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Abstract— Convex scenario optimization is a well-recognized
approach to data-based optimization where the solution comes
accompanied by precise generalization guarantees. It has been
used in system identification as a driving methodology to
construct interval prediction models. With this paper, scenario
optimization breaks into the realm of non-convex optimization.
In non-convex optimization, the number of scenarios that
determine the solution - the so-called support scenarios - cannot
be bounded beforehand, and one has to wait until the solution
is computed to evaluate the size of the support scenario set. A
theory is developed in this paper such that the generalization
property of the solution is a-posteriori evaluated based on the
registered number of support scenarios. This new perspective
empowers the method and opens up new important possibilities
for it to be applied to system identification involving non-convex
optimization.

I. INTRODUCTION

In a previous paper by the same authors, [8], Interval
Predictor Models (IPMs) for use in identification have
been introduced. An IPM can be identified from a data set
according to schemes introduced in [8] and can be used
to predict future values of the output of a data generation
mechanism. IPMs abandon the traditional perspective that
a model returns a single value as output. Instead, unlike
standard models in system identifications, an IPM returns an
interval of possible outputs. The IPM selection is driven by
the principle that the model correctly describes the seen data
set and, among models correctly describing the data set, the
one returning on average the smallest prediction interval
is preferred. It has to be noted that models with interval
outputs have been used in other contexts. Their origin
lies in the theory of differential inclusions and set-valued
dynamical systems, [3], [4] and [5]. Moreover, interval
models have been also adopted in identification problems
along lines different from the IPM theory of [8], e.g. [12],
[13], [14], [15], [16], and [10]

While a-priori information has a fundamental role in
selecting the class in which the IPM is identified so that the
interval is small and practically useful, the main theoretical
strength of the IPM’s theory developed in [8] is that, under
hypotheses of stationarity and independence, the reliability
of the IPM can be determined with no prior knowledge, that
is, it holds independently of the data generation mechanism
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2Simone Garatti, simone.garatti@polimi.it, is with the Dipar-
timento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Italy.

at hand. Hence, by the use of IPMs a key conceptual
separation is obtained: the reliability is always guaranteed,
and a-priori information only impacts on the size of the
prediction intervals, a quantity which can be assessed after
the identification process has been completed.

The key tool used in [8] in the derivation of the IPM theory
is the scenario optimization framework developed in [6],
[7], [9]. In these papers, deep results on the generalization
properties of data-based optimization programs have been
established that hold true independently of the distributional
properties of uncertainty. In an identification context, this
latter fact is recast into saying that the reliability guarantees
are valid independently of the data generation mechanism.
However, one fundamental limitation occurs when the
results of [6], [7], [9] are used, and it is that the theory
is inherently based on the assumption of convexity of the
function being optimized as well as on the convexity of
constraints. When applied to identification, this assumption
severely limits the freedom in the model class selection.
For instance, in parameterizing the central line of an IPM
with constant interval size, see [11], due to convexity the
central line has to be assigned as a linear combination
of fixed basis functions, while more flexible choices of
tunable basis functions are ruled out. This e.g. excludes
linear combinations of sinusoids with tunable frequency
and phase such as

∑p
k=1 αk sin(ωku + φk), where the

αks, ωks and φks are estimated, or a single-layer neural
network with structure

∑p
k=1 αkσ(aku + bk) + c, where

σ(x) := 1/(1 + e−x) is the sigmoid function and the αks,
aks, bks, and c are estimated. Resorting e.g. to the sigmoid
central line leads to constructing an IPM model by the
optimization program

arg min
αk,ak,bk,c,h

h

subject to

∣∣∣∣∣y(i)−
p∑
k=1

αkσ(aku(i) + bk)− c
∣∣∣∣∣ ≤ h

for all i = 1, · · · , N,

(1)

where the IPM’s width h is minimized under the constraint
that the data points u(i), y(i), i = 1, · · · , N , are in the IPM.
Clearly, this program is not convex.

This paper breaks up with this limitation, and scenario
optimization is generalized so that it becomes suitable to
deal with non-convex optimization. A new scenario theory
is presented to this purpose for the first time in this paper.
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One fundamental aspect is that, in a convex context, the
maximum number of data points that determine the solution,
the so-called support points, see [8], is a-priori known and it
equals the number of optimization variables. In a non-convex
context, this fact fails to be true, and the new perspective
of this paper is that one first computes the solution and
then evaluates the number of support points. It turns out
that an a-posteriori judgment compensates for the lack of
a-priori knowledge and leads to sharp and useful evaluations.

In this paper, we limit ourselves to consider IPMs
with constant interval size and such that all seen points
are included in the IPM as it is done in (1). The proposed
methodology, however, can be applied more generally
to various IPM structures. Moreover, one can conceive
discarding data points that are left out of the IPM because
they are considered as outliers. All these extensions will be
presented in a subsequent publication.

The paper is organized as follows: in the next Section non-
convex scenario optimization is presented, followed by the
proof of its main result in Section III. In Section IV we
resume system identification and show how the result from
the previous sections can be applied.

II. NON-CONVEX SCENARIO OPTIMIZATION

Suppose that ∆ is a probability space, endowed with a σ-
algebra D and a probability P. Let, moreover, (∆N ,DN ,PN )
be the N -fold Cartesian product of ∆ equipped with the
product σ-algebra DN and the probability PN = P×· · ·×P
(N times). A point in (∆N ,DN ,PN ) is thus a sample
(δ(1), · · · , δ(N)) of N components extracted independently
from ∆ according to the same probability P. Each δ(i) is
called a “scenario”; in a system identification endeavor, a
scenario is an input-output pair, i.e. δ(i) = (u(i), y(i)).
Let X be a subset of Rd, f : X → R be a function
and, for each δ ∈ ∆, let Xδ be a subset of Rd. For any
sample (δ(1), · · · , δ(N)), we consider the corresponding sets
Xδ(1) , · · · ,Xδ(N) , and we build the following program:

NCSPN : arg min
x∈X

f(x)

subject to x ∈ Xδ(i) for all i = 1, · · · , N.
(2)

The acronym NCSP stands for Non-Convex Scenario
Program reflecting the fact that, unlike all the previous
literature on scenario optimization where the subsets X
and Xδ , as well as the function f , were convex, here no
assumptions of convexity are made. NCSPN is a random
program, and hence its solution is also random. Finding the
optimal solution of (2) is in general a difficult task. Here,
we assume that an algorithm A is available, which maps
{δ(1), · · · , δ(N)} to a possibly sub-optimal solution x∗N of
(2). Interestingly, the generalization result of this paper is
applicable to any A independently of its accuracy, provided
the following assumption applies:

Assumption 1: PN -almost surely, for all N , the solution
x∗N := A(δ(1), · · · , δ(N)) exists, it is unique, and it satisfies

all the constraints, that is, x∗N ∈ Xδ(i) , i = 1, · · · , N .
Moreover, x∗N is invariant with respect to any permutation
of the sample (δ(1), · · · , δ(N)).

The following definition is central to our discussion.

Definition 1: Let x be a given point in X . The violation
probability of x is defined as

V(x) := P {δ ∈ ∆ : x /∈ Xδ}.

Now consider a fixed reliability parameter ε ∈ (0, 1). We
say that x ∈ X is ε-feasible if V(x) ≤ ε. Although V(x)
is a number for any fixed value of x, if V(·) is computed
corresponding to the solution x∗N , then V(x∗N ) is a random
variable over ∆N . Our goal is to provide, for small values
of ε, a guarantee on the ε-feasibility of x∗N .

In a convex setup, i.e. with respect to a program where
f(x) = c>x, and the sets X and Xδ are convex, one can
provide such a guarantee in the form

PN {V(x∗N ) > ε} ≤ β; (3)

stated another way, (3) claims that

PN {x∗N is ε-feasible} ≥ 1− β.

This result is deeply grounded on the concept of support
constraint [7, Definition 4], and on the fact that the number
of support constraints in a d-dimensional convex program
is at most d [7, Theorem 3]. When β is very small, 1 − β
should be interpreted as a “very high confidence”, or
“practical certainty”. The reader is referred to [9] for a
study on how β depends on ε and N .

In the non-convex scenario program NCSPN no upper
bound on the number of support constraints is available,
and it is easy to find examples where the number of support
constraints can be as large as the number N of constraints;
moreover, resorting to alternative routes based on the VC-
theory, [1], leads to conservative results. Prompted by this
fact, in this paper we address the feasibility of the solution
of (2) along a different approach. We abandon the idea
that there always exists a subset of constraints of a-priori
bounded cardinality sufficient to support the solution; we
suppose, instead, that after the extraction of (δ(1), · · · , δ(N))
the experimenter will be able to isolate a subset of constraints
sufficient to support the solution. The reliability guarantee
will depend on the a-posteriori assessed cardinality of that
set, and the smaller the cardinality, the better the guarantee.

The following definition formalizes the concept of subset of
constraints sufficient to support the solution.

Definition 2: Consider a sample (δ(1), · · · , δ(N)) ∈ ∆N ,
and let x∗N be the corresponding solution of program
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NCSPN . A support set for NCSPN is a subset of elements
S = {δ(i1), · · · , δ(ik)} ⊆ {δ(1), · · · , δ(N)} such that the pro-
gram obtained by removing from NCSPN all the constraints
except x ∈ Xδ(i1) , · · · , x ∈ Xδ(ik) has the same solution
x∗N as NCSPN . An irreducible support set for NCSPN is
a support set S = {δ(i1), · · · , δ(ik)} such that no constraint
can be removed from S leaving the solution unchanged.

Clearly, the set {δ(1), · · · , δ(N)} corresponding to the whole
sample is a support set. The goal of the experimenter is
to find a support set of as small cardinality as possible,
possibly one of minimal cardinality. However, we stress
that, for the purposes of applying the theory, minimality is
not required. Among various approaches, a simple greedy
algorithm to find an irreducible support set is as follows.

1) Set L← (δ(1), · · · , δ(N)) and compute x∗N ← solution
of the corresponding program NCSPN ;

2) For all i = 1, · · · , N :
• let L′ ← L\δ(i), form the program NCSP(L′) with

the constraints in L′, and let x∗ be its solution;
• if x∗ = x∗N , set L← L′;

3) Output the set {i1, · · · , ik} of the indices of the
elements in L.

Remark 1: An algorithm like the one above will
be regarded as a function B : (δ(1), · · · , δ(N)) 7→
{i1, · · · , ik} such that {δ(i1), · · · , δ(ik)} is a support set. If
(δ(1), · · · , δ(N)) is a random sample, then the cardinality

s∗N := |B(δ(1), · · · , δ(N))|
is a random variable over ∆N . Note that s∗N may depend
on the order in which the elements (δ(1), · · · , δ(N)) ap-
pear. For example, if both {δ(1), δ(2)} and {δ(3), δ(4), δ(5)}
are irreducible support sets, then the above greedy al-
gorithm gives B(δ(1), δ(2), δ(3), δ(4), δ(5)) = {3, 4, 5} and
B(δ(5), δ(4), δ(3), δ(2), δ(1)) = {1, 2}.

We are ready to state our main result.

Theorem 1: Suppose that Assumption 1 holds, and let
β ∈ (0, 1). Define the function ε : {0, · · · , N} → [0, 1]
as follows:

ε(k) :=

1 if k = N,

1− N−k

√
β

N(N
k)

otherwise.

Suppose that some algorithm B : ∆N → 2{1,··· ,N} de-
signed to select a support set is provided, and let s∗N =
|B(δ(1), · · · , δ(N))|. Then,

PN {V(x∗N ) > ε(s∗N )} ≤ β. (4)

The function ε(k) in Theorem 1 is profiled in Figure 1 for
N = 200 and various values of β. When k is close to 200,

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

ε(
k
)

k

β = 10−6

β = 10−8

β = 10−10

β = 10−12

Fig. 1. Plot of ε(k) versus k for N = 200 and for β = 10−6, 10−8,
10−10, 10−12.

ε(k) is near 1, leading to poor reliability guarantees when
the support set cardinality s∗N is close to the size of the data
set. The conclusion becomes progressively stronger as s∗N
becomes smaller. From the figure, it also appears that the
quantitative role of the confidence parameter β is minor, so
that β can be set to very small values without significantly
affecting ε(k). This is similar to what happens in a convex
context where ε does not depend on k, see e.g. [2].

III. PROOF OF THE MAIN RESULT

Let Ik denote the set of all possible
(
N
k

)
selections of k

indices Ik = {i1, · · · , ik} from {1, · · · , N}. For any such
selection Ik, let x∗Ik be the solution to the following program:

NCSP(Ik) : arg min
x∈X

f(x)

subject to x ∈ X
δ(ij)

for all ij ∈ Ik.

Let us define the subsets ∆N
0 , · · · ,∆N

N according to the
following principle: (δ(1), · · · , δ(N)) ∈ ∆N

k if and only if
|B(δ(1), · · · , δ(N))| = k. The subsets ∆N

0 , · · · ,∆N
N form

a partition of ∆N . Let us refine such partition: for each
k = 0, · · · , N and for all Ik ∈ Ik define ∆N

k,Ik
⊆ ∆N

k

according to the following rule: (δ(1), · · · , δ(N)) ∈ ∆N
k,Ik

if
and only if B(δ(1), · · · , δ(N)) = Ik. It holds

∆N =

N⋃
k=0

⋃
Ik∈Ik

∆N
k,Ik

.

Let moreover

B = {(δ(1), · · · , δ(N)) ∈ ∆N : V(x∗N ) > ε(s∗N )}

and

BIk = {(δ(1), · · · , δ(N)) ∈ ∆N : V(x∗Ik) > ε(k)}.
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We have

B = ∆N ∩B =

N⋃
k=0

⋃
Ik∈Ik

∆N
k,Ik
∩ {V(x∗N ) > ε(s∗N )}

=

N⋃
k=0

⋃
Ik∈Ik

∆N
k,Ik
∩ {V(x∗Ik) > ε(k)}

=

N−1⋃
k=0

⋃
Ik∈Ik

∆N
k,Ik
∩ {V(x∗Ik) > ε(k)}

=

N−1⋃
k=0

⋃
Ik∈Ik

∆N
k,Ik
∩BIk ,

where the last-but-one equality holds since ε(N) = 1,
hence {V(x∗Ik) > 1} = ∅. Now focus on any se-
lection Ik of k indices; to fix ideas, consider Ik =
{1, · · · , k}. Since the definition of BIk only involves the
first k components, BIk is a cylinder with base in the
Cartesian product of the first k domains ∆. Suppose that
(δ̄(1), · · · , δ̄(k)) is a point in the base of such cylinder;
then a point (δ̄(1), · · · , δ̄(k), δ(k+1), · · · , δ(N)) belongs to
∆N
k,{1,··· ,k} ∩ B{1,··· ,k} only if the constraints x∗{1,··· ,k} ∈
Xδ(k+1) , · · · , x∗{1,··· ,k} ∈ Xδ(N) are satisfied (this is by
definition of ∆N

k,{1,··· ,k}). On the other hand, for any such
point

V(x∗{1,··· ,k}) = P
{
δ ∈ ∆ : x∗{1,··· ,k} /∈ Xδ

}
> ε(k)

by definition of B{1,··· ,k}. Therefore, since the components
δ(k+1), · · · , δ(N) are independent,

PN−k
{

(δ(k+1), · · · , δ(N)) :

(δ̄(1), · · · , δ̄(k), δ(k+1), · · · , δ(N)) ∈ ∆N
k,{1,··· ,k} ∩B{1,··· ,k}

}
= PN−k

{
N⋂

i=k+1

{
(δ̄(1), · · · , δ̄(k), δ(k+1), · · · , δ(N)) :

x∗{1,··· ,k} ∈ Xδ(i)
}}

=

N∏
i=k+1

P
{

(δ̄(1), · · · , δ̄(k), δ(i)) : x∗{1,··· ,k} ∈ Xδ(i)
}

≤
N∏

i=k+1

(1− ε(k)) = (1− ε(k))N−k.

Integrating over the base of the cylinder B{1,··· ,k}, we obtain

PN
{

∆N
k,{1,··· ,k} ∩B{1,··· ,k}

}
≤ (1− ε(k))N−k Pk

{
base of B{1,··· ,k}

}
≤ (1− ε(k))N−k.

Recall that, up to this point, the choice of Ik = {1, · · · , k}
has been arbitrary. In fact, reasoning exactly in the same
way, we obtain PN

{
∆N
k,Ik
∩BIk

}
≤ (1− ε(k))N−k for all

Ik ∈ Ik. Therefore, by sub-additivity,

PN {B} ≤
N−1∑
k=0

∑
Ik∈Ik

(1− ε(k))N−k

=

N−1∑
k=0

(
N

k

)
(1− ε(k))N−k.

Finally, substituting the expression for ε(k) provided in the
statement of the theorem we get

PN {V(x∗N ) > ε(s∗N )} = PN {B} ≤ β.

IV. EXAMPLES

Suppose that u and y are two scalar variables and that the
N = 1250 i.i.d. observations (u(i), y(i)), i = 1, · · · , 1250,
depicted in Figure 2 have been collected1. The objective is

u
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

-0.5

0

0.5

1

1.5

2

2.5

Fig. 2. Data generated by a linear×exponential model plus noise.

that of constructing an IPM able to provide a prediction
interval for future outputs of the system. Specifically, we
resort to program (1) with p = 10, that is, the central line is
a single-layer neural network with vertical offset

10∑
k=1

αkσ(aku+ bk) + c,

where σ(x) = 1/(1 + e−x) and αk, ak, bk, c, along with
the IPM width h, are tunable parameters. Program (1)
is a program with linear cost function and non-convex
constraints, one for each observation (u(i), y(i)). In order
to solve it, one has to rely on numerical algorithms
for constrained nonlinear programming. We opted for

1For the sake of completeness, we let the reader know that the data record
was generated according to the model

y(i) = 15u(i) · exp(−3u(i)) + w(i), (5)

where the u(i)’s were i.i.d. with uniform distribution on [0, 1] and the
w(i)’s were i.i.d. with Gaussian distribution with zero mean and variance
2.5 · 10−3. Note, however, that in no way this knowledge about the data
generation mechanism is used in the constructions discussed in this example
section.
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the fmincon function of the Optimization Toolbox of
MATLAB. The following incremental usage of fmincon
was employed to find an approximate solution to program
(1) and, simultaneously, compute a support set.

Incremental procedure
0. Set the initial solution to an arbitrary initialization; we

chose 
c = 1

αk = 1/k,
ak = 1/k, k = 1, . . . , 10.
bk = 1/k,
h = 0.

(6)

Set L← ∅;
1. For each data point and in correspondence of the current

solution, compute

di ←
∣∣∣∣∣y(i)−

10∑
k=1

αkσ(aku(i) + bk)− c
∣∣∣∣∣ .

If di ≤ h for all i = 1, · · · , N , then stop and return L
and the current solution;

2. Otherwise, let ī = arg maxi di and update L← L∪{̄i}.
Run fmincon with initialization as in (6) and with the
sole constraints corresponding to the indices in L in
place. Update the current solution with the output of
the fmincon function. Go to 1.

In words, the procedure progressively updates the solution
by adding one data point at a time, until the computed IPM
contains all the data points (“if” clause in step 1). The data
point to be added at each step is the outermost – and hence
most indicative of the way the solution has to be changed
to contain all the data points – from the currently computed
IPM. By construction, the returned L is a support set,
because if the procedure is run with a data set restricted to
the data points whose indices are in the obtained L, then the
final solution returned by the procedure keeps unchanged.
Note that the procedure always terminates, because step 1
is run at most N times, in which case the IPM contains all
the data points. Clearly, the hope is that the procedure halts
well before this extreme condition, and experimental trials
reveal that this is indeed the case.

Based on experience, the incremental procedure described
above is able to return solutions with cost close to optimal.
The procedure was run for the data record at hand, and
the IPM depicted in Figure 3 was obtained. The returned
support set, which is also depicted in the figure through red
crosses, had cardinality2 equal to 13. Note that the support
points need not be on the boundary of the IPM.

After that the IPM is computed, its reliability is evaluated by
Theorem 1. We took β = 10−6, which gives high confidence

2Multiple experiments revealed that when the data are generated accord-
ing to (5) it is likely that the obtained support set has cardinality between
9 and 15.

u
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

-0.5
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0.5

1

1.5

2

2.5

Fig. 3. IPM for the data in Figure 2. A support set of 13 points is marked
with red crosses.

1− 10−6, and for the present instance, where s∗N = 13, we
drew the conclusion

P

{
(u, y) :

∣∣∣∣∣y −
10∑
k=1

α∗k,Nσ(a∗k,Nu+ b∗k,N )− c∗N

∣∣∣∣∣ > h∗N

}
≤ ε(13) = 0.071,

where (α∗k,N , a
∗
k,N , b

∗
k,N , c

∗
N , h

∗
N is the solution of the

incremental procedure. This means that only 7.1% of the
pairs (u, y) are outside the obtained IPM. This result is
drawn without resorting to any information other than
that carried by the available data set. In particular, no
cross-validation is required.

Suppose now that the data record depicted in Figure 4 has
been obtained from a different system3. Using the incremen-

u
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 4. Data generated by a sinusoidal model plus noise.

tal procedure described before led to the IPM in Figure 5.
The cardinality of the support set was this time 21. Applying
Theorem 1 gives with high confidence 1 − β = 1 − 10−6

3This data record was generated with u and w as in the previous
experiment by the model y(i) = sin(7u(i)) + w(i).
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u
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y
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1.5

Fig. 5. IPM for the data in Figure 4. A support set of 21 points is marked
with red crosses.

that only the 9.7% = ε(21) of the pairs (u, y) lie outside the
obtained IPM. The probability being higher than in the first
example reflects that this second construction turned out to
be more complex in terms of the support set generating the
IPM.
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