(xN ) > yN ), since yN ≤ ȳ.

Now fix δ ∈ ∆ and note that the indicator function can only take the values 0
and 1; therefore if lim infN→∞ 1(fδ(xN ) > ȳ) = 0, it must hold that fδ(xN ) ≤ ȳ for
infinitely many N ; then, by lower semicontinuity,

fδ(x∞) ≤ lim inf
N→∞

fδ(xN ) ≤ ȳ.

By contraposition, if fδ(x∞) > ȳ, then lim infN→∞ 1(fδ(xN ) > ȳ) = 1. It follows
that

1(fδ(x∞) > ȳ) ≤ lim inf
N→∞

1(fδ(xN ) > ȳ) ≤ lim inf
N→∞

1(fδ(xN ) > yN ).

Finally

lim inf
N→∞

V(xN , yN ) = lim inf
N→∞

P [fδ(xN ) > yN ]

= lim inf
N→∞

∫
∆
1(fδ(xN ) > yN ) dP

≥
∫

∆
lim inf
N→∞

1(fδ(xN ) > yN ) dP

≥
∫

∆
1(fδ(x∞) > ȳ) dP = V(x∞, ȳ),

where the first inequality is due to Fatou’s lemma [18, p. 187]. The second claim
follows trivially letting ȳ = y∞.

We are now ready to prove the main results of the paper.

Theorem 14. Suppose that Assumptions 1 and 2 hold and that L is proper. Then
1. L attains its minimum y∗∗ = minx∈X L(x) < +∞ at at least one point x∗∗ ∈
X ;
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2. irrespective of the uniqueness of x∗∗, it holds that

lim
N→∞

y∗N = y∗∗ P∞-almost surely;

3. if, moreover, x∗∗ is unique, then

lim
N→∞

x∗N = x∗∗ P∞-almost surely.

Proof. Since L is proper, lower semicontinuous, and also coercive by Proposition
11, by the Tonelli–Weierstrass theorem there exists in X at least one minimum point
x∗∗ of L attaining a finite minimum y∗∗ = L(x∗∗) < +∞. This proves point 1.

To prove point 2 first note that, by Lemma 10, there exists a set D1 ⊆ ∆∞ with
probability 1 such that, for all δ∞ ∈ D1, there exists N̂ ∈ N such that f̂N̂ is coercive.
Moreover, by Proposition 12, there exists a set D2 ⊆ ∆∞ with probability 1 such
that, for all δ∞ ∈ D2, V(x∗N , y

∗
N )→ 0 as N →∞. And by Proposition 9 the set

D3 =
{

for all N ∈ N, f̂N (x) ≤ L(x) for all x ∈ X
}

=
∞⋂
N=1

{
f̂N (x) ≤ L(x) for all x ∈ X

}
has probability 1. Let D = D1 ∩ D2 ∩ D3 (hence also P∞ [D] = 1).

Fix a δ∞ ∈ D and the corresponding N̂ . For N ≥ N̂ , the f̂N ’s form a nondecreas-
ing sequence of coercive functions, all bounded from above by L, and their minima
y∗N form a nondecreasing sequence of real numbers bounded from above by y∗∗, which
therefore has a limit y∗∞. Let C = {x ∈ X : f̂N̂ (x) ≤ y∗∗}. C is nonempty because it
contains at least the minimum point x∗∗, closed because f̂N̂ is lower semicontinuous,
and bounded because f̂N̂ is coercive. Thus, C is nonempty and compact. For all
N ≥ N̂ , since f̂N (x) ≥ f̂N̂ (x) for all x ∈ X , it holds that {x ∈ X : f̂N (x) ≤ y∗∗} ⊆ C.
Therefore x∗N ∈ C for all N ≥ N̂ , and since C is compact there exists a converging
subsequence (x∗Nk)∞k=1 of the sequence (x∗N )∞

N=N̂
. Let x∗∞ = limk→∞ x∗Nk ; of course it

holds also that limk→∞ y∗Nk = y∗∞. Now

P [fδ(x∗∞) > y∗∞] = V(x∗∞, y
∗
∞)

≤ lim
k→∞

V(x∗Nk , y
∗
Nk

) (Proposition 13)

= 0 (because δ∞ ∈ D2).

Hence P [fδ(x∗∞) > y∗∞] = 0, and consequently

(24) L(x∗∞) = inf{y ∈ R : P [fδ(x∗∞) > y] = 0} ≤ y∗∞.

Since y∗∗ = min L, it follows that y∗∞ ≥ y∗∗; on the other hand y∗∞ ≤ y∗∗ by construc-
tion. Therefore limN→∞ y∗N = y∗∗; and since the choice of δ∞ ∈ D was arbitrary and
P∞[D] = 1, this proves point 2.

To prove point 3, suppose that x∗∗ is unique. Fix δ∞ ∈ D and the corresponding
N̂ , consider the nonempty compact set C as in the proof of point 2, and recall that
x∗N ∈ C for all N ≥ N̂ . Suppose also, for the sake of contradiction, that x∗N does not
converge to x∗∗. Then there exists η > 0 such that the set {x ∈ X : ‖x − x∗∗‖ ≥ η}
contains infinitely many terms of the sequence (x∗N )∞

N=N̂
. Since {‖x − x∗∗‖ ≥ η}
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is closed, the intersection K = {‖x − x∗∗‖ ≥ η} ∩ C is nonempty and compact,
and hence from the sequence (x∗N )∞

N=N̂
we can extract a converging subsequence

(x∗Nk)∞k=1 of elements in K and let x∗∞ = limk→∞ x∗Nk . (Again, it also holds that
limk→∞ y∗Nk = y∗∞.) But then x∗∞ ∈ K, and hence ‖x∗∞− x∗∗‖ ≥ η so that x∗∞ 6= x∗∗.
Finally,

y∗∗ = L(x∗∗) < L(x∗∞) (uniqueness of the minimum point)
≤ y∗∞ (inequality (24)).

That limN→∞ y∗N > y∗∗ is a contradiction (indeed y∗N ≤ y∗∗ for all N), stemming
from the assumption that x∗N does not converge to x∗∗. Hence limN→∞ x∗N = x∗∗ for
all δ∞ ∈ D; this concludes the proof of the theorem.

Theorem 15. Suppose that Assumptions 1 and 2 hold and that L takes the only
value +∞. Then

lim
N→∞

y∗N = +∞ P∞-almost surely.

Proof. Construct the set D ⊆ ∆∞, with probability 1, exactly as in the proof
of Theorem 14, and fix δ∞ ∈ D and the corresponding N̂ . For N ≥ N̂ , the f̂N ’s
form a nondecreasing sequence of coercive functions, and their minima y∗N form a
nondecreasing sequence of real numbers. For the sake of contradiction suppose that,
for all N , y∗N ≤ ȳ for a certain ȳ ∈ R. Let C = {x ∈ X : f̂N̂ (x) ≤ ȳ}; the set C is
nonempty and compact, and for all N ≥ N̂ , since f̂N (x) ≥ f̂N̂ (x) for all x ∈ X , it
holds that {x ∈ X : f̂N (x) ≤ ȳ} ⊆ C. It follows that x∗N ∈ C for all N ≥ N̂ , and
due to the compactness of C there exists a converging subsequence (x∗Nk)∞k=1 of the
sequence (x∗N )∞

N=N̂
. Let x∗∞ = limk→∞ x∗Nk ; we have

P [fδ(x∗∞) > ȳ] = V(x∗∞, ȳ)
≤ lim
k→∞

V(x∗Nk , y
∗
Nk

) (Proposition 13)

= 0 (because δ∞ ∈ D).

Hence P [fδ(x∗∞) > ȳ] = 0, and consequently

L(x∗∞) = inf{y ∈ R : P [fδ(x∗∞) > y] = 0} ≤ ȳ.

This is a contradiction (L(x∗∞) = +∞), stemming from the assumption that the
sequence (y∗N )∞

N=N̂
is bounded from above; hence limN→∞ y∗N = +∞. Since δ∞ ∈ D

is arbitrary and P∞ [D] = 1, this proves the theorem.

5. Back to the scenario approach. This section is meant to apply Theorems
14 and 15 to the scenario problem (5) and to the essential robust problem (7) intro-
duced in Section 1; let therefore X = Θ ⊆ Rd and x = θ. Recall from section 2.1 that
the solution of (5) is equivalent to the minimization of f̂N (θ) = maxi=1···N fδ(i)(θ),
where

(25) fδ(θ) = c>θ + IΘδ(θ) =

{
c>θ if θ ∈ Θδ,

+∞ otherwise,

and denote

θ∗N = arg min
θ∈Θ

f̂N (θ),

y∗N = min
θ∈Θ

f̂N (θ) = c>θ∗N .



CONSISTENCY OF THE SCENARIO APPROACH 157

Assumption 1 requires that for all δ ∈ ∆ the function fδ is convex and lower
semicontinuous. Since the term c>θ is linear, this is the same as requiring that IΘδ
is convex and lower semicontinuous; and since Θδ is the 0-sublevel set of IΘδ this is,
in turn, equivalent to the requirement that Θδ is convex and closed. Hence in the
present setting Assumption 1 can be restated as follows.

Assumption 3. The set Θ ⊆ Rd is convex and closed; for all δ ∈ ∆, Θδ is convex
and closed. For all θ ∈ Θ, the event {θ ∈ Θδ} belongs to F .

Assumption 2 requires that f̂N is almost surely proper. Since f̂N (θ) < +∞ if and
only if θ belongs to all the sets Θδ(i) , this is equivalent to the requirement that the
intersection of these sets is nonempty. Moreover, the assumption requires that the
probability of the event {f̂N̄ is coercive} is nonzero for a certain N̄ . f̂N̄ is coercive
when its t-sublevel set is either empty (when t < min f̂N̄ ) or bounded (equivalently,
compact, since f̂N̄ is lower semicontinuous and all its sublevel sets are closed). Thus,
for the problem at hand, Assumption 2 can be restated as follows.

Assumption 4. For all N ∈ N, PN -almost surely
⋂N
i=1 Θδ(i) 6= ∅. Moreover,

there exists N̄ ∈ N such that the eventfor some t ∈ R, the set
N̄⋂
i=1

Θδ(i) ∩ {c>θ ≤ t} is nonempty and bounded


has nonzero probability.

Next, I need to translate in the language of problems (5)–(7) the distinction
between when L is proper and when it takes the only value +∞. This is done in the
following lemma.

Lemma 16. If the functions fδ, δ ∈ ∆, are defined as in (25), then L is proper
if and only if there exists θ̄ ∈ Θ such that P

[
θ̄ ∈ Θδ

]
= 1, i.e., if and only if the

essential robust problem (7),

min
θ∈Θ

c>θ

subject to P [θ ∈ Θδ] = 1,

is feasible. If L is proper, the solution of problem (7) is arg minθ∈Θ L(θ).

Proof. For any y ∈ R, fδ(θ) > y if and only if c>θ > y or θ /∈ Θδ. Therefore
P [fδ(θ) > y] = P

[
c>θ > y or θ /∈ Θδ

]
, and we recover three inequalities:

(26)

P [fδ(θ) > y] ≤ 1(c>θ > y) + P [θ /∈ Θδ],

P [fδ(θ) > y] ≥ 1(c>θ > y),
P [fδ(θ) > y] ≥ P [θ /∈ Θδ].

If P [θ /∈ Θδ] = 0 (equivalently P [θ ∈ Θδ] = 1), then the first two inequalities in (26)
imply P [fδ(θ) > y] = 1(c>θ > y), and hence P [fδ(θ) > y] = 0 if and only if c>θ ≤ y
and, by definition,

L(θ) = inf {y ∈ R : P [fδ(θ) > y] = 0} = inf
{
y ∈ R : c>θ ≤ y

}
= c>θ.

If instead P [θ /∈ Θδ] > 0, then the third inequality in (26) implies P [fδ(θ) > y] > 0
for all y ∈ R and, again by definition,

L(θ) = inf {y ∈ R : P [fδ(θ) > y] = 0} = inf ∅ = +∞.
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Summing up,

L(θ) =

{
c>θ if P [θ ∈ Θδ] = 1,
+∞ otherwise.

Thus, if there exists θ̄ ∈ Θ such that P
[
θ̄ ∈ Θδ

]
= 1, then L(θ̄) = c>θ̄ and L is proper;

otherwise L takes the only value +∞, and this proves the first claim. From the last
observation it is also clear that

min
θ∈Θ

c>θ subject to P [θ ∈ Θδ] = 1

= min
θ∈Θ

L(θ) subject to L(θ) < +∞

= min
θ∈Θ

L(θ) (if L is proper);

the second claim follows immediately.

Remark. At first sight, it might seem that the problem of finding arg minθ∈Θ L(θ),
that is. the unconstrained minimization of a convex and lower semicontinuous func-
tion, being conceptually simpler than the constrained minimization in problem (7),
could be simpler also computationally, i.e., more convenient to solve by means of nu-
merical methods. This is in general false. Letting aside the choice of a method to
minimize L, the true difficulty here is the computation of L: indeed deciding whether
L(θ) = c>θ or L(θ) = +∞ for a given θ may be an intractable problem.16 The reason
of the computational difficulty is made explicit by the following example, proposed
by Ben-Tal and Nemirovski in [1, section 3.2.2, p. 787]. Consider the robust problem

(27)
min
θ∈Rn

c>θ

subject to θ>diag(δ)2θ ≤ 1 for all δ ∈ ∆,

where ∆ is a parallelotope in Rn centered at the origin; assume that ∆ is equipped
with, say, a uniform distribution. The corresponding essential robust problem is

(28)
min
θ∈Rn

c>θ

subject to P
[
θ>diag(δ)2θ ≤ 1

]
= 1.

Both (27) and (28) are feasible (the former because θ = 0 satisfies the constraint
θ>diag(δ)2θ ≤ 1 for all δ ∈ ∆, and the latter because P [∆] = 1); actually, the two
problems are the same.17 But, for instance, deciding the robust feasibility of the point
θ̄ = [1 1 1 · · · 1]>, that is, deciding whether or not L(θ̄) is finite, amounts to verifying
that ‖δ‖2 ≤ 1 for all δ ∈ ∆, and this is known to be a NP-hard problem. (Refer to
[1] for more details.)

From the standpoint of section 1 the following theorem may also be thought of as
the main result of the paper. Nevertheless, in view of Lemma 16 and of the previous
discussion, it is clearly just a restatement of Theorems 14 and 15, and therefore I
leave it without proof.

16The same story can be told about the computation of the convex and lower semicontinuous
function S, whose minimization corresponds to the solution of the robust problem (1).

17Problems (27) and (28) coincide because the mapping δ 7→ θ>diag(δ)2θ is continuous for all θ
and, assuming uniform distribution, the support of P is the whole ∆: this implies L = S, as has
already been mentioned in a footnote.
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Theorem 17. Suppose that Assumptions 3 and 4 hold. If the essential robust
problem (7) is feasible, then

1. problem (7) admits a solution θ∗∗;
2. irrespective of the uniqueness of θ∗∗, it holds that

lim
N→∞

c>θ∗N = c>θ∗∗ P∞-almost surely;

3. if, moreover, θ∗∗ is unique, then

lim
N→∞

θ∗N = θ∗∗ P∞-almost surely.

If instead problem (7) is infeasible, then

lim
N→∞

c>θ∗N = +∞ P∞-almost surely.

To conclude the discussion, I will try to provide a bit more insight about the
possible infeasibility of the essential robust problem. It has already been observed, in
a comment below Definition 3, that the requirement that f̂N is almost surely proper
(Assumption 2) does not exclude that L ≡ +∞ so that limN→∞ f̂N (θ) = +∞ almost
surely for all θ ∈ Θ. In pretty much the same way,

⋂N
i=1 Θδ(i) 6= ∅ does not exclude

that
⋂∞
i=1 Θδ(i) = ∅; indeed this is what happens almost surely in the “bad” case

where problem (7) is infeasible and c>θ∗N → +∞. This connection is clarified by the
following result.

Proposition 18. Under the hypotheses of Theorem 17, problem (7) is infeasible
if and only if

∞⋂
i=1

Θδ(i) = ∅ P∞-almost surely.

A necessary condition for this to hold is that
⋂N
i=1 Θδ(i) is PN -almost surely unbounded

for all N .

Proof. Suppose that problem (7) is infeasible. Consider a δ∞ ∈ ∆∞ such that⋂∞
i=1 Θδ(i) is not empty. For any such δ∞ there exists θ̄ ∈

⋂∞
i=1 Θδ(i) , and it holds

that limN→∞ y∗N ≤ c>θ̄ < +∞. Hence, by the last claim of Theorem 17, the set of
all such δ∞ has probability 0. Vice versa, suppose that almost surely

⋂∞
i=1 Θδ(i) = ∅

and, for the sake of contradiction, that there exists θ̄ ∈ Θ such that P
[
θ̄ ∈ Θδ

]
= 1.

Then, by independence,

P∞
[
θ̄ ∈

∞⋂
i=1

Θδ(i)

]
= lim
N→∞

PN
[
θ̄ ∈

N⋂
i=1

Θδ(i)

]
= lim
N→∞

N∏
i=1

P
[
θ̄ ∈ Θδ(i)

]
= 1,

i.e., almost surely θ̄ ∈
⋂∞
i=1 Θδ(i) , which is a contradiction. Hence such a θ̄ does

not exist, and problem (7) is infeasible; this proves the first claim. To prove the
second claim suppose again that almost surely

⋂∞
i=1 Θδ(i) = ∅ and, for the sake of

contradiction, that
⋂N
i=1 Θδ(i) is bounded with nonzero probability for a certain N .

Let Ck =
⋂(k+1)N
i=1 Θδ(i) . The sets (Ck)∞k=0 form a nonincreasing sequence · · ·Ck−1 ⊇

Ck ⊇ Ck+1 · · · of nonempty closed sets; but since

PN
[
N⋂
i=1

Θδ(kN+i) is bounded

]
= PN

[
N⋂
i=1

Θδ(i) is bounded

]
> 0 for all k ∈ N,
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P∞-almost surely there exists k̂ ∈ N such that
⋂N
i=1 Θδ(k̂N+i) is bounded. Hence,

for k ≥ k̂ the intersections Ck are nonempty and compact. It follows [16, Corollary
to Theorem 2.36] that

⋂∞
i=1 Θδ(i) =

⋂∞
k=0 Ck 6= ∅, P∞-almost surely. This is a

contradiction stemming from the assumption that PN [
⋂N
i=1 Θδ(i) is bounded] > 0;

hence PN [
⋂N
i=1 Θδ(i) is bounded] = 0 for all N , and this concludes the proof.

Remarks. (A) If problem (7) is infeasible, then, of course, problem (1) is also
infeasible, because P [∆] = 1. (B) The main point of the second claim of Proposition 18
is to help establish feasibility by contraposition: for example, if P [Θδ is bounded] > 0
or, more generally, if there exist finitely many events, say, A1, . . . , AN̄ ⊆ ∆, each
with positive probability, such that for any choice of δ(i) ∈ Ai, i = 1, . . . , N̄ , the set
Θδ(1) ∩ · · · ∩Θδ(N̄) is bounded, then problem (7) must be feasible. Moreover, if these
events exist the second part of Assumption 4 is automatically enforced, because if⋂N̄
i=1 Θδ(i) is bounded there always exists t ∈ R such that

⋂N̄
i=1 Θδ(i) ⊆ {c>θ ≤ t}.

The message of Proposition 18 and of this remark is illustrated in the following, final,
example.

Example 6. Let p ∈ (0, 1), Θ = R2, θ = (x1, x2), c>θ = x1+x2, and consider three
cases. (A) Suppose that δ = (r, γ), where r is a binary variable taking values 1, 2 with
equal probability 1/2 and γ is a random variable independent of r with geometric
distribution P [γ = n] = p(1− p)n. Let moreover

Θδ =

{{
(x1, x2) ∈ R2 : x1 ≥ γ

}
if r = 1,{

(x1, x2) ∈ R2 : x2 ≥ γ
}

if r = 2.

Letting GN,1 = maxi=1,...,N : r(i)=1 γ(i) and GN,2 = maxi=1,...,N : r(i)=2 γ(i), it holds
that

⋂N
i=1 Θδ(i) = {x1 ≥ GN,1, x2 ≥ GN,2}. In this case, P∞-almost surely, as N →

∞ both GN,1 and GN,2 tend to +∞, the minimum c>θ∗N = GN,1 + GN,2 also tends
to +∞, and, as claimed by Proposition 18,

⋂∞
i=1 Θδ(i) = ∅; and of course

⋂N
i=1 Θδ(i)

is PN -almost surely unbounded for all N . A pictorial view of this case is shown in
Figure 6(a).

(B) Suppose that δ = (r, γ) as before, but this time let

Θδ =


{

(x1, x2) ∈ R2 : x1 ≥ − 1
γ+1

}
if r = 1,{

(x1, x2) ∈ R2 : x2 ≥ − 1
γ+1

}
if r = 2.

(See Figure 6(b).) As before
⋂N
i=1 Θδ(i) is PN -almost surely unbounded for all N ,

but now c>θ∗N = −1/(GN,1 + 1) − 1/(GN,2 + 1) tends almost surely to 0 (i.e., the
minimum attained by problem (7)), and ∅ 6=

⋂∞
i=1 Θδ(i) = the first quadrant of the

x1, x2 plane. This point shows that the unboundedness of
⋂N
i=1 Θδ(i) for all N is only

necessary for the infeasibility of (7), not sufficient.
(C) Finally, suppose that r is a ternary variable taking values 1, 2, 3 with equal

probability 1/3, δ = (r, γ) as before, and

Θδ =


{

(x1, x2) ∈ R2 : x1 ≥ − 1
γ+1

}
if r = 1,{

(x1, x2) ∈ R2 : x2 ≥ − 1
γ+1

}
if r = 2,{

(x1, x2) ∈ R2 : x1 ≤ 5, x2 ≤ 5
}

if r = 3.

(See Figure 6(c).) It is immediate to check that
⋂N
i=1 Θδ(i) 6= ∅ for all N . Moreover,

although Θδ is unbounded for every δ ∈ ∆, the events A1 = {δ ∈ ∆ : r = 1},



CONSISTENCY OF THE SCENARIO APPROACH 161

-2 0 2 4 6 8 10
-2
0
2
4
6
8

10
(b)

-2 0 2 4 6 8 10
-2
0
2
4
6
8

10
(c)

-2 0 2 4 6 8 10
-2
0
2
4
6
8

10
(a)

Fig. 6. Instances of finite-sample problems for each case in Example 6. Light gray:
⋂N
i=1 Θδ(i) ;

dark gray:
⋂∞
i=1 Θδ(i) ; ◦ = θ∗N ; • = essential robust solution. (a) The essential robust problem is

infeasible. (b) The essential robust problem is feasible but
⋂N
i=1 Θδ(i) is PN -almost surely unbounded

for all N . (c) The essential robust problem is feasible and
⋂N
i=1 Θδ(i) is compact.

A2 = {δ ∈ ∆ : r = 2}, and A3 = {δ ∈ ∆ : r = 3}, each with positive probability,
are such that if δ(i) ∈ Ai, i = 1, 2, 3, then the set Θδ(1) ∩ Θδ(2) ∩ Θδ(3) is always
bounded. According to the second claim of Proposition 18, this is enough to establish
the feasibility of problem (7). P∞-almost surely, the solution θ∗N converges to the
origin (i.e., the solution of (7)) and

⋂∞
i=1 Θδ(i) = [0, 5]× [0, 5].

6. Conclusions. In this paper I have shown that the solution of a convex sce-
nario program, subject to independent and identically distributed constraints that,
almost surely, sooner or later confine it to a compact set (coercivity), converges almost
surely to the solution of a suitably defined essential robust problem. Future work may
be dedicated

• to searching for weak enough conditions such that the scenario solution con-
verges to the solution of the robust problem, i.e., nice sufficient conditions to
ensure that L(x) = S(x) at least at the minimum points x = x∗∗ of L;

• to weakening the convexity hypothesis. On one hand, it should not be difficult
to show that the convergence proved here holds also for certain families of
nonconvex problems, for example, the one considered in [13, section IV].
On the other hand, the scenario approach can be applied also to nonconvex
problems, albeit with a different a posteriori assessment method (see, e.g., [6],
[8]), but to my knowledge no general a priori bounds like (10) or (23), powerful
enough to exploit the Borel–Cantelli lemma (proof of Proposition 12), exist
without the assumptions of convexity and finite-dimensionality (X ⊆ Rd).
Convexity has also been used to prove that, for all N , almost surely f̂N ≤ L
(Proposition 9), but I conjecture that a uniform bound is not necessary to
establish the main results.
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[9] A. Carè, S. Garatti, and M. C. Campi, Scenario min-max optimization and the risk of
empirical costs, SIAM J. Optim., 25 (2015), pp. 2061–2080.

[10] T. Kanamori and A. Takeda, Worst-case violation of sampled convex programs for optimiza-
tion with uncertainty, J. Optim. Theory Appl., 152 (2012), pp. 171–197.

[11] A. J. Kleywegt, A. Shapiro, and T. Homem-de-Mello, The sample average approximation
method for stochastic discrete optimization, SIAM J. Optim., 12 (2001), pp. 479–502.

[12] R. Lucchetti, Convexity and Well-Posed Problems, Springer, New York, 2006.
[13] P. Mohajerin Esfahani, T. Sutter, and J. Lygeros, Performance bounds for the scenario

approach and an extension to a class of non-convex programs, IEEE Trans. Automat.
Control, 60 (2015), pp. 46–58.
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