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This document contains a collection of problems with more or less the same
conceptual difficulty of those you may encounter in the final exam, although
with possibly more demanding numerical computations (here you are invited
to use Matlab or any other numerical software whenever it helps).

1 Problems

1.1 Exercises on least squares

Problem 1 (price of train tickets).
The following table contains the lengths of the railway connections between
the Milano Centrale train station and the central station of other cities on
the way from Milan to Venice1, and the corresponding prices of a ‘regional’
train ticket2:

Connection Length (km) Ticket price (e)
Milano C.le → Brescia 82.842 7.00
Milano C.le → Verona P.N. 147.480 11.55
Milano C.le → Padova 229.408 15.65
Milano C.le → Venezia S.L. 266.341 18.35

Suppose that the prices are explained by a linear model comprising a fixed
price due to administrative costs plus a price proportional to the length
of the connection. The prices are “noisy” because they are quantized to
multiples of 5 e-cents.

1. Write down the linear model for the ticket price and the normal equa-
tions of the least squares method, and find an estimate of the fixed
price and of the proportionality coefficient.

2. Estimate the price of a ticket from Milano to Vicenza, knowing that
the railway between these cities is 199.138 km long.

1Retrieved from http://it.wikipedia.org/wiki/Ferrovia Milano-Venezia
2Retrieved from http://www.trenitalia.com on February 25, 2013.
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Problem 2 (amplitude and phase of a sinusoid).
The following table contains 10 noisy measures of the values of a sinusoidal
signal y(t) = A sin(2πFt+ φ), taken at random times ti:

ti 2.188 3.043 4.207 4.937 5.675 6.104 6.260 7.150 8.600 9.655
yi -1.112 2.358 -1.807 1.202 -0.814 1.298 -2.520 -0.132 1.421 -0.302

We know the frequency F = 2 Hz of the signal, but we do not know its
amplitude A and its phase φ.

1. Show how to apply the method of linear least squares in order to find
an estimate of A and φ.
Hint: recall trigonometry (!).

2. Compute the estimates Â and φ̂.

Problem 3 (weighted least squares).
Given some measures (ϕ1, y1), · · · , (ϕN , yN ), the canonical Least Squares
estimate is the vector in Rp minimizing the sum of the squared residuals:

θ̂LS := arg min
θ∈Rp

N∑
i=1

(yi − ϕ>i θ)2.

Now suppose that we want to give more importance to some of the errors,
and less to others, minimizing a weighted sum of squared residuals instead:

θ̂WLS := arg min
θ∈Rp

N∑
i=1

wi (yi − ϕ>i θ)2,

where wi ≥ 0 for i = 1, · · · , N .

1. Find the corresponding version of the normal equations.

2. Find the new Weighted Least Squares estimate in terms of the matrices

Y =

 y1
...
yN

 , Φ =

 ϕ>1
...
ϕ>N

 ,
assuming full rank whenever necessary.
Hint: bring into the picture a new matrix containing the weights wi.
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Problem 4 (ranges).
Let Φ be a real matrix. Show that

range Φ>Φ = range Φ>

rank Φ>Φ = rank Φ>

Hint: rewrite the proof of a Lemma about the existence of a solution to the
least squares problem, but keeping it in terms of Φ and Φ>.

Problem 5 (systematic errors).
Let the measures {yi}Ni=1 be generated according to the model yi = ϕ>i θ

o+εi,
and suppose that:

1. εi are independent Gaussian variables with mean µ and variance σ2;

2. ϕi are independent and identically distributed vectors with mean ϕ̄
and second-order moment Σ = E

[
ϕiϕ

>
i

]
> 0;

3. εi is independent of ϕi for all i.

Does the least square estimate converge almost surely as N →∞? If so, to
what does it converge?

1.2 Exercises on algebraic aspects of least squares

Problem 1 (SVD and pseudo-inverse).

1. Verify that

A = UΣV > =

[
1/
√

5 −2/
√

5

2/
√

5 1/
√

5

] [ √
10 0
0 0

] [
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
.

is a singular value decomposition of A =

[
1 1
2 2

]
.

2. Compute the pseudo-inverse of A =

[
1 1
2 2

]
.

Problem 2 (orthogonal projector).
Consider A ∈ Rm×n, and let A+ be its pseudo-inverse. Show that

ΠA := AA+ ∈ Rm×m

is the orthogonal projector onto the subspace of Rm generated by the columns
of A; more explicitly, that for any v ∈ Rm, ΠAv is the orthogonal projection
of v on span {columns of A}.
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1.3 Exercises on machine learning

Problem 1 (complaint telephone calls).
A big company receives N complaint calls {ti}, i = 1, · · · , N , and for each
call it records the region {ri}, i = 1, · · · , N , of the caller. Suppose that the
{ri} are independent and identically distributed random variables taking val-
ues, say, in the set of the 20 Italian regions {Piedmont,Lombardy, · · · ,Sicily}
with respective probabilities P = {p(Piedmont), p(Lombardy), · · · , p(Sicily)}
(which depend, in general, on the region’s population, on the quality of ser-
vice in the region, etc.). Using Hoeffding’s inequality, compute how many
telephone calls should be recorded in order to estimate the “mass distribu-
tion” P so that, with confidence at least 1 − 10−4, the estimation error of
the probability is at most ε = 1% at all the regions simultaneously.

Problem 2 (finitely many classifiers).
Prove the following

Theorem 1.3.1 Let F be a family of classifiers, parameterized by c ∈ C,
where C is a finite of Rp, namely |C| = K. Suppose that (U1, Y1), · · · , (UN , YN )
are independent and identically distributed, where Ui has continuous distri-
bution F (u) and Yi ∈ {0, 1}. Define J̄(c), ĴN (c), c̄, and ĉN as usual. Now
the points ĉN , c̄ ∈ C trivially exist, since C is finite; assume that c̄ is unique.
Then:

1. almost surely, ĉN → c̄;

2. for fixed ε > 0 and N , it holds

P

[
max
c∈C
|ĴN (c)− J̄(c)| ≥ ε

]
≤ 2Ke−2Nε

2
.

1.4 Exercises on the LSCR method

Problem 1 (discrete distribution, wrong confidence).
Suppose that three measures are available:

y1 = θo + ε1,

y2 = θo + ε2,

y3 = θo + ε3,

where ε1, ε2, and ε3 are independent and identically distributed with discrete
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distribution, each taking only the values 1 or −1 with equal probabilities:

ε1 =

{
1 with probability 1

2 ,

−1 with probability 1
2 ,

ε2 =

{
1 with probability 1

2 ,

−1 with probability 1
2 ,

ε3 =

{
1 with probability 1

2 ,

−1 with probability 1
2 .

Let θo = 1. We employ LSCR method with the following group:

1 2 3

I1 • • ◦
I2 • ◦ •
I3 ◦ • •
I4 ◦ ◦ ◦

and select the interval [θ̄1, θ̄3] which, according to the LSCR theory, should
have a 50%-confidence interval. Show that the confidence of such interval
is not 50% (this may be the case if the distribution is discrete). Hint: see
what happens for every possible value of ε1, ε2, and ε3.

Problem 2 (discrete distribution, correct confidence).
Suppose that three measures are available:

y1 = θo + ε1,

y2 = θo + ε2,

y3 = θo + ε3,

where ε1, ε2, and ε3 are independent but with discrete distribution, each
taking only two possible values symmetrically around 0. Namely:

ε1 =

{
1 with probability 1

2 ,

−1 with probability 1
2 ,

ε2 =

{
1
2 with probability 1

2 ,

−1
2 with probability 1

2 ,

ε3 =

{
2 with probability 1

2 ,

−2 with probability 1
2 .

Let θo = 1, and verify that the LSCR method with the following group:
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1 2 3

I1 • • ◦
I2 • ◦ •
I3 ◦ • •
I4 ◦ ◦ ◦

correctly provides a 50%-confidence interval even though the errors do not
have a density. In order to do this, see what happens for every possible value
of ε1, ε2, and ε3.

1.5 Exercises on Interval Predictor Models

Problem 1 (support constraints).
Consider the problem:

minimize γ

subject to f1(θ) ≤ γ
...

fN (θ) ≤ γ
θ ∈ R, γ ∈ R,

where N ≥ 2, and each fi is a convex parabola:

fi(θ) = aiθ
2 + biθ + ci, ai > 0.

Show that any such problem is feasible. For any of the following situations,
tell whether it is possible, and if so, provide an example in which it holds:

• the problem has no support constraints;

• the problem has 1 support constraint;

• the problem has 2 support constraints;

• the problem has 3 support constraints.
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2 Solutions

2.1 Solutions to the exercises on least squares

Solution 1 (price of train tickets).
The model reads

pi = a+ bdi + εi,

where pi is the price of the ticket in e(the “explained” variable), a the fixed
price in e, b the proportionality coefficient in e/km, di is the distance in
km (the “explanatory” variable), and εi is a quantization error (in e). The
regressors are ϕ1(d) = 1 and ϕ2(d) = d, and a, b are the parameters to be
estimated. To pose the problem in compact form, we let

Y =

 p1
...
p4

 , Φ =

 1 d1
...

...
1 d4

 , θ =

[
a
b

]
,

the normal equations read

Φ>Φ θ = Φ>Y,

and the least squares solution is

θ̂LS =

[
â

b̂

]
= arg min

θ
‖Φθ − Y ‖2 =

(
Φ>Φ

)−1
Φ>Y.

Once â and b̂ are known, the estimated price of a ticket from Milan to
Vicenza is p̂ = â+ b̂ · (199.138 km). The Matlab code

% Example: estimation of ticket prices

Y = [ 7.00 ; 11.55 ; 15.65 ; 18.35 ];

Phi = [ 1, 82.842 ;

1, 147.480 ;

1, 229.408 ;

1, 266.341 ];

thetaLS = pinv(Phi)*Y

priceToVicenza = thetaLS(1) + thetaLS(2)*199.138

yields the estimates â = 2.254566 e, b̂ = 0.059955 e/km, and p̂ ' 14.20 e.
For comparison, the actual price of a ticket to Vicenza was 14.30 e3.

Solution 2 (amplitude and phase of a sinusoid).
For brevity, let ω = 2πF . The measurement model is then

yi = A sin(ωti + φ) + εi.

3Retrieved from http://www.trenitalia.com on February 25, 2013.
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Since sin(x+ y) = sin(x) cos(y) + cos(x) sin(y), we have

yi = A cos(φ) sin(ωti) +A sin(φ) cos(ωti) + εi

Letting a = A cos(φ) and b = A sin(φ), this becomes a linear model:

yi =
[

sin(ωti) cos(ωti)
] [ a

b

]
+ εi,

where of course the explanatory data are the ti, and the regressors are
ϕ1(t) = sin(ωt), ϕ2(t) = cos(ωt). To pose the problem in compact form, we
let

Y =

 y1
...
y10

 , Φ =

 sin(ωt1) cos(ωt1)
...

...
sin(ωt10) cos(ωt10)

 , θ =

[
a
b

]
,

and the least squares solution is, as usual,

θ̂LS =

[
â

b̂

]
= arg min

θ
‖Φθ − Y ‖2 =

(
Φ>Φ

)−1
Φ>Y.

Note that √
a2 + b2 = A

√
cos2(φ) + sin2(φ) = A;

b

a
=
A sin(φ)

A cos(φ)
= tan(φ).

Therefore, once â and b̂ are known, we can recover an estimate of A and φ
as follows:

Â =

√
â2 + b̂2

φ̂ = arctan(b̂/â)

(or φ̂ = arctan(b̂/â) + π, depending on the signs of â and b̂). The Matlab
code

% Example: amplitude and phase of a sinusoid

F = 2;

omega = 2*pi*F;

T = [ 2.188; 3.043; 4.207; 4.937; 5.675; 6.104; 6.260; 7.150; 8.600; 9.655 ];

Y = [ -1.112; 2.358; -1.807; 1.202; -0.814; 1.298; -2.520; -0.132; 1.421; -0.302 ];

Phi = [sin(omega*T), cos(omega*T)];

thetaLS = pinv(Phi)*Y;

Ahat = sqrt(thetaLS(1)^2 + thetaLS(2)^2)

phihat = atan2(thetaLS(2), thetaLS(1))
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yields the estimates Â = 2.5036 and φ̂ = 1.2938. For comparison, the true
values were A = 2.5 and φ = 1.3 radians, and εi were Gaussian with mean
0 and variance 0.01 (i.e. standard deviation 0.1).

Solution 3 (weighted least squares).

1. To find arg min
θ∈Rp

∑N
i=1 wi (yi−ϕ>i θ)2, we set equal to zero the deriva-

tive with respect to θ in the very same way as we do for ordinary least
squares:

∂

∂θ

N∑
i=1

wi (yi − ϕ>i θ)2 =
N∑
i=1

wi 2(yi − ϕ>i θ)(−ϕ>i )

=

N∑
i=1

2 wi (yi − θ>ϕi)(−ϕ>i ) = 0,

After grouping terms and transposing, we find(
N∑
i=1

wi ϕiϕ
>
i

)
θ =

N∑
i=1

wi ϕiyi. (1)

This is the weighted version of the normal equations. Another way,
but nicer, to get to the same result, is to bring the weights inside the
squares before minimizing:

N∑
i=1

wi (yi − ϕ>i θ)2 =
N∑
i=1

(
√
wiyi −

√
wiϕ

>
i θ)

2;

defining ȳi =
√
wiyi and ϕ̄i =

√
wiϕi, the problem becomes

arg min
θ∈Rp

N∑
i=1

(ȳi − ϕ̄>i θ)2, (2)

which is a least squares problem in standard form. The corresponding
normal equations are (

N∑
i=1

ϕ̄iϕ̄
>
i

)
θ =

N∑
i=1

ϕ̄iȳi,

which of course are the same as (1), once the coefficients
√
wi are

extracted back from ȳi and ϕ̄i.
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2. In the same spirit as in (2), we define

Ȳ =


√
w1y1
...√

wNyN

 =


√
w1

. . .
√
wN


 y1

...
yN

 = W 1/2Y,

Φ̄ =


√
w1ϕ

>
1

...√
w1ϕ

>
N

 =


√
w1

. . .
√
wN


 ϕ>1

...
ϕ>N

 = W 1/2Φ,

where W = diag(w1, · · · , wN ) ∈ RN×N , and W 1/2 denotes its square
root. The problem then reads

arg min
θ∈Rp

∥∥Φ̄θ − Ȳ
∥∥2
2
,

the corresponding normal equations are

Φ̄>Φ̄θ = Φ̄>Ȳ ;

Φ>
(
W 1/2

)>
W 1/2Φθ = Φ>

(
W 1/2

)>
W 1/2Y ;

Φ>WΦθ = Φ>WY,

and finally

θ̂WLS =
(

Φ>WΦ
)−1

Φ>WY.

Solution 4 (ranges).
Suppose that v ∈ null Φ. This means Φv = 0, hence also Φ>Φv = 0 and
v ∈ null Φ>Φ. Suppose, on the other hand, that v ∈ null Φ>Φ. Then
Φ>Φv = 0, hence also ‖Φv‖22 = (Φv)>Φv = v>Φ>Φv = 0. This implies that
Φv = 0 and v ∈ null Φ. Hence null Φ>Φ = null Φ.
Now, since all the spaces in consideration are subspaces of finite-dimensional
vector spaces,

range Φ>Φ =

(
null

(
Φ>Φ

)>)⊥
=
(

null Φ>Φ
)⊥

= (null Φ)⊥ = range Φ>,

and consequently

rank Φ>Φ = dim range Φ>Φ = dim range Φ> = rank Φ>.
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Solution 5 (systematic errors).
Since εi are Gaussian with mean µ and variance σ2, we can write εi = ε̄i+µ,
where ε̄i are Gaussian with mean zero. The variables ε̄i are still independent
of each other and independent of ϕi.
Consider the normal equations, with the substitution yi = ϕ>i θ

o + εi and
divided by N :(

1

N

N∑
i=1

ϕiϕ
>
i

)
θ̂LS =

(
1

N

N∑
i=1

ϕiϕ
>
i

)
θo +

1

N

N∑
i=1

ϕiεi

By a strong law of large numbers, 1
N

∑N
i=1 ϕiϕ

>
i → Σ almost surely, hence

for big N the matrix 1
N

∑N
i=1 ϕiϕ

>
i is invertible, and

θ̂LS = θo +

(
1

N

N∑
i=1

ϕiϕ
>
i

)−1
1

N

N∑
i=1

ϕiεi

= θo +

(
1

N

N∑
i=1

ϕiϕ
>
i

)−1
1

N

N∑
i=1

ϕiε̄i +

(
1

N

N∑
i=1

ϕiϕ
>
i

)−1
1

N

N∑
i=1

ϕiµ

Now, since ε̄i and ϕi are independent, and E[ε̄i] = 0, the second term con-
verges to zero almost surely by a strong law of large numbers. And since µ is
a constant (we can bring it outside the sum), the third term also converges
almost surely, namely to Σ−1ϕ̄µ. Hence,

θ̂LS → θo + Σ−1ϕ̄µ almost surely.

The take-home message is that, in general, you cannot pretend the least
squares method to be consistent in the presence of a systematic error (µ).

2.2 Solutions to the exercises on algebraic aspects

Solution 1 (SVD and pseudo-inverse).

1. We check that U and V are orthogonal; indeed[
1 0
0 1

]
=

[
1/
√

5 −2/
√

5

2/
√

5 1/
√

5

] [
1/
√

5 2/
√

5

−2/
√

5 1/
√

5

]
=

[
1/
√

5 2/
√

5

−2/
√

5 1/
√

5

] [
1/
√

5 −2/
√

5

2/
√

5 1/
√

5

]
;[

1 0
0 1

]
=

[
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

] [
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
=

[
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

] [
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

]
.
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Moreover, it holds[
1 1
2 2

]
=

[
1/
√

5 −2/
√

5

2/
√

5 1/
√

5

] [ √
10 0
0 0

] [
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
.

Thus, A = UΣV > as required. Note that the eigenvalues of both AA>

and A>A are 10 and 0.

2. From the previous point, we have

A+ = V Σ+U> =

[
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

] [
1/
√

10 0
0 0

] [
1/
√

5 2/
√

5

−2/
√

5 1/
√

5

]
=

[
1/10 1/5
1/10 1/5

]
.

Solution 2 (orthogonal projector).
Any v ∈ Rm can be decomposed in a unique way as

v = vc + v⊥,

where vc ∈ span {columns of A} = range A (vc is the requested orthogo-
nal projection) and v⊥ ∈ span {columns of A}⊥ = (range A)⊥ = null A>.
Specifically,

vc = Ax for some x ∈ Rn;

A>v⊥ = 0.

Therefore, recalling the defining properties of the pseudo-inverse,

ΠAv = AA+(vc + v⊥)

=
(
AA+A

)
x+

(
AA+

)
v⊥

= Ax+
(
AA+

)>
v⊥

= vc +
(
A+
)>
A>v⊥

= vc.

2.3 Solutions to the exercises on machine learning

Solution 1 (complaint telephone calls).
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Let r ∈ R = {Piedmont,Lombardy, · · · ,Sicily} denote regions. We estimate
the probability p(r) = P[ri = r] of a call from r with the “empirical mass
distribution” (i.e. frequency)

p̂(r) =
1

N

N∑
i=1

1{ri=r} =
number of calls received from r

total calls

Of course, since E[1{ri=r}] = P[ri = r] = p(r),

E[p̂(r)] = p(r),

hence, using Hoeffding’s inequality, the probability that |p̂(r)− p(r)| > ε at
any of the 20 regions is

P

[⋃
r∈R
{|p̂(r)− p(r)| > ε}

]
≤
∑
r∈R

P [|p̂(r)− p(r)| > ε]

≤
∑
r∈R

2e−2Nε
2

= 40e−2Nε
2
.

The problem asks precisely to find N such that 40e−2Nε
2 ≤ 10−4. Solving

for N ,

e−2N( 1
100)

2

≤ 25 · 10−7;

−2N
1

1002
≤ log(25)− 7 log(10) ' −12.9;

N ≥ 5000 · 12.9 = 64500.

Thus, any N ≥ 64500 will do.

Solution 2 (finitely many classifiers).
First, we prove that almost surely, ĴN → J̄ uniformly. Remembering the
proof of Glivenko/Cantelli’s theorem, this is quite easy; indeed by the strong
law of large numbers, at all points c ∈ C it holds ĴN (c)→ J̄(c) almost surely.
Hence, almost surely for all ε > 0 there exists Nc such that |ĴN (c)−J̄(c)| ≤ ε
for all N ≥ Nc. Since the c are finitely many, it is well defined the index
N̄ := maxc∈C Nc, such that for all N ≥ N̄ the inequalities

|ĴN (c)− J̄(c)| ≤ ε, c ∈ C

hold simultaneously; this is enough to establish uniform convergence.
Now we can invoke the lemma on uniform convergence, exploiting all the
hypotheses, because
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• any finite subset C ⊂ Rp is automatically compact (because it is closed
and bounded — recall the Heine/Borel theorem);

• any function defined on a finite set C ⊂ Rp is automatically continuous;

• c̄ is unique by assumption.

(If you are not at ease with the second claim, see the remarks after Definition
4.5 in [1]; alternatively, you may develop an ad-hoc version of the lemma on
uniform convergence.)
It follows that ĉN → c̄ almost surely.
Finally, recalling the definitions of ĴN and J̄ , and exploiting Hoeffding’s
inequality,

P

[
max
c∈C
|ĴN (c)− J̄(c)| ≥ ε

]
= P

[⋃
c∈C

{
|ĴN (c)− J̄(c)| ≥ ε

}]
≤
∑
c∈C

P
[
|ĴN (c)− J̄(c)| ≥ ε

]
≤
∑
c∈C

2e−2Nε
2

= 2Ke−2Nε
2
.

2.4 Solutions to the exercises on LSCR

Problem 1 (discrete distribution, wrong confidence).
The LSCR method works by considering 3 partial-average functions:

g1(θ) =
y1 + y2

2
− θ = (θo − θ) +

ε1 + ε2
2

;

g2(θ) =
y1 + y3

2
− θ = (θo − θ) +

ε1 + ε3
2

;

g3(θ) =
y2 + y3

2
− θ = (θo − θ) +

ε2 + ε3
2

.

Their respective intersections with the θ-axis are

θ1 =
y1 + y2

2
,

θ2 =
y1 + y3

2
,

θ3 =
y2 + y3

2
,

and they split it in 4 intervals (the outermost two being semi-infinite),
where θo falls with equal probability. Thus, a reasonable choice is to choose
[θ̄1, θ̄3] as a 50%-confidence interval, where θ̄1 = min(θ1, θ2, θ3) and θ̄3 =
max(θ1, θ2, θ3).
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Let us tabulate yi and θi for each possible value of ε1, ε2, and ε3:

ε1 ε2 ε3 y1 y2 y3 θ1 θ2 θ3 interval contains θo?
1 1 1 2 2 2 2 2 2 [2, 2] no
1 1 −1 2 2 0 2 1 1 [1, 2] yes
1 −1 1 2 0 2 1 2 1 [1, 2] yes
1 −1 −1 2 0 0 1 1 0 [0, 1] yes
−1 1 1 0 2 2 1 1 2 [1, 2] yes
−1 1 −1 0 2 0 1 0 1 [0, 1] yes
−1 −1 1 0 0 2 0 1 1 [0, 1] yes
−1 −1 −1 0 0 0 0 0 0 [0, 0] no

(Of course, an “interval” like [2, 2] means the set {2}.) As you can see, in
6 cases out of 8 the interval [θ̄1, θ̄3] computed in the last-but-one column
contains θo; the confidence of the interval [θ̄1, θ̄3] is 75%, not 50% (thus, in
this case the conclusions of the LSCR theory are conservative).

Problem 2 (discrete distribution, correct confidence).
The LSCR method works by considering 3 partial-average functions:

g1(θ) =
y1 + y2

2
− θ = (θo − θ) +

ε1 + ε2
2

;

g2(θ) =
y1 + y3

2
− θ = (θo − θ) +

ε1 + ε3
2

;

g3(θ) =
y2 + y3

2
− θ = (θo − θ) +

ε2 + ε3
2

.

Their respective intersections with the θ-axis are

θ1 =
y1 + y2

2
,

θ2 =
y1 + y3

2
,

θ3 =
y2 + y3

2
,

and they split it in 4 intervals (the outermost two being semi-infinite),
where θo falls with equal probability. Thus, a reasonable choice is to choose
[θ̄1, θ̄3] as a 50%-confidence interval, where θ̄1 = min(θ1, θ2, θ3) and θ̄3 =
max(θ1, θ2, θ3).
We tabulate yi and θi for each possible value of ε1, ε2, and ε3 (all the θi are
written as multiples of 1

4 for ease of reading):
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ε1 ε2 ε3 y1 y2 y3 θ1 θ2 θ3 interval contains θo?
1 1/2 2 2 3/2 3 7/4 10/4 9/4 [7/4, 10/4] no
1 1/2 −2 2 3/2 −1 7/4 2/4 1/4 [1/4, 7/4] yes
1 −1/2 2 2 1/2 3 5/4 10/4 7/4 [5/4, 10/4] no
1 −1/2 −2 2 1/2 −1 5/4 2/4 −1/4 [−1/4, 5/4] yes
−1 1/2 2 0 3/2 3 3/4 6/4 9/4 [3/4, 9/4] yes
−1 1/2 −2 0 3/2 −1 3/4 −2/4 1/4 [−2/4, 3/4] no
−1 −1/2 2 0 1/2 3 1/4 6/4 7/4 [1/4, 7/4] yes
−1 −1/2 −2 0 1/2 −1 1/4 −2/4 −1/4 [−2/4, 1/4] no

As you can see, in 4 cases out of 8 the interval [θ̄1, θ̄3] computed in the
last-but-one column contains θo; thus, [θ̄1, θ̄3] is indeed a 50%-confidence
interval for θo. In this case, the result is exactly what the LSCR theory
claims, despite the fact that the distributions are discrete (in this particular
example, no two intersections θi coincide, whatever the values of ε1, ε2, ε3).

2.5 Solutions to the exercises on Interval Predictor Models

Solution 1 (support constraints).
Any problem like the following:

minimize γ

subject to f1(θ) ≤ γ
...

fN (θ) ≤ γ
θ ∈ R, γ ∈ R,

where each fi is a convex parabola is feasible, because each fi is defined over
the whole of R. Indeed, fix an arbitrary θ̄, and let

M = max{f1(θ̄), · · · , fN (θ̄)}.

Then
fi(θ̄) < M + 1

for all i = 1, · · · , N ; hence (θ̄,M + 1) satisfies all the constraints, and the
problem is feasible.
Now we consider the requested situations:

• The problem has no support constraints. This is possible. Example
with 2 constraints: f1(θ) = θ2, f2(θ) = 2θ2.

• The problem has just one support constraint. This is possible. Ex-
ample with 2 constraints: f1(θ) = θ2, f2(θ) = θ2 + 1 (the support
constraint is of course f2(θ) ≤ γ).
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• The problem has two support constraints. This is also possible. Ex-
ample with 2 constraints: f1(θ) = (θ − 1)2 = θ2 − 2θ + 1, f2(θ) =
(θ + 1)2 = θ2 + 2θ + 1.

• The problem has three support constraints. This is not possible,
since the dimension of the problem is 2 (see the Theorem by Campi,
Calafiore, Garatti).
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