
Lecture notes on system identification and
data analysis

Revision 0.92 - April 12th, 2016

Federico Alessandro Ramponi
Dipartimento di ingegneria dell’informazione, Università degli studi di Brescia
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1 Least squares

1.1 Introduction and motivation

Very often it happens, in science and engineering, that one knows, suspects,
or assumes a relation between a variable x ∈ Rm and a variable y ∈ R in
the form of a function that further depends on an unknown parameter θ:

y = f(x, θ)

Here, θ takes values in a set Θ ⊆ Rp, and as θ varies in Θ, {f(·, θ)} describes
a set of functions. For example, a linear relation between two scalars x and
y takes the form

y = f(x, θ) = a+ bx,

where θ = (a, b) belongs to some subset Θ of R2. A typical problem, called
interpolation, is the following: given a sequence of pairs

(x1, y1), (x2, y2), · · · , (xN , yN )

that satisfy such a functional relation, find the particular θo ∈ Θ that
corresponds to the function; in other words, find the θo ∈ Θ such that
yi = f(xi, θ

o) for all i = 1, · · · , N . However, if the pairs (xi, yi) come from
N physical measures and N > p (N equations in p unknowns), in general the
problem does not admit an exact solution. The issue is that the functional
relation is an assumption, but measures are always corrupted by noise. We
can give for granted that there is always a measurement error εi, at least
on the dependent variable1 yi; hence, from now on, our measurement model
will be

yi = f(xi, θ) + εi, i = 1, · · · , N.

where εi are disturbance terms, hopefully small, but unknown and not mea-
surable at all. Even if the disturbances are small, it is seldom the case, if
at all, that the equations yi = f(xi, θ) + εi are verified simultaneously for
any θ. Other problems may occur. For example, the set of parameters Θ
in which one chooses to search the solution may be wrong, i.e. too small.
Even worse, the assumption about the functional relation may be incorrect,
or only approximative; in other words, it may be false that the data are
generated by a function y = f(x, θ), or that there exists a “true” θo. Hence,
in general, the only problem that can reasonably be solved is that of search-
ing an approximate function f(·, θ), instead of the “true” one f(·, θo) whose

1Strictly speaking, we should take into account measurement errors on the independent
variable xi as well. We will not do it here, both because this would complicate the model
too much, and because independent variables, i.e. the ones set by the experimenter, are
more likely to be known exactly.
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existence may not be guaranteed. In approximating f(·, θo) with a certain
f(·, θ), we commit approximation errors εi(θ), which are called residuals:

εi(θ) := yi − f(xi, θ), i = 1, · · · , N.

Please take some care in distinguishing εi(θ) from εi:

• the quantities εi = yi − f(xi, θ
o) are disturbances that we assume in-

trinsic in the measurement model, and due to the randomness present
in “nature”;

• the quantities εi(θ) = yi − f(xi, θ) are errors that we commit because
we select a certain function f(·, θ) exploiting the only data at hand,
(x1, y1), · · · , (xN , yN ); the εi(θ) are different from the εi except in the
lucky case, which never happens in practice, that we succeed in finding
θ = θo.

The goal of the least squares method is to find the particular θ̂ ∈ Θ that
provides the “best” description of the data; and what in such method is
meant by “best” is that the sum of the squares of the residuals

Q(θ̂) :=
N∑
i=1

ε2i (θ̂) =
N∑
i=1

(
yi − f(xi, θ̂)

)2

is minimal. You see that the smaller that sum is, the closer the yi are, collec-
tively, to the quantities f(xi, θ̂), so that the smaller the sum, the better the
approximation. There are at least three reasons why such an approximation
is useful:

• the estimate of the model can be used to investigate some internal
properties of the mechanism that generates the data (for example sta-
bility, in the case of a dynamical system);

• the parameter θo may correspond to some physical quantity of interest:
then its estimate θ̂ can be used to measure that quantity;

• the estimate of the model can be used to predict a future value yN+1,
when a future value xN+1 will be available.

Example. Historians agree that the method was devised by the princeps
mathematicorum, Carl Friedrich Gauss. Between January and February
1801 the Italian astronomer Giuseppe Piazzi recorded 24 observations of
what according to him was a new comet, and is instead Ceres, the largest
asteroid or “dwarf planet” in the asteroid belt between Mars and Jupiter.
He stopped recording observations due to illness; lately he was not able
to find the asteroid again, but he published his observations. (By coinci-
dence, this happened exactly while Hegel, in his dissertation, was expressing
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his sarcasm against the conceit of the astronomers, searching for an eighth
planet.) Gauss used the least squares method to infer the trajectory of
Ceres from Piazzi’s measures and predict its future position, and published
his results (Franz X. von Zach, Monatliche Correspondenz, September 1801),
although he did not publish his method; the asteroid was found again, and
Gauss gained a well deserved fame. The least squares method was published
shortly after by the mathematician Adrien-Marie Legendre (Sur la Méthode
des moindres quarrés, in Nouvelles méthodes pour la détermination des or-
bites des comètes, 1805). �

Summing up, given (x1, y1), (x2, y2), · · · , (xN , yN ) the method of least squares
prescribes to find

θ̂LS := arg min
θ∈Θ

Q(θ) = arg min
θ∈Θ

N∑
i=1

(yi − f(xi, θ))
2.

It makes perfect sense to minimize a sum of positive functions of the errors,
but why indeed the sum of the squares of the errors? At this stage of the
discussion, the choice of the square seems, and is indeed, arbitrary. One
could choose instead to minimize other functions representing the residuals
collectively; for instance:

Q1(θ) :=

N∑
i=1

|yi − f(xi, θ)| or Q∞(θ) := max
i=1,··· ,N

|yi − f(xi, θ̂)|.

You can see that in both these minimization criteria, the closer the objective
function is to zero, the smaller are the residuals, collectively. Thus, both of
them are perfectly reasonable, both of them are actually used in practice,
and each one has its own pros and cons. Also, at this level of generality the
only way to solve a least squares problem is by means of numerical optimiza-
tion, and the minimization of a sum of squares has no obvious advantage
over the other choices.

There is a fairly general condition, though, in which the minimization of
squares has indeed obvious advantages; namely, when

f is linear in the parameter θ

(although not necessarily in the variable x). In this chapter, we will focus
on this case. When linearity holds, the theory behind the minimization is
complete and elegant, it admits an intuitive explanation in terms of projec-
tions, and above all, it leads to an analytic solution. These are the reasons
why the least squares method is so popular in the scientific community.
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1.2 Linearity in the parameter θ

Let xi =
[
x

(1)
i · · · x

(m)
i

]>
∈ Rm and yi ∈ R for i = 1, · · · , N . In

the language of least squares, if yi is viewed as a function of xi, we call xi
“explanatory variable”, and we say that yi are “explained” by xi. In general
the explained variable yi may not be linked to the explanatory variable
directly, but through p functions

ϕ1 : Rm → R
ϕ2 : Rm → R

...

ϕp : Rm → R

which can be nonlinear, and which we will call regressors. The data gener-
ation model to which we will apply least squares is the following:

y1 = θ1ϕ1

(
x

(1)
1 , · · · , x(m)

1

)
+ θ2ϕ2

(
x

(1)
1 , · · · , x(m)

1

)
+ · · ·+ θpϕp

(
x

(1)
1 , · · · , x(m)

1

)
+ ε1;

y2 = θ1ϕ1

(
x

(1)
2 , · · · , x(m)

2

)
+ θ2ϕ2

(
x

(1)
2 , · · · , x(m)

2

)
+ · · ·+ θpϕp

(
x

(1)
2 , · · · , x(m)

2

)
+ ε2;

...

yN = θ1ϕ1

(
x

(1)
N , · · · , x(m)

N

)
+ θ2ϕ2

(
x

(1)
N , · · · , x(m)

N

)
+ · · ·+ θpϕp

(
x

(1)
N , · · · , x(m)

N

)
+ εN .

Defining the vectors

θ =

 θ1
...
θp

 and ϕ
(
x

(1)
i , · · · , x(m)

i

)
=


ϕ1

(
x

(1)
i , · · · , x(m)

i

)
...

ϕp

(
x

(1)
i , · · · , x(m)

i

)


and recalling that xi = [x
(1)
i , · · · , x(m)

i ]>, we can write the model in compact
form:

yi = f(xi, θ) + εi = ϕ(xi)
>θ + εi, i = 1, · · · , N.

Note that the function f is linear in the parameter θ, although not neces-
sarily in the explanatory variable x. Let us shorten notation even more by
letting ϕi := ϕ(xi): then the model finally reads

yi = ϕ>i θ + εi, i = 1, · · · , N.
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Example. Let x =
[
x

(1)
i · · · x

(m)
i

]>
∈ Rm, and define (the exponent

here means an index):

ϕ0

(
x(1), · · · , x(m)

)
= 1

ϕ1

(
x(1), · · · , x(m)

)
= x(1)

ϕ2

(
x(1), · · · , x(m)

)
= x(2)

...

ϕm

(
x(1), · · · , x(m)

)
= x(m)

Here, ϕ : Rm → Rm+1 is an affine function of x. The application of least
squares to the resulting model

yi = θ0 + θ1x
(1)
i + θ2x

(2)
i + · · ·+ θmx

(m)
i + εi

is called a linear regression2 of y over the m variables x(1), · · · , x(m), and is
very popular in applied statistics. In section 1.3 we will consider in detail a
particular case with m = 1. �

Example. Let x ∈ R, and define (the exponent here means a power):

ϕ0(x) = 1

ϕ1(x) = x

ϕ2(x) = x2

...

ϕm(x) = xn

Here m = 1, p = n+ 1, and ϕ : R→ Rn+1 yields p = n+ 1 monomials. The
application of least squares to the resulting model

yi = θ0 + θ1x
1
i + θ2x

2
i + · · ·+ θnx

n
i + εi

is a polynomial interpolation; the result is the polynomial of degree (at most)
n in xi that best approximates the yi. �

2Linearity with respect to the parameter is a general assumption about the measure-
ment model; here, “linear regression” means that, except for the constant θ0, linearity
holds with respect to the explanatory data as well, i.e. that also the regressor is linear.
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Example. Let x =
[
u v

]> ∈ R2, and define:

ϕ0(x) = 1

ϕ1(x) = u

ϕ2(x) = v

ϕ3(x) = u2

ϕ4(x) = uv

ϕ5(x) = v2

Here, ϕ : R2 → R6. The application of least squares to the resulting model

yi = θ0 + θ1ui + θ2vi + θ3u
2
i + θ4uivi + θ5v

2
i + εi

is the interpolation with a polynomial of degree 2, in two variables. �

The least squares method now asks to find

θ̂LS := arg min
θ∈Rp

Q(θ) = arg min
θ∈Rp

N∑
i=1

(yi − ϕ>i θ)2.

In order to carry on with the minimization, note the following:

1. any term yi − ϕ>i θ is an affine function of θ;

2. any term
(
yi − ϕ>i θ

)2
is a convex function of θ, being the composition

of the convex function (·)2 with an affine function;

3. the sum to be minimized is convex, being a sum of convex functions.

Thus, Q(θ) is convex precisely due to the linearity of f(x, θ) with respect to
θ, and we are asked to minimize it; note that such sum is also obviously
differentiable over the whole of Rp. Now, in general, nothing guarantees
that a differentiable convex function has a minimum (visualize the examples
f(t) = e−t and f(t) = e−t − t). Nevertheless, in view of Corollary B.3.1,
if we do find a point such that the derivative of a convex function (that is,
its gradient) is zero at that point, then such point is guaranteed to be a
minimum point (the arg min). Thus, to carry on with the minimization we
set the derivative with respect to θ equal to zero:

∂Q(θ)

∂θ
=

∂

∂θ

N∑
i=1

(yi − ϕ>i θ)2 =

N∑
i=1

2(yi − ϕ>i θ)(−ϕ>i )

=
N∑
i=1

2(yi − θ>ϕi)(−ϕ>i ) = 0,
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finding

θ>

(
N∑
i=1

ϕiϕ
>
i

)
=

N∑
i=1

yiϕ
>
i .

Transposing again, we find(
N∑
i=1

ϕiϕ
>
i

)
θ =

N∑
i=1

ϕiyi. (1)

Equation (1) is called normal equation (usually in the plural person: normal
equations). It is linear in the parameter θ, namely it has the form Rθ = b,
where R ∈ Rp×p is a symmetric and positive semi-definite matrix, and b ∈
Rp. Any θ that solves (1) is a minimum point for the sum of squares and
a solution to the least squares problem; in particular, if R =

∑N
i=1 ϕiϕ

>
i is

invertible (and in practical applications this is generally the case), then the
only solution to the normal equations reads explicitly:

θ̂LS =

(
N∑
i=1

ϕiϕ
>
i

)−1 N∑
i=1

ϕiyi. (2)

1.3 Simple examples

Let us test the formula (2) of the previous section on two extremely simple
cases, linear in both the parameter and the explanatory variable.
First, suppose that xi ∈ R, and let us test the least squares method with the
measurement model yi = axi + εi, hence with θ = a ∈ R. This means that,
ideally, the data should be “explained” by a straight line passing through
the origin; hopefully, the straight line found with the least squares method
will be close to the points {(xi, yi)}Ni=1.
Consider the problem of minimizing with respect to a the sum

Q(a) =

N∑
i=1

(yi − axi)2.

To do this, we note that the sum is a positive quadratic form in the variable
a; to search a minimum, since Q is convex and differentiable, we set the
derivative of the sum with respect to a equal to zero:

∂Q(a)

∂a
=

N∑
i=1

2(yi − axi)(−xi) = 0,

11



yielding

N∑
i=1

xiyi = a
N∑
i=1

x2
i ,

âLS =

∑N
i=1 xiyi∑N
i=1 x

2
i

Let us denote conventionally a sample average as M [h(x, y)] = 1
N

∑N
i=1 h(xi, yi)

for any function h of two variables. Then, dividing everywhere by N , the
equations read

M [xy] = a M
[
x2
]
,

âLS =
M [xy]

M [x2]
.

The equation
y = âLS x

describes the straight line passing through the origin that best interpolates
the data, in the sense of least squares.

The formula (2) of the previous section yields (of course) the same result.
Here we have p = 1 (just one regressor), ϕ(x) =

[
x
]
, θ =

[
a
]

(don’t
be confused by the square brackets! A 1 × 1 matrix is just a scalar, i.e. a
number), and

θ̂LS = arg min
θ∈R2

N∑
i=1

(yi − ϕ>i θ)2

=

(
N∑
i=1

ϕiϕ
>
i

)−1 N∑
i=1

ϕiyi

=

(
N∑
i=1

[
xi
] [

xi
]>)−1 N∑

i=1

[
xi
]
yi

=
[ ∑N

i=1 x
2
i

]−1 [ ∑N
i=1 xiyi

]
(now divide by N inside brackets)

=
[
M
[
x2
] ]−1 [

M [xy]
]

= âLS,

as we have just found.

A slightly more general case of least squares with linearity both in the pa-
rameter and the explanatory variable is when xi ∈ R, the measurement

12



model is yi = a + bxi + εi, and θ = (a, b) ∈ R2. This means that the data
should be “explained” by a straight line in the plane, not necessarily passing
through the origin; as before, ideally we expect the line to pass “through”
the points, being close to them.
Consider the problem of minimizing with respect to a and b the sum

Q(a, b) =
N∑
i=1

(yi − a− bxi)2.

We note that the sum is a positive quadratic form in the variables a, b; to
search a minimum, since Q is again convex and differentiable, we set the
derivatives of the sum with respect to a and b equal to zero:

∂Q(a, b)

∂a
=

N∑
i=1

2(yi − a− bxi)(−1) = 0,

∂Q(a, b)

∂b
=

N∑
i=1

2(yi − a− bxi)(−xi) = 0,

yielding

N∑
i=1

yi = Na+ b

(
N∑
i=1

xi

)
,

N∑
i=1

xiyi = a

(
N∑
i=1

xi

)
+ b

(
N∑
i=1

x2
i

)
.

With the same notation M [·] of the previous example, dividing everywhere
by N , the equations read

M [y] = a+ b M [x];

M [xy] = a M [x] + b M
[
x2
]
.

The solution to this linear system is given by

b̂LS =
M [xy]−M [x]M [y]

M [x2]−M [x]2
=

sample covariance of {xi, yi}
sample variance of {xi}

;

âLS = M [y]− b̂LS M [x]

= sample average of {yi} − b̂LS × sample average of {xi}.

The equation
y = âLS + b̂LS x

13



describes the straight line that best interpolates the data, in the sense of
least squares3.

Let us test again the formula (2) of the previous section. We have ϕ1(x) =

1, ϕ2(x) = x, ϕ(x) =

[
1
x

]
, θ =

[
a
b

]
; then

θ̂LS = arg min
θ∈R2

N∑
i=1

(yi − ϕ>i θ)2

=

(
N∑
i=1

ϕiϕ
>
i

)−1 N∑
i=1

ϕiyi

=

(
N∑
i=1

[
1
xi

] [
1 xi

])−1 N∑
i=1

[
1
xi

]
yi

=

[ ∑N
i=1 1

∑N
i=1 xi∑N

i=1 xi
∑N

i=1 x
2
i

]−1 [ ∑N
i=1 yi∑N
i=1 xiyi

]
(now divide by N inside brackets)

=

[
1 M [x]

M [x] M
[
x2
] ]−1 [

M [y]
M [xy]

]
=

1

M [x2]−M [x]2

[
M
[
x2
]
−M [x]

−M [x] 1

] [
M [y]
M [xy]

]

=

 M[y]M[x2]−M[xy]M[x]

M[x2]−M[x]2

M[xy]−M[x]M[y]

M[x2]−M[x]2

 =

[
âLS

b̂LS

]
,

as we have found deriving one coefficient at a time.

3That is to say, the data points (xi, yi) are hopefully close to the straight line (more
on this subject in section 1.6). In most applications, this means that the {yi} have
a strong statistical correlation with the {xi}; indeed linear interpolation with least
squares is very popular in applied statistics, where the discovery of correlations is of
paramount importance. But here is an example that has nothing to do with correla-
tion in the statistical sense: how do you compute numerically the derivative of a func-
tion f : R → R at a point x? The most naive way of doing it, that comes to mind,
is by taking a small ∆x and letting f ′(x) ' f(x+∆x)−f(x)

∆x
. But note that this ap-

proximation is the slope of the straight line passing through the points (x, f(x)) and
(x+ ∆x, f(x+ ∆x)). Only two points! Here is another idea, just slightly less naive: why
not taking many “deltas” around 0, say ∆x1,∆x2,∆x3,∆x4 = 0,∆x5,∆x6,∆x7, finding
with least squares the straight line that interpolates the points (x+ ∆xi, f(x+ ∆xi)), and
letting f ′(x) ' the slope b̂LS of the resulting straight line? This solution is certainly not
the best that numerical analysis has to offer, but it should definitely be more robust than
the previous one.
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1.4 Existence and uniqueness of a solution of the normal
equations

As for any system of linear equations, one may ask whether a solution θ̂LS

to Equation (1) actually exists, and if so, whether it is unique or not. The
answer to the first question is positive, due to the following lemma:

Lemma 1.4.1

range

(
N∑
i=1

ϕiϕ
>
i

)
= span {ϕ1, · · · , ϕN} .

Proof. Denote R =
∑N

i=1 ϕiϕ
>
i and S = span {ϕ1, · · · , ϕN}. Note that R

is symmetric; indeed

R> =

(
N∑
i=1

ϕiϕ
>
i

)>
=

N∑
i=1

(
ϕ>i

)>
ϕ>i =

N∑
i=1

ϕiϕ
>
i = R;

Therefore range R> = range R and null R = (range R>)⊥ = (range R)⊥.
Suppose that v ∈ S⊥. Then ϕi ⊥ v for all i. Then Rv =

∑N
i=1 ϕi(ϕ

>
i v) = 0,

hence v ∈ null R = (range R)⊥.
Suppose, on the other hand, that v ∈ (range R)⊥ = null R. Then Rv = 0,
hence

0 = v>Rv = v>
N∑
i=1

ϕiϕ
>
i v =

N∑
i=1

(ϕ>i v)2.

Since the last expression is a sum of nonnegative quantities, for it to be
zero it must hold ϕ>i v = 0 for all i, that is ϕi ⊥ v for all i, hence v ∈ S⊥.
We conclude that (range R)⊥ = S⊥, and since the range and span under
consideration are subspaces of the finite-dimensional vector space Rp, taking
the orthogonal complement on both sides we obtain range R = S. �

Corollary 1.4.1 The normal equations have at least one solution.

Proof.
∑N

i=1 ϕiyi belongs to span {ϕ1, · · · , ϕN}, being a linear combina-
tion of the ϕi; therefore, due to Lemma 1.4.1, it also belongs to the range
of R =

∑N
i=1 ϕiϕ

>
i . The claim follows immediately. �

On the other hand, such a solution may not be unique. This happens
precisely when R is singular, because in that case, if θ̂ is a solution and
n ∈ null R, then θ̂+ n is also a solution. Indeed, as for any linear equation,
there must exist an entire affine space of solutions (infinitely many). That
R is singular may happen for different reasons:
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• there may not be enough data. If N < p, then R is singular, because
for any linear mapping R : Rp → Rp it holds p = dim range R +
dim null R; but range R = span {ϕ1, · · · , ϕN} which has dimension
dim span {ϕ1, · · · , ϕN} ≤ N < p; hence dim null R > 0. This is,
however, a trivial issue. If we did not have enough data, it would be
pointless to pose the problem in the first place (e.g. find “the” parabola
that passes through two points). In applications, one has N � p.

• The ϕi may be flawed by construction. Recall that ϕi = ϕ(xi) =
[ϕ1(xi), · · · , ϕp(xi)]>, where ϕj(·) are, in general, nonlinear functions
from Rm to R. If these functions are themselves linearly dependent,
R will be singular. To see what happens, take for example m = p = 3,
ϕ1(x1, x2, x3) = x1, ϕ2(x1, x2, x3) = x2 + x3, and ϕ3(x1, x2, x3) =
x1 + x2 + x3. Then [1, 1,−1]ϕ(x) = 0 irrespective of x, and as you
can easily see this implies that rank R ≤ 2. However, this is just a
pathological condition that can be avoided with a bit of common sense
in the choice of the regressors.

• The explanatory data xi may not carry enough information. As an
extreme case, if the xi are all equal, of even if they are random but
belong almost surely to a small subspace of Rm whose map under the
function ϕ(·) is not the whole of Rp, R will be singular. This is the
only issue that may actually occur in applications.

Visualize what happens geometrically when θ ∈ R2:

• If R is invertible, the solution to the normal equations is unique, hence
such is the minimum point of the sum of squares. This occurs when the
sum of squares happens to be strictly convex (its graph on the θ-plane
is that of an elliptic paraboloid, going to +∞ in every direction).

• If R is singular, there exists an affine subspace of solutions to the
normal equations. All these solutions are minimum points for the sum
of squares, hence in particular they attain the same value. Thus, the
sum of squares is convex, but not strictly (its graph is a parabolic
cylinder, i.e. a “valley”, maybe going to +∞ in some directions, but
attaining constant height in at least one direction).

1.5 Interpretation in terms of projections

Now we will see that least squares are closely related with orthogonal projec-
tions. We start from a classical result, characterizing the point of a subspace
which is closest to another point in the sense of the Euclidean distance4:

4We state it in RN , because this is our setting; but the result is valid in a far more
general context, namely it is one of the most important properties of Hilbert spaces (RN ,
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Theorem 1.5.1 Let V be a subspace of RN , and y ∈ RN . If there exists
a vector vm ∈ V such that ‖y − vm‖ ≤ ‖y − v‖ for all v ∈ V , then vm
is unique. Moreover, a necessary and sufficient condition for vm to be the
unique minimizing vector is that y − vm is orthogonal to V .

Proof. First, we show that if vm is a minimizing vector, then the error
y − vm is orthogonal to V . Suppose, for the sake of contradiction, that
y − vm is not orthogonal to V . Then there exists v ∈ V, ‖v‖ = 1, such that
〈y − vm, v〉 = α 6= 0. Let then vm2 = vm + αv ∈ V . It holds

‖y − vm2‖2 = ‖y − vm − αv‖2

= ‖y − vm‖2 − 2 〈y − vm, αv〉+ α2‖v‖2

= ‖y − vm‖2 − 2α 〈y − vm, v〉+ α2

= ‖y − vm‖2 − 2α2 + α2

= ‖y − vm‖2 − α2

< ‖y − vm‖2,

which is in contradiction with the hypothesis that vm is a minimizing vector.
Hence, y − vm must be orthogonal to V .
Now we show that, if y − vm is orthogonal to V , then vm is a unique mini-
mizing vector. Indeed, for any v ∈ V ,

‖y − v‖2 = ‖y − vm + vm − v‖2

= ‖y − vm‖2 + ‖vm − v‖2

> ‖y − vm‖2 if and only if v 6= vm,

where the second equality is Pythagoras’s theorem (vm−v ∈ V , hence y−vm
and vm − v are orthogonal by hypothesis). �

We state the next result without proof, as a logical step following and com-
pleting Theorem 1.5.1:

Theorem 1.5.2 Let V be a subspace of RN , and y ∈ RN . Then there exists
a vector vm ∈ V such that ‖y − vm‖ ≤ ‖y − v‖ for all v ∈ V .

Any such vm is called the orthogonal projection of y on V . In fact, the exis-
tence proof would not be difficult (see [18, pages 50-51]); it would be based
essentially on the fact that any subspace of RN is a closed set. However,
here we shall be content with the fact that the orthogonality of y− vm to V
is a sufficient condition for vm to be a minimum, because, as we shall now

endowed with the Euclidean norm, is indeed a particular Hilbert space), and a cornerstone
of infinite-dimensional analysis. If you are interested in these topics, you can find a crystal-
clear explanation of the subject in the excellent book [18] (the proof of theorem 1.5.1 is
taken from it with minor changes).
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see, such orthogonality is precisely what the normal equations are asking
for, and we have already established that a solution to the normal equations
exists. Consider again the model

yi = ϕ>i θ + εi, i = 1, · · · , N.

Let us stack the equations of the model on each other, by defining

Y =


y1

y2
...
yN

 , Φ =


ϕ>1
ϕ>2
...
ϕ>N

 , E =


ε1

ε2
...
εN

 ,
where Y,E ∈ RN and Φ ∈ RN×p. The model then reads

Y = Φθ + E.

Let v1, · · · , vp be the columns of Φ (whereas the regressors are its rows).
Then V = span {v1, · · · , vp} is a subspace of RN , and v = Φθ is a vector in
V . The least squares problem asks to minimize ‖Y −Φθ‖2 = ‖Y − v‖2 with
respect to v, that is, to find vm = Φθ̂ such that ‖Y − vm‖2 is minimal.
Now we apply Theorem 1.5.1: if Y − vm ⊥ V , then vm is a minimizing
vector. Explicitly, if

vi ⊥ Y − Φθ̂, that is,

v>i (Y − Φθ̂) = 0 for all i = 1, · · · , p,
(3)

then Φθ̂ is a minimizing vector, and θ̂ = [θ̂1, · · · , θ̂p]> is a vector of coeffi-

cients such that Φθ̂ = θ̂1v1 + · · ·+ θ̂pvp is the orthogonal projection of Y on
the space spanned by the columns v1, · · · , vp of Φ.

Stacking the rows v>i on each other we get Φ>, hence stacking the equations
(3) on each other we obtain:

Φ>(Y − Φθ̂) = 0,

which finally yields
Φ>Φθ̂ = Φ>Y. (4)

Equation (4) is just another way to write the normal equations (1), because

Φ>Φ =
N∑
i=1

ϕiϕ
>
i and Φ>Y =

N∑
i=1

ϕiyi.

Since we know that a solution θ̂LS to the normal equations exists, now we
also know that at least one minimizer of ‖Y − Φθ‖2 exists. Note that,
according to Theorem 1.5.1, the minimizer vm = Φθ̂LS is unique. Of course
this does not mean that θ̂LS is also unique! The uniqueness of θ̂LS holds if
and only if Φ has full rank (it has linearly independent columns), and this
in turn is the case if and only if R = Φ>Φ is invertible.
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1.6 Goodness of fit

Suppose that we are given a collection of numbers y1, y2, · · · , yN , but no
explanatory variables (x). Can we still apply the method of least squares to
“explain” the {yi}? Actually yes, because (with a slight abuse of terminol-
ogy) there exists a regressor that does not depend on any data, namely the
constant ϕ = 1. The resulting problem is to minimize

N∑
i=1

(yi − 1 · θ)2.

This is of course the same as minimizing

1

N

N∑
i=1

(yi − θ)2,

which is the average square deviation of the {yi} from the number θ. The
solution is

θ̂LS =

(
N∑
i=1

[
1
]
·
[

1
]>)−1 N∑

i=1

[
1
]
· yi =

1

N

N∑
i=1

yi = M [y].

Hence, the sample average is the number from which is minimal the squared
deviation of the {yi}5. The attained minimum deviation is the sample vari-
ance of the {yi}:

S.Var [y] =
1

N

N∑
i=1

(yi −M [y])2.

Since the regressor ϕ(·) = 1 is always available irrespective of the nature of
the explanatory data, it is often included in least squares problems. Now
note that if ϕ1(xi) = 1, ϕ2(xi), · · · , ϕp(xi) are the regressors, then there

always exists a parameter θ̂m such that the corresponding sum of squares is
exactly the sample variance of {yi} as in the trivial example shown above,
namely θ̂m = [M [y], 0, · · · , 0]>. It follows as the day the night, that any
self-respecting least squares solution should behave at least better than θ̂m,

5Actually, this is true in a far more general context. For any random variable X
having mean and variance, it holds arg min

θ∈R
E
[
(X − θ)2

]
= E [X]. And recall this fact

from mechanics: the rotation axis that passes through the center of mass (' mean) of an
object is, among all the parallel axes, the one that minimizes the moment of inertia ('
integral of squares).
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that is, it should attain a lower sum of squares:

1

N

N∑
i=1

(yi − ϕ>i θ̂LS)2 <
1

N

N∑
i=1

(yi − ϕ>i θ̂m)2

=
1

N

N∑
i=1

(yi −M [y])2

= S.Var [y],

otherwise the “explanatory variables” xi would not be explaining anything.
We call residual variance the quantity

RV :=
1

N

N∑
i=1

(yi − ϕ>i θ̂LS)2

and explained variance the quantity

EV := S.Var [y]− RV

= total variance− residual variance.

The above line of reasoning means that

0 ≤ EV ≤ S.Var [y], (5)

where the first inequality should in fact be strict. The inequalities (5) are
in absolute terms; dividing by S.Var [y] we get:

0 ≤ ρ2 ≤ 1,

where the quantity

ρ2 :=
EV

S.Var [y]

measures the fraction of the variance of the data {yi} that has been explained
by the least squares fit6. One usually expresses ρ2 as a percentage, and says
something like “the model explains 90% of the variance of the data”. In
general, the closer ρ2 to 1, the better the fit7. On one extreme, when ρ2 = 0

6If you carry on with the above computations for the simple example of Section 1.3,
you will find that

ρ2 =

(
sxy
sxsy

)2

=

(
sample covariance({xi, yi})

standard deviation({xi})× standard deviation({yi})

)2

.

Therefore, in that case ρ2 is the square of what in statistics is called the correlation
coefficient between {xi} and {yi}, a quantity that varies between −1 and 1.

7Most books on applied statistics have a chapter on “multiple regression”, which is
basically linear least squares (meaning linear also in the explanatory data, i.e. with the
regressors 1, x(1), x(2), x(3)) with further strong assumptions, typically Gaussianity. With
these assumptions it is possible to pursue hypothesis testing on ρ2, i.e. to establish when
ρ2 is close to 1 enough so that there is statistical evidence to support the hypothesis “y is
adequately explained by a constant term plus the variables x(1), x(2), x(3)”. However, we
shall not deal with these methods here.
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(equivalently EV = 0 or RV = S.Var [y]), the explanatory variables are not
adding any information, and the least squares solution is not any more use-
ful than a sample average; on the other extreme, when ρ2 = 1 (equivalently
EV = S.Var [y] or RV = 0), the yi are explained perfectly by the xi, that is,
the equations yi = ϕ>i θ̂LS are all verified exactly.

Thus, in general, the closer ρ2 is to 1, the better the explanatory variables
are doing their explanatory job, and this is usually a good sign. But there
should be a big caveat here: one possible reason why ρ2 is very close or even
equal to 1 is that there are just too many regressors, that is p ' N . If this is
the case, for example if we try to interpolate 100 points with a polynomial of
order 95 (!), what will happen is that the solution θ̂LS will describe the noise
as well as the “true” function, and the corresponding polynomial will exhibit
crazy oscillations trying to pass through all the 100 points. On the sole basis
of the explained variance, such a model may appear very nice for the data
at hand, but it will be practically useless to predict future data coming from
the same source. This situation is called over-fitting. Remember: the spirit
of the least squares method is to use many measures to average out noise, not
to identify many parameters! Here we shall be content with common sense
(interpolate with a polynomial of order at most, say, 5, not 95), but there is
indeed an entire theory devoted to investigate what is the most reasonable
order p of a model fitting a certain data set (Akaike Information Criterion,
etc.).

1.7 Statistical properties

1.7.1 L.s. solution as the estimator of a “true” parameter

So far, the functional relation y = ϕ(x)>θo + ε has been a model that we
have used to explain the data {(xi, yi)}Ni=1 through regressor functions, in
some way, but we have nowhere really pretended that a “true” θo actually
exists. Up to now {xi}, and consequently {ϕi}, have been just vectors, and
the results were “algorithmic” in the sense that they guarantee the existence
of a solution to the least squares problem, and tell us how to compute it;
the numbers {εi} have been there just to model “disturbances”, without
any particular requirement other than they be preferably small. In this sec-
tion, we assume that there is indeed a θo, and that the data conform to the
model y = ϕ(x)>θo + ε. We assume, moreover, that {εi} and possibly {ϕi}
are random variables, subject to some hypotheses, and examine the con-
sequences on the asymptotic behavior of θ̂LS (its behavior “for large N”).
The results that we derive justify the claim that θ̂LS is a good estimator of θo.
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Let the data {(ϕi, yi)} be generated by the model

yi = ϕ>i θ
o + εi (6)

where θo ∈ Rp is understood as the “true” parameter, deterministic but
unknown. To see how θ̂LS is related to θo, substitute (6) in the normal
equations (1) (now we know that they admit a solution θ̂LS):(

N∑
i=1

ϕiϕ
>
i

)
θ̂LS =

N∑
i=1

ϕiyi

=

N∑
i=1

ϕi

(
ϕ>i θ

o + εi

)
=

(
N∑
i=1

ϕiϕ
>
i

)
θo +

N∑
i=1

ϕiεi

or, dividing by N ,(
1

N

N∑
i=1

ϕiϕ
>
i

)
θ̂LS =

(
1

N

N∑
i=1

ϕiϕ
>
i

)
θo +

1

N

N∑
i=1

ϕiεi

In practical situations, we expect, or at least we wish, two things:

1. that the matrix 1
N

∑N
i=1 ϕiϕ

>
i becomes (and remains) invertible for

N ≥ N̄ , due to the fact that the ϕi carry more and more information;
if so, for big N the solution θ̂LS is unique, and we can write

θ̂LS = θo +

(
1

N

N∑
i=1

ϕiϕ
>
i

)−1
1

N

N∑
i=1

ϕiεi;

2. that the vector 1
N

∑N
i=1 ϕiεi tends to 0 as N →∞, thus attaining

θ̂LS → θo.

For this to hold, we will require in some way that ϕiεi has zero mean.
And in order to satisfy the latter requirement we will assume, in turn,
that εi has zero mean, and that ϕi is either deterministic (hence
E [ϕiεi] = ϕiE [εi] = 0) or random, but independent of εi (hence
E [ϕiεi] = E [ϕi]E [εi] = 0) The strong law(s) of large numbers will
do the rest.

These ideas conform to the principle that underlies least squares optimiza-
tion:
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noise tends to get averaged out and lose importance as the number of
measures increases; consequently, it is usually better to take many noisy

measures, than to take one single precise measure.

We can view the least squares algorithm as a function

LS : ((ϕ1, y1), · · · (ϕN , yN )) 7→ θ̂LS

used to estimate θo; in statistical jargon, this is called an estimator of θo.
We will now show that, under two different set of hypotheses (fairly general,
although with important exceptions), this estimator is unbiased and consis-
tent. Actually, the following theorems are just two examples to show how
the law of large numbers applies to least squares; more general results can
be established as well.

1.7.2 Random regressors independent of the noise

The following result shows that if the noise terms have mean zero, if the
regressors are random but independent of the noise, then the least squares
estimator is unbiased and consistent.

Theorem 1.7.1 Suppose that {yi}∞i=1 are generated by the model

yi = ϕ>i θ
o + εi.

Suppose, in addition, that

1. {ϕi}∞i=1 are independent and identically distributed random vectors,
with correlation matrix Σ := E

[
ϕiϕ

>
i

]
> 0;

2. {εi}∞i=1 are independent and identically distributed random variables,
with mean E [εi] = 0;

3. εi is independent of ϕi for all i.

Then

1. if θ̂LS exists and is unique for a certain N , then E
[
θ̂LS

]
= θo;

2. θ̂LS → θo almost surely as N →∞.

Proof.

1. Suppose that θ̂LS exists and is unique:

θ̂LS =

(
N∑
i=1

ϕiϕ
>
i

)−1 N∑
i=1

ϕiyi;
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substitute the model yi = ϕ>i θ
o + εi in the solution:

θ̂LS =

(
N∑
i=1

ϕiϕ
>
i

)−1 N∑
i=1

ϕi(ϕ
>
i θ

o + εi)

= θo +

(
N∑
i=1

ϕiϕ
>
i

)−1 N∑
i=1

ϕiεi

= θo +
N∑
i=1

 N∑
j=1

ϕjϕ
>
j

−1

ϕiεi;

then

E
[
θ̂LS

]
= θo + E

 N∑
i=1

 N∑
j=1

ϕjϕ
>
j

−1

ϕiεi


= θo +

N∑
i=1

E

 N∑
j=1

ϕjϕ
>
j

−1

ϕi

E [εi] = θo.

2. From the first hypothesis, we see that the components [ϕiϕ
>
i ]hk are

independent and identically distributed, and that E
[
[ϕiϕ

>
i ]hk

]
= Σhk.

Therefore, by the strong law of large numbers (Theorem D.7.2), 1
N

∑N
i=1[ϕiϕ

>
i ]hk →

Σhk almost surely. Hence, the same fact holds for the entire covariance
matrix:

1

N

N∑
i=1

ϕiϕ
>
i → Σ > 0 almost surely.

This implies that almost surely, from a certain N̄ onwards, the matrix
1
N

∑N
i=1 ϕiϕ

>
i is positive definite; indeed matrices sufficiently close to a

positive definite matrix are themselves positive definite. Hence, almost
surely from a certain N̄ onwards the sum is invertible, so that we can
write

θ̂LS = θo +

(
1

N

N∑
i=1

ϕiϕ
>
i

)−1
1

N

N∑
i=1

ϕiεi for all N ≥ N̄

Now by the second and third hypotheses, the vectors ϕiεi are inde-
pendent and identically distributed, with mean

E [ϕiεi] = E [ϕi]E [εi] = 0.

Consequently, by the strong law of large numbers (Theorem D.7.2),

1

N

N∑
i=1

ϕiεi → 0 almost surely.
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Therefore,

lim
N→∞

θ̂LS = θo +

(
lim
N→∞

1

N

N∑
i=1

ϕiϕ
>
i

)−1(
lim
N→∞

1

N

N∑
i=1

ϕiεi

)
= θo + Σ−1 · 0 = θo

almost surely; this establishes the claim.

�

1.7.3 Deterministic regressors

The following result shows that, if the regressors are deterministic and the
noise terms have mean zero, then the least squares estimator is unbiased
and consistent.

Theorem 1.7.2 Suppose that {yi}∞i=1 are generated by the model

yi = ϕ>i θ
o + εi.

Suppose, in addition, that

1. {ϕi}∞i=1 are deterministic vectors, satisfying

1

N

N∑
i=1

ϕiϕ
>
i ≥ aI for all N ≥ N̄

‖ϕi‖2 ≤ A for all i

where a,A are real numbers, 0 < a ≤ A <∞;

2. {εi}∞i=1 are independent random variables, not necessarily identically
distributed, but such that, for all i, E [εi] = 0 and E

[
ε2
i

]
≤ c for a

certain constant c ∈ R.

Then

1. if θ̂LS exists and is unique for a certain N , then E
[
θ̂LS

]
= θo;

2. θ̂LS → θo almost surely as N →∞.

Proof.

1. Suppose that θ̂LS exists and is unique:

θ̂LS =

(
N∑
i=1

ϕiϕ
>
i

)−1 N∑
i=1

ϕiyi;
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substitute the model yi = ϕ>i θ
o + εi in the solution:

θ̂LS = θo +

(
N∑
i=1

ϕiϕ
>
i

)−1 N∑
i=1

ϕiεi;

then

E
[
θ̂LS

]
= θo + E

( N∑
i=1

ϕiϕ
>
i

)−1 N∑
i=1

ϕiεi


= θo +

(
N∑
i=1

ϕiϕ
>
i

)−1 N∑
i=1

ϕiE [εi]

= θo.

2. From the first hypothesis, for all N ≥ N̄

1

N

N∑
i=1

ϕiϕ
>
i ≥ aI > 0

which is invertible; hence the matrix(
1

N

N∑
i=1

ϕiϕ
>
i

)−1

≤ (aI)−1 =
1

a
I

is deterministic and bounded; for N ≥ N̄ we can write

θ̂LS = θo +

(
1

N

N∑
i=1

ϕiϕ
>
i

)−1
1

N

N∑
i=1

ϕiεi

Now let ϕki be the k-th component of the vector ϕi; from the first
hypothesis it holds (ϕki )

2 ≤ ‖ϕi‖2 ≤ A. Hence, exploiting also the
second hypothesis and recalling that ϕki is deterministic,

E
[
ϕki εi

]
= ϕki E [εi] = 0

E

[(
ϕki εi

)2
]

=
(
ϕki

)2
E
[
ε2
i

]
≤ Ac

for all i, and applying the strong law of large numbers (Theorem
D.7.3):

1

N

N∑
i=1

ϕki εi → 0 almost surely (component-wise);
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turning back to vectors,

1

N

N∑
i=1

ϕiεi → 0 almost surely.

Therefore, recalling that
(

1
N

∑N
i=1 ϕiϕ

>
i

)−1
is bounded, we conclude

θ̂LS → θo almost surely.

�

To complete the picture we show that, if ϕi’s are deterministic and the errors
are independent with the same variance, convergence holds also in the mean-
square sense. This result is somewhat weaker than Theorem 1.7.2, but its
proof is simple and instructive.

Theorem 1.7.3 Suppose that {yi}∞i=1 are generated by the model

yi = ϕ>i θ
o + εi.

Suppose, in addition, that

1. {ϕi}∞i=1 are deterministic vectors, satisfying

1

N

N∑
i=1

ϕiϕ
>
i ≥ aI for all N ≥ N̄

where a > 0;

2. {εi}∞i=1 are independent random variables, with mean 0 and variance
σ2.

Then θ̂LS → θo in the mean square as N →∞.

Proof. It is convenient, here, to use the compact notation of Section 1.5:

Y =


y1

y2
...
yN

 , Φ =


ϕ>1
ϕ>2
...
ϕ>N

 , E =


ε1

ε2
...
εN

 ,
First, recall that the model then reads

Y = Φθo + E,

that

Φ>Φ =
N∑
i=1

ϕiϕ
>
i and Φ>Y =

N∑
i=1

ϕiyi,
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and that the least squares solution, assuming that Φ>Φ is invertible, is

θ̂LS =
(

Φ>Φ
)−1

Φ>Y.

Second, note that for N ≥ N̄ the least squares estimator is unbiased. Indeed,
by the first hypothesis Φ>Φ is indeed invertible for N ≥ N̄ , hence for big N

θ̂LS =
(

Φ>Φ
)−1

Φ>Y =
(

Φ>Φ
)−1

Φ> (Φθo + E)

= θo +
(

Φ>Φ
)−1

Φ>E.

By the first hypothesis Φ is deterministic, and by the second the mean of E
is zero, hence

E
[
θ̂LS

]
= θo +

(
Φ>Φ

)−1
Φ>E [E] = θo.

Third, note that the covariance matrix of E is, by the second hypothesis,
σ2I; hence

Var
[
θ̂LS

]
= E

[
(θ̂LS − θo)(θ̂LS − θo)>

]
= E

[((
Φ>Φ

)−1
Φ>E

)((
Φ>Φ

)−1
Φ>E

)>]
=
(

Φ>Φ
)−1

Φ>E
[
EE>

]
Φ
(

Φ>Φ
)−1

=
(

Φ>Φ
)−1

Φ> σ2I Φ
(

Φ>Φ
)−1

= σ2
(

Φ>Φ
)−1

.

Finally, by the first hypothesis,
(
Φ>Φ

)
≥ aNI, hence

(
Φ>Φ

)−1 ≤ 1
aN I.

Therefore limN→∞ Var
[
θ̂LS

]
= 0, and this is enough to establish the claim.

�

1.7.4 Instrumental variables

If the regressor and the disturbance are both random, and correlated, none
of the theorems about almost sure convergence of θ̂LS apply, and in general
there is no way out of this issue within the standard theory of least squares.
However, here we sketch a remedy, called the method of instrumental vari-
ables. The trick is this: consider the equation from which the least squares
solution θ̂LS has been derived:

N∑
i=1

ϕi

(
yi − ϕ>i θ̂

)
= 0;
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divide by N and substitute the “true” model (20) into it:

1

N

N∑
i=1

ϕi

(
ϕ>i (θo − θ̂) + εi

)
= 0,

that is(
1

N

N∑
i=1

ϕiϕ
>
i

)
θ̂ =

(
1

N

N∑
i=1

ϕiϕ
>
i

)
θo +

1

N

N∑
i=1

ϕiεi.

The idea is that, in the limit, this equation becomes

E
[
ϕi

(
ϕ>i (θo − θ̂) + εi

)]
= 0,

that is

E
[
ϕiϕ

>
i

]
θ̂ = E

[
ϕiϕ

>
i

]
θo + E [ϕiεi],

and if two conditions hold:

• E
[
ϕiϕ

>
i

]
is invertible, and

• E [ϕiεi] = 0,

then its only solution is θ̂ = θo. If the regressors and the disturbance are
correlated this is not the case, because the second condition fails. But if we
replace (somehow heuristically) the first occurrence of the regressor ϕi with
another variable ψi such that

• E
[
ψiϕ

>
i

]
is invertible, and

• E [ψiεi] = 0,

then the equation

E
[
ψi

(
ϕ>i (θo − θ̂) + εi

)]
= 0

has again the only solution θ̂ = θo; therefore it makes sense to try solving(
N∑
i=1

ψiϕ
>
i

)
θ̂ =

N∑
i=1

ψiyi

instead of the normal equations. The variable ψi is called instrumental;
namely, an instrumental variable is any variable correlated with the data
but not with the noise. Note that the square matrix in the left-hand side
tends to be invertible, but it is not symmetric anymore. Note, above all,
that this method is not anymore pursuing the minimization of a sum of
squares. For a full treatment of the subject, refer to [17, chap. 7].
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1.8 Exercises for Chapter 1

Problem 1 (price of train tickets).
The following table contains the lengths of the railway connections between
the Milano Centrale train station and the central station of other cities on
the way from Milan to Venice8, and the corresponding prices of a ‘regional’
train ticket9:

Connection Length (km) Ticket price (e)
Milano C.le → Brescia 82.842 7.00
Milano C.le → Verona P.N. 147.480 11.55
Milano C.le → Padova 229.408 15.65
Milano C.le → Venezia S.L. 266.341 18.35

Suppose that the prices are explained by a linear model comprising a fixed
price due to administrative costs plus a price proportional to the length
of the connection. The prices are “noisy” because they are quantized to
multiples of 5 e-cents.

1. Write down the linear model for the ticket price and the normal equa-
tions of the least squares method, and find an estimate of the fixed
price and of the proportionality coefficient.

2. Estimate the price of a ticket from Milano to Vicenza, knowing that
the railway between these cities is 199.138 km long.

Problem 2 (amplitude and phase of a sinusoid).
The following table contains 10 noisy measures of the values of a sinusoidal
signal y(t) = A sin(2πFt+ φ), taken at random times ti:

ti 2.188 3.043 4.207 4.937 5.675 6.104 6.260 7.150 8.600 9.655
yi -1.112 2.358 -1.807 1.202 -0.814 1.298 -2.520 -0.132 1.421 -0.302

We know the frequency F = 2 Hz of the signal, but we do not know its
amplitude A and its phase φ.

1. Show how to apply the method of linear least squares in order to find
an estimate of A and φ.
Hint: recall trigonometry (!).

2. Compute the estimates Â and φ̂.

8Retrieved from http://it.wikipedia.org/wiki/Ferrovia Milano-Venezia
9Retrieved from http://www.trenitalia.com on February 25, 2013.
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Problem 3 (weighted least squares).
Given some measures (ϕ1, y1), · · · , (ϕN , yN ), the canonical Least Squares
estimate is the vector in Rp minimizing the sum of the squared residuals:

θ̂LS := arg min
θ∈Rp

N∑
i=1

(yi − ϕ>i θ)2.

Now suppose that we want to give more importance to some of the errors,
and less to others, minimizing a weighted sum of squared residuals instead:

θ̂WLS := arg min
θ∈Rp

N∑
i=1

wi (yi − ϕ>i θ)2,

where wi ≥ 0 for i = 1, · · · , N .

1. Find the corresponding version of the normal equations.

2. Find the new Weighted Least Squares estimate in terms of the matrices

Y =

 y1
...
yN

 , Φ =

 ϕ>1
...
ϕ>N

 ,
assuming full rank whenever necessary.
Hint: bring into the picture a new matrix containing the weights wi.

Problem 4 (ranges).
Let Φ be a real matrix. Show that

range Φ>Φ = range Φ>

rank Φ>Φ = rank Φ>

Hint: rewrite the proof of a Lemma about the existence of a solution to the
least squares problem, but keeping it in terms of Φ and Φ>.

Problem 5 (systematic errors).
Let the measures {yi}Ni=1 be generated according to the model yi = ϕ>i θ

o+εi,
and suppose that:

1. εi are independent Gaussian variables with mean µ and variance σ2;

2. ϕi are independent and identically distributed vectors with mean ϕ̄
and second-order moment Σ = E

[
ϕiϕ

>
i

]
> 0;

3. εi is independent of ϕi for all i.

Does the least square estimate converge almost surely as N →∞? If so, to
what does it converge?
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2 Linear algebraic aspects of the least squares method

This chapter was originally conceived for a brief and fast-paced introduction
to singular value decompositions, pseudo-inverses, and their applications to
least squares approximation, to be covered in two or three lectures at the
end of the course. It is meant as a “practical” reference, not as a rigorous
one; therefore the proofs of the fundamental theorems, although crucial for
a deep understanding, are omitted. The reader interested in these, and in a
more detailed exposition, is referred to the Italian textbook [29], or to the
standard (and quite more sophisticated) references [14], [12].
Moreover, the exposition is geared towards real matrices; however, every-
thing can be proved in full generality for arbitrary complex matrices, with
minimal conceptual differences.

2.1 The singular value decomposition

2.1.1 Motivation and definition

Real symmetric matrices, and in particular positive definite or semi-definite
matrices, are those that allow for the most useful and intuitive decomposi-
tion: Any such matrix is indeed the product of three real matrices, one diago-
nal and the other two orthogonal and transposes of each other: A = MΛM>.
This decomposition has a very rich structure, and readily provides the eigen-
values of the matrix, and a basis of Rn made of corresponding eigenvectors.
Moreover, in this case there are robust algorithms readily available, to com-
pute such decomposition numerically.
Ideally, one would like to provide such a decomposition, or a similar one, for
all real matrices. Unfortunately,

• There exist real normal matrices which are not symmetric, and whose
eigenvalues are not real (they are, however, pairwise conjugate). The
prototypical example of such a matrix is

A =

[
0 −1
1 0

]
.

Here A> = −A (“anti-symmetric”), so A is indeed normal, but its
eigenvalues are ±j.

• There exist square matrices which are not normal, but are still diago-
nalizable with a non-orthogonal M . For example,

A =

[
1 1
0 2

]
=

[
1 1
0 1

] [
1 0
0 2

] [
1 −1
0 1

]
= MΛM−1.

(As a more general example, any matrix with distinct eigenvalues ad-
mits at least this decomposition.)
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• There exist square matrices which are not diagonalizable at all. For
example,

A =

[
0 1
0 0

]
is not diagonalizable. There is a general decomposition that encom-
passes even these cases, namely the Jordan decomposition, but we
shall not deal with it here.

• Finally, there exist non-square matrices (!). For these, it does not even
make sense to talk about “diagonalization”; at least, it does not at first
sight.

The most useful decomposition in linear algebra “resembles” the spectral
decomposition of a positive semidefinite matrix: namely, it is a product of
three matrices, where the second is again “diagonal”, in a certain sense, and
the first and third ones are again orthogonal; the main difference is that the
latter are not necessarily related to each other.
Let A ∈ Rm×n. A Singular Value Decomposition, or SVD, of A, is a decom-
position

A = UΣV >,

where

• U is an orthogonal m×m matrix;

• V is an orthogonal n× n matrix;

• Σ is an m× n matrix (same dimensions as A; compatible dimensions
with U and V >) with the following structure:

Σ =



σ1

σ2

. . .

σk
0

. . .

0


where all the blank entries are meant to be zeros. In fact, all the
elements of Σ are zero except for the first k (where k ≤ m, k ≤ n) on
the main diagonal. The entries σ1, · · · , σk are supposed to be strictly
positive real numbers, and it is usually assumed that they come in
decreasing order: σ1 ≥ σ2 ≥ · · · ≥ σk > 0.
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The numbers σ1, · · · , σk are called the singular values of A. The main result
about SVD’s is the following

Theorem 2.1.1 Every matrix A ∈ Rm×n admits a singular value decompo-
sition. Moreover, the matrix Σ appearing in such decomposition is uniquely
determined by A (hence, of course, so are the singular values of A).

We stress the fact that Σ is uniquely determined (in particular, due to
the fact that the singular values appear in decreasing order), but U and
V are not. As a trivial counterexample, for any orthogonal matrix U the
decomposition I = UIU> is a perfectly valid SVD of the identity matrix
having V = U . Note, also, that any orthogonal diagonalization of a positive
semi-definite real matrix,

A = MΛM>

is also a valid SVD of A having U = V = M , provided that the columns
of M (orthonormal eigenvectors of A) are sorted in such a way that the
corresponding eigenvalues (≥ 0) appear in decreasing order on the diagonal
of Λ.

2.1.2 Interpretation

What is the meaning of an SVD? Multiplying the decomposition A = UΣV >

by V on the right-hand side we obtain

AV = UΣ

For example, suppose that A is a “tall” matrix (m > n), that {v1, · · · , vn}
are the columns of V (and an orthonormal basis of Rn), that {u1, · · · , um}
are the columns of U (and an orthonormal basis of Rm), and visualize what
is going on:


A




...

...
v1 v2
...

...

 =



...
...

u1 u2
...

...





σ1

σ2

. . .

σk
0
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Comparing both sides column by column,

Av1 = U


σ1

0
...
0

 = σ1u1

Av2 = U


0
σ2
...
0

 = σ2u2

Av3 = σ3u3

...

Avk = σkuk

Avk+1 = 0

...

Avn = 0

The first k vectors {v1, · · · , vk} are mapped byA onto multiples of {u1, · · · , uk};
the others are mapped to zero. In other terms,

• {u1, · · · , uk} is an orthonormal basis of range A; its dimension is k,
hence k is the rank of A;

• {vk+1, · · · , vn} is an orthonormal basis of null A, whose dimension is
n− k.

You can readily recognize a property that you already know from linear
algebra courses:

n = dim (domain of A) = dim (range of A)+dim (null space of A) = k+(n−k)

Lemma 2.1.1 Given two arbitrary matrices A and B with compatible di-
mensions, the matrices AB and BA have the same non-zero eigenvalues,
and with the same multiplicities. (The multiplicity of any zero eigenvalue is
different if A and B are not square.)

One can show that an SVD of A ∈ Rm×n can be constructed from a suit-
able choice of eigenvectors of the symmetric, positive semi-definite matrices
AA> ∈ Rm×m and A>A ∈ Rn×n, which have the same positive eigenvalues
by Lemma 2.1.1, and that the singular values of A are precisely the square
roots of those eigenvalues. We shall not deal with the details of such con-
struction, but we can easily check the correspondences. Let A = UΣV > be
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an SVD of A ∈ Rm×n. Then

AA> = UΣV >V Σ>U>

= UΣΣ>U>

= UΛmU
>

where Λm ∈ Rm×m, namely

Λm = ΣΣ> =


σ1

. . .

σk
0

0 · · · 0 0



σ1 0

. . .
...

σk 0
0 0



=


σ2

1
. . .

σ2
k

0
0


Similarly, A>A = V Σ>U>UΣV > = V ΛnV

> where Λn ∈ Rn×n, namely

Λn = Σ>Σ =


σ1 0

. . .
...

σk 0
0 0



σ1

. . .

σk
0

0 · · · 0 0



=


σ2

1
. . .

σ2
k

0


What we have written down are orthogonal diagonalizations of AA> and
A>A respectively, hence we can conclude:

• The columns of U form an orthonormal basis of Rm made of eigenvec-
tors of AA>;

• The columns of V form an orthonormal basis of Rn made of eigenvec-
tors of A>A;

• The squares of the singular values σ1, · · · , σk are the non-zero eigen-
values of both AA> and A>A.
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Note: the set of singular values of A is strictly related to the spectrum of
AA>, but in general not to the spectrum of A itself. Unless A is symmetric or
has some other nice structure, you can draw few conclusions on its singular
values from the sole knowledge of its eigenvalues. For example, the only
eigenvalue of the matrix

A =

[
0 M
0 0

]
,

is λ = 0 irrespective of the arbitrary number M ; nevertheless, the largest
singular value is precisely |M |.

2.1.3 Matrix norms

A norm on a vector space V is, in general, a function ‖ · ‖ : V → R with the
following properties:

1. ‖A‖ ≥ 0 for all A ∈ V , and ‖A‖ = 0 if and only if A = 0;

2. ‖aA‖ = |a|‖A‖ for all A ∈ V and a ∈ C;

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ V (triangular inequality).

Since any matrix A ∈ Rm×n can be thought of as an element of a real vector
space of dimension mn (it makes no essential difference whether we stack
mn numbers in a column or we arrange them in a rectangle), it makes sense
to apply standard norms to matrices as well. But there is more. A norm
which has the further property

4. ‖AB‖ ≤ ‖A‖‖B‖,

for all matrices A,B of dimensions such that the product makes sense, is
called a matrix norm.
The following is a matrix norm:

‖A‖2 := sup
x∈Rn

‖Ax‖2
‖x‖2

= sup
x∈Rn,‖x‖2=1

‖Ax‖2

It is called the “sup norm” on Rm×n induced by the Euclidean norm in Rn.
Intuitively, ‖A‖2 is the “maximum amplification” that A can operate on the
Euclidean norm of a vector. If A = UΣV > is an SVD of A ∈ Rm×n, then

‖A‖2 = sup
x∈Rn,‖x‖2=1

‖Ax‖2 = sup
x∈Rn,‖x‖2=1

‖UΣV >x‖2

= sup
x∈Rn,‖V >x‖2=1

‖ΣV >x‖2 = sup
z∈Rn,‖z‖2=1

‖Σz‖2

= sup
z2
1+···+z2

n=1

√
σ2

1z
2
1 + · · ·+ σ2

kz
2
k + 0z2

k+1 + · · ·+ 0z2
n
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The third inequality is due to the fact that the orthogonal matrices U and
V > do not change the Euclidean norm, and the fourth to the fact that if x
varies over the unit sphere, so does z = V >x. Now, since σ1 ≥ · · · ≥ σk,
you can easily see that the supremum is attained when z1 = 1, and all the
other zi = 0. Hence,

‖A‖2 = σ1.

In words: The sup norm of A induced by the Euclidean norm coincides with
the greatest singular value of A.
The following quantity, defined for A ∈ Rm×n:

‖A‖F :=

√∑
i,j

A2
i,j =

√
tr AA>

is called the Frobenius norm of A. It is indeed a matrix norm, but one can
easily see that it coincides with the Euclidean norm on Rm×n. Substituting
an SVD of A,

‖A‖F =
√

tr AA> =
√

tr UΣV >V Σ>U>

=
√

tr UΣΣ>U> =
√

tr Σ>U>UΣ

=
√

tr Σ>Σ =
√
σ2

1 + · · ·+ σ2
k

where the fourth equality is due to the “rotation property” of the trace:
tr AB = tr BA for any two matrices A,B with compatible dimensions.
One of the facts that make singular value decompositions so useful is the
following

Theorem 2.1.2 Let A = UΣV > be an SVD of A ∈ Rm×n. Suppose that k
is the rank of A, and let r be an integer less than k. The minimum

min
Ā∈Rm×n, rank Ā=r

‖A− Ā‖F

is attained by the matrix
Ā = U Σ̄V >

where Σ̄ is the matrix obtained from Σ replacing σr+1, · · · , σk with zeros.

In words, the best approximation of A among the matrices of rank r < k,
in the sense of the Frobenius norm, is the matrix obtained by the SVD of A
“suppressing” the smallest k − r singular values.
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2.2 Example: character recognition

SVD’s can be exploited for character recognition, i.e. to build a very sim-
ple OCR. (We show the basic principle, avoiding intricacies like the need of
recognizing the position of a letter within the scanned version of a page.)

Suppose that we are given a “training set” of N images of 16 × 16 pixels
in gray-scale, each one containing a handwritten letter ‘A’. Each picture
is thus a 16 × 16 matrix of numbers between, say, 0 and 1, representing
the luminance of the pixels. Let us rearrange each of the matrices in a
vector ai ∈ R256, stacking column after column. Then, stacking these “big”
columns row-wise, we obtain a big matrix A ∈ R256×N . Of this matrix, take
an SVD: A = UΣV >. In general, the matrix will have a lot of (nonzero)
singular values; nevertheless, we can approximate A with a matrix of rank,
say, 3, “suppressing” the singular values from σ4 onwards, and this is the
best low-rank approximation of A in the sense of the Frobenius norm. The
resulting matrix Ā has the following range:

SA := range Ā = span {u1, u2, u3} ⊂ R256,

where u1, u2, u3 are the first three columns of U . You are invited to interpret
it as follows: SA = span {u1, u2, u3} is the 3-dimensional subspace of R256

where the “action” of A is concentrated. The image under A of the unit
ball of RN is an ellipsoid with mass concentrated “close” to this subspace;
and heuristically, SA is the 3-dimensional subspace of R256 representing the
“typical” letter ‘A’.

For further reference, let us stack the three columns into a matrix UA =[
u1 u2 u3

]
∈ R256×3.

Now, of course, the very same story can be repeated for a training set of N
images, of 16× 16 pixels, containing the letter ‘B’; thus, we can construct a
3-dimensional subspace SB ⊂ R256 and a matrix UB ∈ R256×3 representing
the letter ‘B’. And we go on with SD, UC representing ‘C’, SD, UD, · · · up
to, say SZ , UZ .

Now a new letter, namely a 16 × 16 bitmap comes. Which letter is it, ‘A’,
‘B’, ‘C’, ... or ‘Z’? Let us translate the question in algebraic language. Let
y be a vector in R256 representing the new letter;

to which subspace Si among those representing the letters ‘A’ ... ‘Z’ is y
closest?

“Closest”, in this chapter (and in this course), means “closest in the sense
of least squares”; here it means precisely that y is closest to the subspace Si
if the approximation of y obtained by taking its orthogonal projection on Si
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is the best, i.e., if the difference between y and its orthogonal projection on
Si has the smallest norm. Hence, the algorithm we propose for recognizing
a letter is the following:

1. compute the orthogonal projection yi of y on each Si = SA, · · · , SZ ;

2. find the i = A, · · · , Z that minimizes ‖yi − y‖2;

3. that i is (probably) your letter.

If the new letter y belonged exactly to one of the 3-dimensional subspaces,
then the question would translate as follows:

which one of the linear equations UAx = y, UBx = y, ..., UZx = y is
solvable exactly?

However, since SA, · · · , SZ are only small subspaces of range A, · · · , range Z,
and since y is affected by noise anyway, in a real situation actually none of
the linear equations will be solvable. The canonical way to circumvent this
issue is the following:

If the linear system Ux = y was solvable, it would attain ‖Ux− y‖2 = 0.
If it is not solvable, try to minimize ‖Ux− y‖2 instead.

The algorithm translates consequently (but the substance is exactly the
same):

1. for each i = A, · · · , Z, compute mi = minx∈R3 ‖Uix− y‖2;

2. find the i such that mi is minimum (i.e. the linear system which is
closest to exact solvability);

3. that i is (probably) your letter.

The approximate solution of a linear system Ax = b, that is the minimization
of ‖Ax− b‖2, is the subject of the rest of this chapter.

2.3 The Moore-Penrose pseudo-inverse

2.3.1 Definition

Given any matrixA ∈ Rm×n, a matrixA+ ∈ Rn×m is called a Moore/Penrose
pseudo-inverse of A, or a pseudo-inverse of A for short, if it satisfies the fol-
lowing properties:

1. The matrix AA+ ∈ Rm×m is symmetric;

2. The matrix A+A ∈ Rn×n is symmetric;

3. AA+A = A;
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4. A+AA+ = A+.

We have the following

Theorem 2.3.1 For any matrix A ∈ Rm×n, a pseudo-inverse of A exists,
it is unique, and it is uniquely determined by the above four properties.

Consequently, to show that a matrix B is the pseudo-inverse of A it is
sufficient to show that B satisfies the four properties. Some examples follow:

• If A is square and invertible, then A+ = A−1. Indeed,

1. AA−1 = I, which is symmetric;

2. A−1A = I, which is symmetric;

3. AA−1A = IA = A;

4. A−1AA−1 = IA−1 = A−1.

Since A−1 satisfies the four properties, it is the pseudo-inverse of A.
Of course, this is where the name pseudo-inverse comes from: it is a
generalization of the inverse of a square, full rank matrix; as we shall
now see, the generalization extends to singular and even to non-square
matrices.

• If A is a “tall” matrix, meaning that m > n, and if its columns are
linearly independent, then A+ is a left inverse of A, that is a matrix
such that A+A = I. More precisely, we have A+ = (A>A)−1A>.
As before, one just needs to check that (A>A)−1A> satisfies the four
properties. For example, the last one reads:

((A>A)−1A>)A((A>A)−1A>) = (A>A)−1(A>A)(A>A)−1A>

= (A>A)−1A>

• If A is a “flat” matrix, meaning that m < n, and if its rows are linearly
independent, then A+ is a right inverse of A, that is a matrix such
that AA+ = I. Namely, A+ = A>(AA>)−1.

2.3.2 General case

In general, A ∈ Rm×n is not square and may have low rank. Let

A = UΣV >
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be a singular value decomposition of A. Given

Σ =



σ1

σ2

. . .

σk
0

. . .

0


∈ Rm×n

we define

Σ+ :=



1/σ1

1/σ2

. . .

1/σk
0

. . .

0


∈ Rn×m

(you can verify that Σ+ is indeed the pseudo-inverse of Σ). Then,

A+ = V Σ+U>.

Again, we only have to verify the four properties:

1.

AA+ = UΣV >V Σ+U>

= UΣΣ+U>

= U



1
1

. . .

1
0

. . .

0


U>,

which is indeed symmetric;

2. similar proof;
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3.

AA+A = UΣV >V Σ+U>UΣV >

= UΣΣ+ΣV >

= U



1
1

. . .

1
0

. . .

0


ΣV >

= UΣV > = A

4. similar proof.

Hence, V Σ+U> is the pseudo-inverse of A as claimed. (Note that, strictly
speaking, V Σ+U> is not an SVD of A+, because the positive numbers on
the diagonal of Σ+ come in increasing order.)
We see that the SVD allows readily to compute the pseudo-inverse of a
matrix; robust and fast algorithms are available to compute SVD’s, hence
robust and fast algorithms are also available to compute pseudo-inverses.
And as we shall now see, pseudo-inverses play a key role in the numerical
solution of general linear systems.

The following simple corollary will be needed in the following section:

Corollary 2.3.1 For any real matrix A, it holds (A+)> = (A>)+.

Proof. Let A = UΣV >. Then

(A+)> = (V Σ+U>)> = U(Σ+)>V > = U(Σ>)+V > = (V Σ>U>)+ = (A>)+.

�

2.4 Least squares solution of a linear system

Given a matrix A ∈ Rm×n and a vector b ∈ Rm, the equation

Ax = b

in the unknown x is called a linear equation (a compact form for “a system
of linear equations”), and any vector x ∈ Rn such that Ax = b is called a
solution of such equation. As everybody knows, there may be no solution at
all, and if a solution exists, it may not be unique; indeed, if more than one
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solution exists, then there exist infinitely many, and they form the transla-
tion of a subspace of Rn, or an affine subspace of Rn. Note that, if x is a
solution, then Ax− b = 0, hence ‖Ax− b‖2 = 0.
When A and b come from physical measures it is seldom the case, if at all,
that a solution exists, due to the presence of noise. Moreover, if the solution
is supposed to be found by a computer and stored into memory, then a
solution, even if it exists, may not be representable exactly as a floating
point number10. At most, we can aim at an approximate solution.
In practical situations it happens, more often than not, that something
resembling a solution has to be found anyway, even if strictly speaking it
does not exist; and if more solution are available, one has to be chosen
(“Dear Matlab, I want the solution to this system, and I want it now”).
In the spirit of least squares, we shall stipulate that x is a good approximate
solution if it minimizes the norm ‖Ax − b‖2 or, which is the same, the
quantity ‖Ax− b‖22, which is indeed a sum of squares (the ideal goal would
be to attain ‖Ax − b‖22 = 0). If both x1 and x2 attain such minimum, we
shall prefer the one (say, x1) which has the least squared norm ‖x1‖22 (which
is, again, a sum of squares). Formally, we pose the following

Definition 2.4.1 Given A ∈ Rm×n and b ∈ Rm, consider the set

S(A, b) = {x ∈ Rn | x minimizes ‖Ax− b‖2}

(A vector x ∈ S(A, b) is “almost” a solution, in the sense that it attains the
closest possible result to ‖Ax − b‖2 = 0.) Then any vector x∗ ∈ S(A, b) of
minimum norm, that is

x∗ = arg min
x∈S(A,b)

‖x‖2

is called a least squares solution of the linear system Ax = b.

Lemma 2.4.1 A least squares solution of Ax = b always exists and is
unique.

Proof. First, let bc be the orthogonal projection of b on the subspace of Rm
generated by the columns of A. Since bc belongs to span {columns of A},
bc = Ax̄ for some x̄ ∈ Rn. Then, since the projection makes the quantity
‖bc − b‖2 minimum, x̄ ∈ S(A, b), so that S(A, b) is not empty.
Second, notice that any x belonging to S(A, b) must attain Ax = bc, because
bc is the unique vector, among those in span {columns of A}, minimizing the
distance from b. Hence S(A, b) is an affine space, namely the affine space
comprising the solutions of Ax = bc (this system always admits a solution).

10Think at this trivial case: 3x = 1. Is the solution 1
3

representable exactly as a vector
of floating-point numbers, if the underlying system is a binary machine?
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Now, a finite-dimensional affine space is always a closed convex set, and this
would be enough to establish the claim, because in any closed convex set
there is always a unique element of minimum Euclidean norm; but let us see
what happens in more detail.
Any solution of Ax = bc can be decomposed in an unique way as x =
xr + x⊥, where xr ∈ span {rows of A} and x⊥ ∈ span {rows of A}⊥ or, in
other terms, x⊥ ∈ null A. Moreover, for any two solutions x1, x2, it holds
Ax1 = Ax2 = bc, hence A(x1 − x2) = 0, that is x1 − x2 ∈ null A. This
implies that x1 = x2 + x⊥ for some x⊥ ∈ null A, and this in turn implies
that xr is the same for both x1 and x2. Hence, xr is the same for all
the solutions x, and it is of course a solution itself. Specifically, xr is the
orthogonal projection of any solution of Ax = bc on span {rows of A}. We
claim that the least squares solution is precisely xr. Indeed for any solution
x = xr + x⊥ we have, by definition, xr ⊥ x⊥; hence, by Pythagoras’s
theorem, ‖x‖22 = ‖xr‖22 + ‖x⊥‖22, and we can immediately see that, xr being
unique for all x, min ‖x‖22 is attained for x⊥ = 0, that is x = xr. �

Lemma 2.4.2 A vector x ∈ Rn belongs to S(A, b) if and only if

A>Ax = A>b. (7)

(Here we recognize an old friend: Equation (7) is none other than the nor-
mal equation[s].)

Proof. Let b = bc + b⊥, where

bc ∈ span {columns of A}
b⊥ ∈ span {columns of A}⊥

(The decomposition is unique.) It holds

x ∈ S(A, b)⇔ Ax = bc

⇔ for all y ∈ span {columns of A},
y>(Ax− b) = y>(Ax− bc − b⊥) = y>(Ax− bc) = 0

⇔ (Ax)>(Ax− b) = 0 for all x ∈ Rn

⇔ x>(A>Ax−A>b) = 0 for all x ∈ Rn

⇔ A>Ax−A>b = 0.

�
Now the fact that S(A, b) is nonempty, as in the proof of Lemma 2.4.1,
reads: the normal equations have at least one solution. And here follows
the take-home message of this chapter:

Theorem 2.4.1 The least squares solution of the system Ax = b is

x∗ = A+b.
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Proof. From Lemma 2.4.2 we have that x ∈ S(A, b) if and only if it solves
the normal equations, and from the proof of Lemma 2.4.1 we have that,
among these solutions, x has minimum norm if and only if it belongs to
span {rows of A} (namely, it is the projection of any x ∈ S(A, b) on that
subspace). We will now show that A+b satisfies both these properties, and
this will be enough to establish the claim.
Let us start from the second property. It holds A+b ∈ span {rows of A} if
and only if A+b ⊥ x for all x ⊥ span {rows of A} or, which is the same, for
all x ∈ null A. Now, by the properties of the pseudo-inverse, for any such x
it holds

x>A+b = x>A+AA+b

= x>(A+A)>A+b

= x>A>(A+)>A+b

= (Ax)>(A+)>A+b

= 0,

so that indeed A+b ⊥ x, and the second property is established.
Regarding the first property, we must show that

A>A(A+b) = A>b;

but this is now easy, because, by other properties of the pseudo-inverse,

A>AA+ = A>(AA+)> = A>(A+)>A> = A>(A>)+A> = A>,

and post-multiplying by b is enough to establish the claim. �
Note that in the proof we have exploited all the four properties of the Moore-
Penrose pseudo-inverse exactly once (find where!) and nothing else, to prove
two properties that are essentially geometric facts related to orthogonality.
This tells us that the very concept of pseudo-inverse is tightly linked to that
of least squares solution.

In view of the latter theorem, the analytical solution of a least squares
estimation problem, computed in section 1.4 can be restated in terms of a
pseudo-inverse. In order to compute

θ̂LS = arg min
θ∈Rp

N∑
i=1

(yi − ϕ>i θ)2,

we define

Y =


y1

y2
...
yN

 , Φ =


ϕ>1
ϕ>2
...
ϕ>N
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and we ask to find
θ̂LS = arg min

θ∈Rp
‖Φθ − Y ‖2 .

This is the search for the least squares solution of a linear system Y = Φθ
which strictly speaking is not solvable (indeed, recall that there is a “hidden”
noise term: Y = Φθ + E). The solution reads

θ̂LS = Φ+Y.

The only news with respect to section 1.4 is that, if Φ>Φ is not invertible
(many “candidate solutions” exist in S(Φ, Y )) then the pseudo-inverse yields
the one with minimum norm. If, on the other hand, Φ is “tall” and has full
rank, as is usually the case if many data are available, then we also know
that it admits a left inverse coinciding with Φ+, namely Φ+ = (Φ>Φ)−1Φ>,
so that the unique solution reads

θ̂LS = (Φ>Φ)−1Φ>Y.

2.5 Matlab code

When you wish to carry on with a quick and dirty least squares approxima-
tion in Matlab, you don’t have to mess with sums, transposes and inverses
that may not even exist: you can just use the built-in function pinv(),
which computes pseudo-inverses and does all the hard job. So, the next
time you are given some pairs of numbers (x1, y1), (x2, y2), · · · , (xN , yN )
and asked to provide an interpolation with a third-degree polynomial y =
θ0 + θ1x+ θ2x

2 + θ3x
3, just do the following:

1. make sure that the numbers xi and yi are stacked in two separate
columns X and Y of the same dimension;

2. build the “data matrix” Φ having ϕj(xi) = (xi)
j :

Φ =


1 x1 x2

1 x3
1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3
...

...
...

...
1 xN x2

N x3
N


3. compute θ̂LS = Φ+Y .

The solution takes at most two lines of code:

Phi = [ones(length(X),1), X, X.^2, X.^3];

thetaLS = pinv(Phi)*Y;
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Actually, the second line can be simplified, because least squares approxi-
mation is what Matlab does by default to solve linear systems when they do
not admit an unique solution in the classical sense:

Phi = [ones(length(X),1), X, X.^2, X.^3];

thetaLS = Phi\Y;

2.6 Exercises for Chapter 2

Problem 1 (SVD and pseudo-inverse).

1. Verify that

A = UΣV > =

[
1/
√

5 −2/
√

5

2/
√

5 1/
√

5

] [ √
10 0
0 0

] [
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
.

is a singular value decomposition of A =

[
1 1
2 2

]
.

2. Compute the pseudo-inverse of A =

[
1 1
2 2

]
.

Problem 2 (orthogonal projector).
Consider A ∈ Rm×n, and let A+ be its pseudo-inverse. Show that

ΠA := AA+ ∈ Rm×m

is the orthogonal projector onto the subspace of Rm generated by the columns
of A; more explicitly, that for any v ∈ Rm, ΠAv is the orthogonal projection
of v on span {columns of A}.
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3 Identification of dynamical systems

In this chapter we apply the method of least squares to the identification
of dynamical systems; the results are cited without proofs. The subject of
system identification is vast; if you are interested in how the following simple
examples extend to more general cases, you can refer to the standard book
[17], to [30], or to the lecture notes (in Italian) [23]. Before you proceed with
this chapter, check that you are familiar with the concepts about discrete-
time systems reviewed in Appendix C.

3.1 Wide-sense stationary processes

In this chapter we will consider discrete-time stochastic processes like {y(t)}+∞−∞,
i.e. sequences of random variables · · · , y(−2), y(−1), y(0), y(1), y(2), · · · de-
fined on the same probability space (Ω,F ,P), infinite in both directions.
The process {y(t)}+∞−∞ is called wide-sense stationary, or stationary of the
second order, if

1. its mean my := E[y(t)] exists finite and does not depend on t;

2. its correlation signal

Ry(τ) := E[y(t)y(t+ τ)],

for τ = · · · ,−1, 0, 1, 2, · · · , exists finite and does not depend on t.

It follows at once that also the covariance signal of the process

Cy(τ) := E [(y(t)−my) (y(t+ τ)−my)] ,

does not depend on t; indeed it holds Cy(τ) = Ry(τ)−m2
y. In what follows

we will focus primarily on wide-sense stationary processes; we will refer to
Ry(0) = r2 and Cy(0) = σ2 as the power and the variance of the process,
respectively.

Vaguely speaking, the power spectral density, or spectrum for short, of a
stationary process, is the Fourier transform of its correlation signal11:

Sy(ω) = F [Ry] (ω) =
+∞∑

τ=−∞
Ry(τ) e−jωτ ,

for ω ∈ [−π, π]. If my = 0, the spectrum coincides with the Fourier trans-
form of the covariance signal. It can be shown that, due to the intrinsic

11The true definition of power spectral density is somewhat subtler; the fact that under
rather general hypotheses it coincides with the Fourier transform of the correlation signal
is the so-called Wiener-Khinchine theorem. See [27] for more details.
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symmetry in the correlation signal of which it is the transform, a power spec-
trum is always an even function taking nonnegative values (Sy(ω) = Sy(−ω)
and Sy(ω) ≥ 0 for all ω ∈ [−π, π]).

Even more vaguely speaking, the spectrum is a function of the frequency
ω, representing how much power the process carries, on average, at that
frequency. “Flat” spectra characterize loosely correlated variables, and in
general a realization of a loosely correlated process exhibits a chaotic behav-
ior. Conversely, a spectrum that exhibits a “peak” at a certain frequency,
say ω1, characterizes a process that has a distinct oscillatory behavior, more
or less at the frequency ω1; the more pronounced the peak, the more visible
the oscillatory behavior.
On one extreme, the only processes with constant spectrum are those zero-
mean processes such that

Cy(τ) =

{
σ2, τ = 0;

0, otherwise,

for a certain variance σ2. Such a process is called white noise, in the wide
sense; in words, a white noise is a sequence of pair-wise uncorrelated vari-
ables with mean zero and the same variance. To obtain stronger results,
often one assumes a much stronger property: a white noise, in the strict
sense, is a sequence of independent and identically distributed variables, with
mean zero and a certain variance σ2.
On the other extreme, an example of stationary process with perfect oscil-
latory behavior is the sampled version of a sinusoid, y(t) = A sin(ω1t + φ),
where ω1 is a constant, the amplitude A is any nonzero random variable, and
the phase φ is a random variable with uniform density in [−π, π]. Strictly
speaking, the correlation signal of this process does not possess a Fourier
transform; however, you can visualize the picture as if the power spectrum
had a pair of “Dirac deltas” at the frequencies {−ω1, ω1}.12

The processes of the first kind (white noises and filtered white noises) are
called completely nondeterministic, and concern us most in this chapter; the
processes of the second kind (for example finite sums of sinusoids with ran-
dom amplitude and phase) are called predictable, because a finite number of
samples — 2, for only one sinusoid — are sufficient to reconstruct without
errors all the remaining samples of the process. A famous theorem by Wold
says that any stationary process {y(t)} can be decomposed as the sum of a

12Physical, continuous-time counterparts of the same phenomena are the light emitted
by an incandescent light bulb, which is due to thermal phenomena, has more or less the
same power at all the frequencies, and is distinctly “white” (this is where the name “white
noise” comes from), and the light emitted by the state transitions of the external electrons
of certain atoms, used e.g. in mercury lamps, whose power is concentrated only at some
frequencies (“line spectrum”).
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completely nondeterministic process {ỹ(t)} and a predictable process {ȳ(t)}
uncorrelated to each other.

More precisely, we will call completely nondeterministic a process, if it can
be obtained as the output of a causal LTI system whose input is a white
noise:

y(t) =
t∑

τ=−∞
w(t− τ)e(τ), t = · · · ,−2,−1, 0, 1, 2, · · · (8)

where w(t), t = 0, 1, 2, · · · is the impulse response of the system, and {e(t)}
is a white noise. It can be proved that {y(t)} is stationary if and only if the
impulse response is summable,

∞∑
t=0

|w(t)| <∞,

or, equivalently, if the transfer function of the system

W (z) =
∞∑
t=0

w(t)z−t

converges on the unit circle.

Example. The prototypical example of complete nondeterminism is a process
conforming causally to the following equations:

y(t) = ay(t− 1) + e(t), t = · · · ,−2,−1, 0, 1, 2, · · · (9)

where a 6= 0 is a constant; this is the simplest example of a so-called au-
toregressive process. It can be thought as the response of the causal LTI
system

y(t) = ay(t− 1) + u(t) (10)

to a white noise fed at the input.
Recall that we suppose that {e(t)} has mean zero. The mean of y(t) goes
as follows:

E[y(t)] = aE[y(t− 1)] + 0 (11)

Note that, according to (8), y(t − 1) depends on the noise e(·) only up to
time t− 1; therefore, it is uncorrelated from e(t). Since the variance of the
sum of two uncorrelated variables is the sum of the respective variances, we
have

Var[y(t)] = a2 Var[y(t− 1)] + Var[e(t)] = a2 Var[y(t− 1)] + σ2
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It is now immediate to realize that, if a2 ≥ 1, the variance of {y(t)} “ex-
plodes” as time goes on even assuming that it is finite at a certain time; in
particular, this implies that {y(t)} cannot be stationary. In fact, {y(t)} is
stationary if, and only if, −1 < a < 1. This implies, in view of (11), that
E[y(t)] = 0; moreover, giving for granted that σ2

y = Var[y(t)] is constant
with respect to t, we have

σ2
y = a2 σ2

y + σ2;

σ2
y =

σ2

1− a2
.

The covariance (or correlation) signal of {y(t)} is now easy to compute using
a simple trick. By Equation (9),

y(t+ τ) = ay(t+ τ − 1) + e(t+ τ)

y(t)y(t+ τ) = ay(t)y(t+ τ − 1) + y(t)e(t+ τ)

E[y(t)y(t+ τ)] = aE[y(t)y(t+ τ − 1)] + E[y(t)e(t+ τ)]

If τ > 0 the last term is zero, e(t + τ) being uncorrelated from the past
samples of y(·); hence

Ry(τ) = aRy(τ − 1), τ = 1, 2, 3, · · · ,

and solving the recursion,

Ry(τ) = aτRy(0), τ = 1, 2, 3, · · ·

Note that we have already computed

Ry(0) = Cy(0) = σ2
y =

σ2

1− a2
.

The case for τ < 0 is, instead, just a matter of symmetry, since by definition
the cross-correlation must not depend on t:

Ry(−τ) = E[y(t)y(t− τ)] = E[y(t+ τ)y((t+ τ)− τ)] = Ry(τ).

Resuming, Ry(τ) = σ2

1−a2a
|τ |; now we can go for the spectrum. The Fourier
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transform of the function f(τ) = a|τ | is

F (ω) =
+∞∑

τ=−∞
a|τ |e−jωτ

=

0∑
τ=−∞

a|τ |e−jωτ +

∞∑
τ=0

a|τ |e−jωτ − a|0|e−jω·0

=
+∞∑
τ=0

aτejωτ +
+∞∑
τ=0

aτe−jωτ − 1 =
+∞∑
τ=0

(aejω)τ +
+∞∑
τ=0

(ae−jω)τ − 1

=
1

1− aejω
+

1

1− ae−jω
− 1 =

2− a(ejω + e−jω)

1 + a2 − a(ejω + e−jω)
− 1

=
2− 2a cosω

1 + a2 − 2a cosω
− 1 =

1− a2

1 + a2 − 2a cosω

Therefore,

Sy(ω) =
σ2

1− a2
F (ω) =

σ2

1 + a2 − 2a cosω
.

You can immediately verify that Sy is an even function and that it is ev-
erywhere positive; in particular, notice that it depends on ω only through a
cosine; none of these facts is a coincidence. �

It seems that, since computing the spectrum of the simplest possible au-
toregressive process involves tedious computations, the same computation
for an even slightly more sophisticated model is going to be a nasty job.
In many cases, though, this is not true. The following fundamental result
relates directly the spectrum of a filtered process to the spectrum of the
input through the transfer function of the LTI system, letting us avoid the
computation of the correlation signal and its Fourier transform:

Theorem 3.1.1 Suppose that a wide-sense stationary process {u(t)}+∞−∞ is
fed as an input to a BIBO-stable LTI system with transfer function W (z);
then the output {y(t)}+∞−∞ is also stationary, and

Sy(ω) =
∣∣W (

ejω
)∣∣2 Su(ω).

Proof. See e.g. [22, Section 8.4]. �

With respect to the above example, the input {e(t)} is a white noise with
variance σ2; this means that its correlation signal is Re(τ) = σ2 if τ = 0,
and 0 otherwise, namely an impulse multiplied by σ2; the Fourier transform
of an impulse is the constant 1, hence Se(ω) = σ2 for all ω. The transfer
function of the LTI system under consideration is W (z) = 1

1−az−1 = z
z−a ,
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and we suppose that its only pole, which is a, lies in the interior of the unit
disc (since a is real, it means −1 < a < 1). We have13

∣∣W (
ejω
)∣∣2 = W (ejω)W (ejω) = W (ejω)W

(
ejω
)

= W (ejω)W (e−jω)

=
1

1− ae−jω
1

1− aejω
=

1

1 + a2 − a(ejω + e−jω)

=
1

1 + a2 − 2a cosω
,

and finally, by Theorem 3.1.1,

Sy(ω) =
∣∣W (

ejω
)∣∣2 Se(ω) =

σ2

1 + a2 − 2a cosω
,

as we have found previously.

3.2 Model classes

The purpose of system identification is to find a suitable finite-dimensional
model for a discrete-time random process. The most popular models in con-
trol engineering describe such process as the output of a causal LTI system
whose inputs are a white noise, which cannot be observed by the exper-
imenter, and possibly another “exogenous” input, either deterministic or
random, which is instead known to the experimenter (or even set by the
experimenter).

An autoregressive (AR) process {y(t)}+∞−∞ is the output of a causal LTI
system described by the following model:

y(t)− a1y(t− 1)− · · · − any(t− n) = e(t)

where a1, · · · , an ∈ R, and {e(t)}+∞−∞ is a sequence of independent and iden-
tically distributed random variables (“process noise”), with mean zero and
unknown variance (to simplify the picture, assume it is Gaussian) that brings
randomness into the picture. Note that {e(t)} is not necessarily a distur-
bance: it is just another input to the system, invisible to the experimenter.
Since {e(t)} is a white noise, and since the system is supposed to be causal,
e(t) is independent of y(τ) for all τ < t.

Let us interpret z and z−1 as the anticipation operator and the delay oper-
ator respectively, that is, those operators that act on a sequence by trans-
lating it by one time step to the left or to the right (zy(t) = y(t + 1) and

13Note that the second equality holds because W is analytic in the region of the plane
that includes the unit circle.
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z−1y(t) = y(t− 1)). Then the model reads

y(t)− a1z
−1y(t)− · · · − anz−ny(t) = e(t);

(1− a1z
−1 − · · · − anz−n)y(t) = e(t);

y(t) =
1

1− a1z−1 − · · · − anz−n
e(t)

=
zn

zn − a1zn−1 − · · · − an
e(t).

The operator

W (z) =
zn

zn − a1zn−1 − · · · − an
is the transfer function of a causal LTI system whose input is e(t). If, with
a slight abuse of terminology, we interpret z as a complex variable, and the
poles of W (z), that is the roots of the polynomial zn − a1z

n−1 − · · · − an,
lie inside the interior of the unit disc ({z ∈ C | |z| < 1}), then such system
is BIBO-stable, and y(t) is wide-sense stationary. In particular, since the
coefficients a1, · · · , an are real, either the roots are real, or they come in
conjugate pairs; any two conjugate poles induce in y(t) an oscillatory be-
havior (the frequency depending on their phase), and the closer they are to
the unit circle {z ∈ C | |z| = 1}, the more pronounced is such behavior.

The process {y(t)}+∞−∞ is autoregressive with exogenous input (ARX) if it
conforms to the following model:

y(t)− a1y(t− 1)− · · · − any(t− n) = b1u(t− 1) + b2u(t− 2) + · · ·+ bmu(t−m) + e(t)

where m ≤ n, {e(t)} is a white noise as above, and {u(t)}+∞−∞ is another
signal, either random or deterministic, but known to the experimenter. We
suppose that e(t) is independent of y(s) for all s < t, and independent of
u(s) for all s. In terms of transfer functions, the model reads

y(t)− a1z
−1y(t)− · · · − anz−ny(t) = b1z

−1u(t) + b2z
−2u(t) + · · ·+ bmz

−mu(t) + e(t);

y(t) =
b1z
−1 + · · ·+ bmz

−m

1− a1z−1 − · · · − anz−n
u(t) +

1

1− a1z−1 − · · · − anz−n
e(t)

=
b1z

n−1 + · · ·+ bmz
n−m

zn − a1zn−1 − · · · − an
u(t) +

zn

zn − a1zn−1 − · · · − an
e(t)

= G(z) u(t) +W (z) e(t)

As before, if the roots of zn − a1z
n−1 − · · · − an lie in the open unit disc,

then y(t) is stationary, provided u(t) is stationary as well.
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With respect to both AR and ARX models, the system identification prob-
lem is the task of reconstructing W (z) or, which is the same, finding the
parameters a1, · · · , an, and possibly b1, · · · , bm, from a sequence of measures,
respectively (y(0), y(1), · · · , y(N)) or ((u(0), y(0)), (u(1), y(1)), · · · , (u(N −
1), y(N − 1)), y(N)). As we shall soon see, AR and ARX models are of
particular interest to us, because their identification can be accomplished in
a natural way with the least squares method.

Example. The identification of AR models is used in telecommunications
to save bandwidth in the transmission of speech through digital channels.
Indeed, the frequencies of interest in a voice signal span a range of about
4 kHz, thus the transmission of such a signal requires at least a sampling
rate of 8 kHz14 (after a suitable prefiltering), and a channel capacity of 8k
samples per second15. However, the human voice is generally accepted as
stationary in time “windows” of 20 ms, say of 160 samples, if we sample at
8 kHz. Any such window can therefore be modeled as a short realization
of an AR process, whose parameters can be identified accordingly. Modern
voice transmission techniques prescribe to split the signal in 20 ms windows,
extract some features (e.g. sinusoids, pulse sequences) from each window
and subtract them from the signal, identify an AR model for the remaining
process, and to transmit the features and the model, say 20 ∼ 30 parameters
along with an estimate of the variance of the model noise e(t) inferred from
the residuals, instead of the 160 samples. In this way, a lot of channel
capacity is saved. See [24] for further details.
Particularly with respect to this example, computing the analytical solution
to the normal equations is not a fast algorithm and not the one used in prac-
tice in telecommunications, because the blind computation of an inverse or
of a pseudo-inverse does not exploit the symmetry inherent in such equa-
tions; however, in the rest of this chapter we shall pursue this approach, it
being the most intuitive, mathematically speaking. �

Other model classes of which you should be aware are the following:

• Moving average (MA) models:

y(t) = e(t) + c1e(t− 1) + · · ·+ cke(t− k)

= (1 + cz−1 + · · ·+ ckz
−k) e(t).

Here, y(t) is modelled as the output of a finite-impulse-response (FIR)
filter, whose input is a white noise.

14Recall Shannon’s sampling theorem...
15The de facto standard is 8 bits per sample, implying a rate of 64 kbps.
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• Autoregressive/moving average (ARMA) models:

y(t)− a1y(t− 1)− · · · − any(t− n) = e(t) + c1e(t− 1) + · · ·+ cke(t− k)

(1− a1z
−1 − · · · − anz−n)y(t) = (1 + c1z

−1 + · · ·+ ckz
−k)e(t)

y(t) =
1 + c1z

−1 + · · ·+ ckz
−k

1− a1z−1 − · · · − anz−n
e(t).

• Autoregressive/moving average models with exogenous input (AR-
MAX):

y(t)− a1y(t− 1)− · · · − any(t− n) = b1u(t− 1) + · · ·+ bmu(t−m)

+ e(t) + c1e(t− 1) + · · ·+ cke(t− k)

y(t) =
b1z
−1 + · · ·+ bmz

−m

1− a1z−1 − · · · − anz−n
u(t) +

1 + c1z
−1 + · · ·+ ckz

−k

1− a1z−1 − · · · − anz−n
e(t).

• Other more sophisticated linear models are in widespread use (e.g.
Box-Jenkins, state-space).

3.3 Prediction

3.3.1 Linear prediction of stationary processes

Suppose that {y(t)}+∞−∞ is a stationary, nondeterministic process modelled
as the output of a causal LTI system:

y(t) =
t∑

τ=−∞
w(t− τ)e(τ),

where w(t), t = 0, 1, 2, · · · is the impulse response of the system, and {e(t)}
is a white noise with variance σ2

e . The impulse response of the system is
summable,

∞∑
t=0

|w(t)| <∞,

and its transfer function is the Z-transform of {w(t)},

W (z) =
+∞∑
t=0

w(t)z−t.

Then, in symbolic notation,

y(t) = W (z) e(t),

and the power spectrum of {y(t)} is

Sy(ω) = Se(ω)
∣∣W (

ejω
)∣∣2 = σ2

e

∣∣W (
ejω
)∣∣2 = σ2

e

[
W (z)W

(
z−1
)]
z=ejω

.
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Without loss of generality, we can assume w(0) = W (∞) = 1.

A linear predictor of y(t), given the “past” values e(t− 1), e(t− 2), · · · is a
linear function ŷ(e(t − 1), e(t − 2), · · · ) of “the past” used as an estimator
of the “present” value y(t). The meaning being clear given the context, we
will denote any such function ŷ(t|t− 1).
Since y(t) can be expressed as

y(t) = w(0)e(t) +
t−1∑

τ=−∞
w(t− τ)e(τ) = e(t) +

t−1∑
τ=−∞

w(t− τ)e(τ),

it turns out that the predictor

ŷ(t|t− 1) =

t−1∑
τ=−∞

w(t− τ)e(τ) = w(1)e(t− 1) + w(2)e(t− 2) + · · ·

is the “best” possible one, in the sense that it attains the least possible
variance (that of e(t), that is σ2

e) among all the possible linear functions of
e(t − 1), e(t − 2), · · · ; this is fairly intuitive. In can be written in symbolic
form:

ŷ(t|t− 1) =
t∑

τ=−∞
w(t− τ)e(τ)− e(t)

= (W (z)− 1) e(t).

Such expression could be computed, in principle, if one knew the variables
e(t−1), e(t−2), · · · ; but this is not the case, since the noise is not observable.
Thus, it would be far more useful to express ŷ(t|t − 1) as a function of the
past values of {y(t)}, that are indeed known.
Suppose that there exists a BIBO-stable causal inverse of the LTI system
generating {y(t)}, that is, there exists a sequence w̄(0), w̄(1), w̄(2), · · · such
that

∞∑
t=0

|w̄(t)| <∞

+∞∑
t=0

w̄(t)z−t = W̄ (z) =
1

W (z)
.

When W (z) is a rational transfer function, this happens precisely when all
its zeros belong to the interior of the unit disc; the zeros of W (z) are indeed
the poles of 1

W (z) .

If this is the case, {w̄(t)} is the impulse response of a causal LTI system
that takes {y(t)} as the input and yields {e(t)} as the output:

e(t) = W̄ (z) y(t) =
1

W (z)
y(t).
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But then,

ŷ(t|t− 1) = (W (z)− 1) e(t) = (W (z)− 1)
1

W (z)
y(t)

=

(
1− 1

W (z)

)
y(t).

(12)

This expression is computable, at least in principle, because the right-hand
member depends only on the past of {y(t)}.

Example. Let

y(t) =
1

2
y(t− 1) + e(t) +

1

3
e(t− 1)

y(t) = W (z) e(t) =
1 + 1

3z
−1

1− 1
2z
−1

e(t) =
z + 1

3

z − 1
2

e(t).

This is an ARMA model having a pole at 1
2 and a zero at −1

3 . Since the
pole is in the interior of the unit disc, the system represented by W (z) is
BIBO-stable. And since the zero is in the interior of the unit disc too, then

1

W (z)
= W̄ (z) =

z − 1
2

z + 1
3

=
1− 1

2z
−1

1 + 1
3z
−1

is also the representative of a causal BIBO-stable system; filtering {y(t)}
with such system we recover {e(t)}:

e(t) =
1− 1

2z
−1

1 + 1
3z
−1

y(t)

e(t) = −1

3
e(t− 1) + y(t)− 1

2
y(t− 1).

The best linear predictor ŷ(t|t− 1) is the following:

ŷ(t|t− 1) =

(
1− 1

W (z)

)
y(t) =

(
1−

z − 1
2

z + 1
3

)
y(t)

=
5
6

z + 1
3

y(t) =
5
6z
−1

1 + 1
3z
−1

y(t);

ŷ(t|t− 1) = −1

3
ŷ(t− 1|t− 2) +

5

6
y(t− 1).

This is a recursive algorithm that updates the current prediction ŷ(t|t− 1)
given the past prediction ŷ(t − 1|t − 2) and the past value y(t − 1) of the
process. �

Any BIBO-stable transfer function (W (z) with poles in the open unit disc)
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of a causal LTI system, that admits a causal BIBO-stable inverse (W (z)
with also zeros in the open unit disc), is called a minimum phase transfer
function; the LTI system is said to be causally invertible. This is the case of
the above example. The inverse W̄ (z) = 1

W (z) is called the whitening filter,

and the one-step predictor ŷ(t|t− 1) = (1− 1/W (z))y(t) is a particular case
of what in literature is known as the Wiener/Kolmogorov filter.

What is actually going on would be better understood in terms of Euclidean
geometry. We are working under the assumption that all the variables in-
volved, y(t), e(t), y(t − 1), e(t − 1), and so on, have zero mean and finite
variance. The vector space of all such variables can be endowed with a scalar
product:

〈y, e〉 := E [ye] = Cov [y, e]

(see Appendix D.3.3). Now

y(t) = w(0)e(t) + w(1)e(t− 1) + w(2)e(t− 2) + · · ·

is a “linear combination” of e(t), e(t− 1), e(t− 2), · · · , i.e. it belongs to the
space of the “past and present”, V = span {e(t), e(t−1), e(t−2), · · · }. Since
all the {e(t)} are uncorrelated, that is orthogonal in geometric language, the
set {e(t), e(t−1), e(t−2), · · · } forms an “orthogonal basis” for V . (We did not
provide a proper interpretation for either an infinite “linear combination”
nor for an infinite “basis”, hence our discussion remains at the intuitive
level.) But indeed, since such basis is orthogonal, the expression for the
predictor

ŷ(t|t− 1) = w(1)e(t− 1) + w(2)e(t− 2) + · · ·

is none other than the orthogonal projection of y(t) onto span {e(t−1), e(t−
2), · · · }, which is the “past” subspace of V . Finally, the whitening filter
operates, time after time, a “change of basis” between {e(t−1), e(t−2), · · · }
and {y(t − 1), y(t − 2), · · · }, allowing us to express ŷ(t|t − 1) as a linear
combination of the latter.

3.3.2 Non-minimum phase and spectral factorization

When a process is expressed in terms of a transfer function which is BIBO-
stable, but not minimum phase, one has to resort to the so-called problem of
spectral factorization. We will provide just a short example, because in the
rest of the chapter we will deal only with AR and ARX models, for which
this issue does not exist.

Example. Let

y(t) = W (z) e(t) =
1 + 3z−1

1− 1
2z
−1

e(t) =
z + 3

z − 1
2

e(t).
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This is again an ARMA model having a pole at 1
2 (BIBO-stable transfer

function) and a zero at −3, well outside the unit disc. The “näıve” inverse

1

W (z)
=
z − 1

2

z + 3

would not be BIBO-stable, hence it would be useless for prediction purposes.
In order to carry on with the prediction procedure, one starts not from W (z),
but from the spectrum of {y(t)}:

Sy(ω) = σ2
e

[
W (z)W

(
z−1
)]
z=ejω

= σ2
e

[
z + 3

z − 1
2

· z
−1 + 3

z−1 − 1
2

]
z=ejω

Then he or she builds a new equivalent representation of the process {y(t)},
in the sense that the same process is expressed in terms of a different transfer
function and of a different white noise. We want to get rid of the zero at
−3; here is the trick:

Sy(ω) = σ2
e

[
(z + 3)(z−1 + 3)

(z − 1
2)(z−1 − 1

2)

]
z=ejω

= σ2
e

[
(z + 3)z−1z(z−1 + 3)

(z − 1
2)(z−1 − 1

2)

]
z=ejω

= σ2
e

[
(1 + 3z−1)(1 + 3z)

(z − 1
2)(z−1 − 1

2)

]
z=ejω

= σ2
e

[
1 + 3z

z − 1
2

· 1 + 3z−1

z−1 − 1
2

]
z=ejω

= (3σe)
2

[
1

3

1 + 3z

z − 1
2

· 1

3

1 + 3z−1

z−1 − 1
2

]
z=ejω

= σ2
ē

[
Wmp (z)Wmp

(
z−1
)]
z=ejω

.

The process {y(t)} can now be expressed in terms of an equivalent filtering:

y(t) = Wmp(z) ē(t),

where

Wmp(z) =
1

3

1 + 3z

z − 1
2

=
z + 1

3

z − 1
2

is a minimum phase transfer function (the zero is now at −1
3), hence it can

be seen as the Z-transform of the impulse response {wmp(t)} of a causal
LTI system, in particular such that wmp(0) = Wmp(∞) = 1, and {ē(t)} is a
white noise different from {e(t)}.
Indeed, defining the function

H(z) =
1 + 3z

z + 3
,
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we find

y(t) = W (z) e(t) =
z + 3

z − 1
2

e(t) =
1

3

z + 3

z − 1
2

H(z)H−1(z) 3e(t)

=

(
1

3

z + 3

z − 1
2

1 + 3z

z + 3

)
·
(
z + 3

1 + 3z
3e(t)

)
= Wmp(z) ē(t)

that is, Wmp(z) = 1
3W (z)H(z) and ē(t) = H−1(z)3e(t). It is easy to check

that H(z) and its inverse H−1(z), and in general any function of the form

H̄(z) =
z + a

1 + āz
,

where a ∈ C, attain
∣∣H̄(z)

(
ejω
)∣∣ ≡ 1 on the unit circle16; they are called

all-pass filters17.
In particular, H−1(z) = z+3

1+3z is a BIBO-stable all-pass filter (its only pole is

at −1
3). Thus, {ē(t)} can be seen as the output of a causal, BIBO-stable all-

pass filter whose input is the white noise {3e(t)}; consequently the spectrum
of {ē(t)} is a constant (= 9σ2

e), and {ē(t)} is a white noise. Summing up,
y(t) = Wmp(z)ē(t) is another representation of the process {y(t)}, in terms
of a white noise filtered by a causal, minimum phase filter. One then carries
out analogous computations as those of the previous example obtaining, by
coincidence, the same minimum variance predictor:

ŷ(t|t− 1) =

(
1− 1

Wmp(z)

)
y(t);

ŷ(t|t− 1) = −1

3
ŷ(t− 1|t− 2) +

5

6
y(t− 1).

�

3.4 Linear predictors for AR and ARX models

A linear predictor for an AR process

y(t)− a1z
−1y(t)− · · · − anz−ny(t) = e(t);

(1− a1z
−1 − · · · − anz−n)y(t) = e(t);

is always computable as in Equation (12), because in symbolic notation

y(t) =
1

1− a1z−1 − · · · − anz−n
e(t) =

zn

zn − a1zn−1 − · · · − an
e(t),

16Indeed
∣∣H̄ (ejω)∣∣2 = H̄

(
ejω
)
H̄ (ejω) = ejω+a

1+āejω
e−jω+ā
1+ae−jω . Multiplying by ejω above

and below in the second fraction we find
∣∣H̄ (ejω)∣∣2 = 1.

17Any product of such functions is also an all-pass filter.
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and the transfer function

W (z) =
zn

zn − a1zn−1 − · · · − an
is always supposed to be BIBO-stable; since, moreover, all its zeros are at
the origin, it is also minimum phase. Then one has

ŷ(t|t− 1) =

(
1− 1

W (z)

)
y(t)

=
(
1− (1− a1z

−1 − · · · − anz−n)
)
y(t)

= a1y(t− 1) + · · ·+ any(t− n).

(13)

Consider now the ARX model:

y(t)− a1y(t− 1)− · · · − any(t− n) = b1u(t− 1) + · · ·+ bmu(t−m) + e(t);

in symbolic notation, the model reads

y(t) =
b1z
−1 + · · ·+ bmz

−m

1− a1z−1 − · · · − anz−n
u(t) +

1

1− a1z−1 − · · · − anz−n
e(t)

= G(z) u(t) +W (z) e(t).

We define

v(t) := y(t)−G(z) u(t)

and note that, since the variables {u(τ)} are known to the experimenter up
to time t − 1, and since G(z) has by definition at least one delay at the
numerator, it holds

v̂(t|t− 1) = ŷ(t|t− 1)−G(z) u(t).

With the above definition the model reads v(t) = W (z)e(t), so that {v(t)}
now has the form of an AR process, for which we know the best predictor:

v̂(t|t− 1) =

(
1− 1

W (z)

)
v(t) =

(
1− 1

W (z)

)
(y(t)−G(z) u(t))

=

(
1− 1

W (z)

)
y(t)−

(
1− 1

W (z)

)
G(z) u(t).

Substituting back v̂(t|t− 1) we obtain, finally,

ŷ(t|t− 1) = v̂(t|t− 1) +G(z) u(t)

=

(
1− 1

W (z)

)
y(t) +

1

W (z)
G(z) u(t)

= (a1z
−1 + · · ·+ anz

−n) y(t) + (b1z
−1 + · · ·+ bmz

−m) u(t)

= a1y(t− 1) + · · ·+ any(t− n) + b1u(t− 1) + · · ·+ bmu(t−m).
(14)
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3.5 Identification of AR and ARX models

3.5.1 The Prediction-Error-Minimization method

As we have seen, given a process conforming to an AR, ARX, ARMA or
other model, whose parameters a1, · · · , an, b1, · · · , bn, c1, · · · , ck are known,
a linear predictor ŷ(t|t− 1) yields a “best” linear estimate of y(t) given the
past values of {u(τ)} and {y(τ)} itself up to time t− 1. Any such estimate
is subject to a random error; for example, referring to (12), this error is e(t).
This is the picture, if the model is known. Vice versa, given a time series
(u(0), y(0)), (u(1), y(1)), · · · , (u(N − 1), y(N − 1)), y(N) of measures coming
from a system, one can exploit the empirical prediction errors yielded by an
arbitrary predictor (not necessarily the best one) running through the time
series, in order to test whether it is good, and if it happens to be, to estimate
the model. Finding the dynamical model, given the input/output measures,
is the goal of the branch of systems engineering called system identification.

We have seen some examples in which the predictor is just a recursive or
instantaneous function of the data, depending on the parameters a1, · · · , an,
b1, · · · , bn, c1, · · · , ck; the ideal goal of system identification would be to find
the “true” parameters. Suppose that (u(0), y(0)), (u(1), y(1)), · · · , (u(N −
1), y(N−1)), y(N) are known, and suppose that they come from a realization
of two stationary processes {u(t)} and {y(t)}.
The so-called prediction-error-minimization (PEM) method prescribes to es-
timate the parameters by finding finding those â1, · · · , ân, b̂1, · · · , b̂n, ĉ1, · · · , ĉk
that minimize the sum of the squares of the prediction errors (the residuals):

Q(â1, · · · , ân, b̂1, · · · , b̂n, ĉ1, · · · , ĉk) =
N∑
t=1

(y(t)− ŷ(t|t− 1))2 .

In general, this is a nonlinear problem. But in this respect, AR and ARX
model are exceptional. The predictors of AR and ARX models have partic-
ularly simple expressions: indeed the crucial facts about the predictors (13)
and (14) are that

• the predictor depends only on the measurements of y(t−1), · · · , y(t−n)
and possibly u(t − 1), · · · , u(t − m), but not on past values of the
predictor itself (this is not the case for ARMA predictors, see e.g. the
examples in Section 3.3);

• except for particular cases that we will consider later, the parameters
of the model are in one-to-one correspondence with the expression of
the predictor;

• the expressions of both the predictors are linear with respect to the
parameters of the model.
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Consider, for example, the simple ARX model

y(t) = aoy(t− 1) + bou(t− 1) + e(t). (15)

As we know, the best linear predictor of y(t) given the past has the form

ŷo(t|t− 1) = aoy(t− 1) + bou(t− 1).

The ideal goal of the PEM method is to compute ŷo, but we do not know
ao and bo, therefore the best that we can do is to go for an approximation
based on data. In order to find a suitable estimate of the parameters, we
build a predictor with the same structure:

ŷ(t|t− 1) = ay(t− 1) + bu(t− 1);

running ŷ(t|t − 1) through the data, we collect the empirical errors (i.e.
residuals) ε(t) := y(t)− ŷ(t|t− 1), and PEM prescribes to find the predictor
that minimizes Q(a, b) :=

∑N
t=1 ε(t)

2, that is to find

(â, b̂) = arg min
a,b

N∑
t=1

(y(t)− ŷ(t|t− 1))2

= arg min
a,b

N∑
t=1

(y(t)− ay(t− 1)− bu(t− 1))2 .

Needless to say, this is a job for the method of least squares. Indeed, let

yt := y(t)

ϕt :=

[
y(t− 1)
u(t− 1)

]
θo :=

[
ao

bo

]
εt := e(t)

Then (15) can be rewritten

yt = ϕ>t θ
o + εt, t = 1, · · · , N

which is the typical model of the least squares theory. Now, the method of
least squares finds

θ̂LS = arg min
θ∈R2

N∑
t=1

(
yt − ϕ>t θ

)2

and θ̂LS = (â, b̂) is the PEM estimate of the model parameters. Note that
there is nothing strange in having, among the regressors that explain the
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sample y(t), a sample of the same process, namely y(t − 1). Indeed this is
precisely the reason for the name autoregressive: the process regresses on
itself.

With respect to the general AR model

y(t)−
n∑
i=1

aoi y(t− i) = e(t) (16)

a linear predictor has the form

ŷ(t|t− 1) =
n∑
i=1

aiy(t− i) =
[
y(t− 1) · · · y(t− n)

]  a1
...
an


= ϕ>t θ;

and with respect to the ARX model

y(t)−
n∑
i=1

aoi y(t− i) =

m∑
i=1

boiu(t− i) + e(t) (17)

a linear predictor has the form

ŷ(t|t− 1) =
n∑
i=1

aiy(t− i) +
m∑
i=1

biu(t− i)

=
[
y(t− 1) · · · y(t− n) u(t− 1) · · · u(t−m)

]


a1
...
an
b1
...
bm


= ϕ>t θ.

The method of least squares applies without relevant changes. The only
difference with the example shown above is that, since now we have

ϕt =
[
y(t− 1) · · · y(t− n)

]>
or

ϕt =
[
y(t− 1) · · · y(t− n) u(t− 1) · · · u(t−m)

]>
(recall that m ≤ n by assumption), and since the first measures are y(0) and
possibly u(0), the regressor makes sense only for t ≥ n. Hence, the normal
equations become (

N∑
t=n

ϕtϕ
>
t

)
θ =

N∑
t=n

ϕtyt.
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3.5.2 Convergence

We pose now the question as whether or not, if (16) or (17) is the true model

that generates {y(t)}, θ̂LS converges to θo :=
[
ao1 · · · aon bo1 · · · bom

]>
.

Since e(t) is independent of {u(t)} and from the past of {y(t)}, εt is inde-
pendent from ϕt, and you could be tempted to apply Theorem 1.7.1. This
cannot be done directly, because here the regressors {ϕt} are not indepen-
dent. However, this is not really an issue; the crucial fact, here, is indeed
that they are independent of εt. We state the following results without
proof; the interested reader can refer to [17, chapter 8], which treats the
subject in much greater detail and in a far more general setting.

Theorem 3.5.1 Suppose that the AR process {y(t)}+∞−∞ is generated by

y(t)−
n∑
i=1

aoi y(t− i) = e(t),

and let θo =
[
ao1 · · · aon

]>
. Suppose, moreover, that

1. e(t) is independent of y(t− 1), y(t− 2), · · · ;

2. the roots of the polynomial zn − ao1zn−1 − · · · − aon lie in the open unit
disc ({z ∈ C | |z| < 1});

then the least squares-estimate

θ̂LS = arg min
θ∈Rn

N∑
t=n

(yt − ϕ>t θ)2

= solution of the normal equations

converges almost surely to θo as N →∞.

Theorem 3.5.2 Suppose that the ARX process {y(t)}+∞−∞ is generated by

y(t)−
n∑
i=1

aoi y(t− i) =
m∑
i=1

boiu(t− i) + e(t),

and let θo =
[
ao1 · · · aon bo1 · · · bom

]>
. Suppose, moreover, that

1. the process {u(t)}+∞−∞ is wide sense stationary, with correlation se-
quence Ru(τ) = E[u(t)u(t+ τ)];

2. the Toeplitz matrix

M =


Ru(0) Ru(1) Ru(2) · · · Ru(m− 1)
Ru(1) Ru(0) Ru(1) · · · Ru(m− 2)
Ru(2) Ru(1) Ru(0) · · · Ru(m− 3)

...
...

...
. . .

...
Ru(m− 1) Ru(m− 2) Ru(m− 3) · · · Ru(0)
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is positive definite;

3. e(t) is independent of y(t− 1), y(t− 2), · · · , and of u(s) for all s;

4. the roots of the polynomial zn − ao1zn−1 − · · · − aon lie in the open unit
disc;

then the least squares estimate

θ̂LS = arg min
θ∈Rn+m

N∑
t=n

(yt − ϕ>t θ)2

converges almost surely to θo as N →∞.

Some remarks about Theorem 3.5.2 are in order.

The second assumption of Theorem 3.5.2 is called persistent excitation of
the input signal, and ensures that the latter carries enough information to
make the identifiability possible. From the point of view of least squares,
persistent excitation ensures that the estimate θ̂LS, that is the solution to
the normal equations, is unique, at least for big N ; recall, indeed, that the
only real-world issue that could prevent uniqueness was “the regressors ϕt
do not carry enough information”.

Example. To see what happens when this does not hold, consider the ex-
treme case u(t) ≡ 0 (this is a perfectly legitimate stationary process having
correlation signal Ru(τ) ≡ 0 and M = 0): it should be obvious that the
values, or even the presence, of b1, · · · , bm cannot be seen from either {y(t)}
or {u(t)}. Indeed, what happens to the normal equations if u(t) ≡ 0? It
holds

ϕt =

[
y(t− 1)
u(t− 1)

]
=

[
y(t− 1)

0

]
,

hence the matrix R at the left-hand side of the normal equations reads

R =
N∑
t=1

ϕtϕ
>
t =

N∑
t=1

[
y(t− 1)

0

] [
y(t− 1) 0

]
=

N∑
t=1

[
y(t− 1)2 0

0 0

]
=

[ ∑N
t=1 y(t− 1)2 0

0 0

]
.

Since R is singular, the solution
[
â b̂

]>
to the normal equations cannot

be unique, and there is no hope for identifiability. �

The hypothesis that e(t) is independent of y(t − 1), y(t − 2), · · · is quite
natural, and tells us that the relation between {e(t)} and {y(t)} is causal.
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However, the hypothesis that e(t) is independent of u(s) for all s “hides” an
implicit assumption, which may or may not happen in reality, but should
anyway be taken seriously: namely that there is no feedback between y(t)
and u(t). Identification in closed loop is indeed a delicate subject.

Example. To see why feedback could lead to trouble, consider for example
the simple ARX model

y(t) = aoy(t− 1) + bou(t− 1) + e(t),

and assume that u(t) = ky(t) for all t (closed loop). Then

y(t) = (ao + bok)y(t− 1) + e(t) = αy(t− 1) + e(t),

and you can already see that there is no way to decouple ao from bo, not
even if k is known. But what happens to the normal equations? We have

ϕt =

[
y(t− 1)
u(t− 1)

]
=

[
y(t− 1)
ky(t− 1)

]
,

hence the matrix R at the left-hand side of the normal equations reads

R =
N∑
t=1

ϕtϕ
>
t =

N∑
t=1

[
y(t− 1)
ky(t− 1)

] [
y(t− 1) ky(t− 1)

]
=

N∑
t=1

[
y(t− 1)2 ky(t− 1)2

ky(t− 1)2 k2y(t− 1)2

]
=

(
N∑
t=1

y(t− 1)2

)[
1 k
k k2

]
.

Again, R is singular, hence the solution to the normal equations cannot be
unique, and identifiability is lost. �

We insist on the fact that Theorems 3.5.1 and 3.5.2 are rather particular
cases in a specific setting, reported here for the sole purpose of illustrating
how the least squares method applies to dynamical systems. But system
identification is a branch of information engineering in its own right, cop-
ing with much broader issues: identification of ARMAX models, choice of
a suitable class of models (ARX? ARMAX?), choice of the order of the
model (what are some suitable m and n?), deterministic or non-stationary
inputs, identification in closed loop, identification of state-space models,
multi-variable models, time-varying models, nonlinear models... and so on.

A simulation of 100 least-squares estimations, each based on N = 1000
samples of the process (15) with a = 0.8, b = 0.2, u(t) ∼ N (0, 1) and
e(t) ∼ N (0, 0.09), yielded on average âLS = 0.79872 (with variance 0.00020
over the 100 runs) and b̂LS = 0.19991 (with variance 0.00008 over the 100
runs), which is rather good. The code is available in Appendix E.1.
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3.6 A model with noise in the measures

Consider now a slightly different situation, in which the process {y(t)}+∞−∞
is generated by the linear system

y(t) = aoy(t− 1) + bou(t− 1) (18)

without process noise. Now the output {y(t)} is not accessible anymore;
instead, the experimenter has access to measures of the output corrupted
by noise:

ym(t) = y(t) + e(t) (19)

where {e(t)} are independent and identically distributed random variables
with mean zero and a certain variance σ2. We assume that each e(t) is
independent of u(τ) and y(τ) for all τ ∈ Z. Is it still possible to apply the
method of least squares to estimate ao and bo? It would seem so, because
substituting (19) into (18) we obtain

ym(t)− e(t) = ao(ym(t− 1)− e(t− 1)) + bou(t− 1)

ym(t) = aoym(t− 1) + bou(t− 1) + (e(t)− aoe(t− 1))

and letting

yt := ym(t)

ϕt :=

[
ym(t− 1)
u(t− 1)

]
θo :=

[
ao

bo

]
εt := e(t)− aoe(t− 1)

(note that both yt and ϕt are available to the experimenter), the model
becomes, as before,

yt = ϕ>t θ
o + εt. (20)

Nevertheless, a simulation of 100 least-squares estimations, each based on
N = 1000 samples of the process (18) with ao = 0.8, bo = 0.2, u(t) ∼ N (0, 1),
and e(t) ∼ N (0, 0.09), yielded on average âLS = 0.50657 (with variance
0.00051 over the 100 runs) and b̂LS = 0.20026 (with variance 0.00010 over
the 100 runs; the code is available in Appendix E.2).

Bad.

The estimate of âLS is completely wrong. And the fact is, if you try to
simulate with more and more data, the situation will not improve at all.
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Why so? The reason is that

E [ϕtεt] =

[
E [ym(t− 1)(e(t)− aoe(t− 1))]
E [u(t− 1)(e(t)− aoe(t− 1))]

]
=

[
E [(y(t− 1) + e(t− 1))(e(t)− aoe(t− 1))]

E [u(t− 1)(e(t)− aoe(t− 1))]

]
=

[
−aoσ2

0

]
.

The regressor and the disturbance are correlated (in the first component, and
indeed it is the first component of θ̂LS that yields a bad estimate). There-
fore, none of the theorems about almost sure convergence of θ̂LS apply.

However, for a broad class of input signals {u(t)} here we can apply the
method of instrumental variables (see Section 1.7.4), and it so happens that

the vector ψt :=

[
u(t− 2)
u(t− 1)

]
is often a good instrumental variable.

To keep the example simple enough, suppose that {u(t)} is a white noise
with variance σ2

u. Note that, if this is the case, then u(t) is independent
(hence uncorrelated) from y(τ) for all τ ≤ t, because the model is always
supposed to be causal. Suppose, moreover, that bo 6= 0.
Then we have

E
[
ψtϕ

>
t

]
= E

[[
u(t− 2)
u(t− 1)

] [
ym(t− 1) u(t− 1)

]]
=

[
E [u(t− 2)(aoy(t− 2) + bou(t− 2) + e(t− 1))] E [u(t− 2)u(t− 1)]
E [u(t− 1)(aoy(t− 2) + bou(t− 2) + e(t− 1))] E [u(t− 1)u(t− 1)]

]
=

[
E
[
bou(t− 2)2

]
0

0 E
[
u(t− 1)2

] ] = σ2
u

[
bo 0
0 1

]
,

which is invertible since bo 6= 0; moreover,

E [ψtεt] = E

[[
u(t− 2)(e(t)− aoe(t− 1))
u(t− 1)(e(t)− aoe(t− 1))

]]
= 0.

Solving (
N∑
t=2

ψtϕ
>
t

)
θ̂ =

N∑
t=2

ψtyt

we find a good estimate of ao and bo (the sums start from t = 2 because
the instrumental variable contains u(t− 2), and the first available measure
is u(0)).

A simulation of 100 instrumental-variable estimations, each based on N =
1000 samples of the process (18) with ao = 0.8, bo = 0.2, u(t) ∼ N (0, 1), and
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e(t) ∼ N (0, 0.09), yielded on average âLS = 0.80565 (with variance 0.00364
over the 100 runs) and b̂LS = 0.19820 (with variance 0.00013 over the 100
runs), which is now fairly good (the code is available in Appendix E.3).

Finding good instrumental variables is a delicate problem (in multivariate
statistics, not just in system identification). For the dynamical case at hand,
you may refer to [30, Chapter 8], which is dedicated to the subject.

3.7 Example: the periodicity of solar activity

Sunspots are small regions that appear periodically on the surface of the
Sun, due to the magnetic activity of its photosphere, that are visible as
‘dark spots’ since they emit less radiation than the surrounding environment
(although they do emit a lot of radiation). The number of sunspots present
in each year has been collected for about three centuries, and aggregated in
an index, called Wolf’s (or Wolfer’s) number, which takes into account the
fact that they usually come in pairs and other details. Here is a table of
Wolf’s numbers from 1749 to 1924:

year num. year num. year num. year num. year num. year num.
1749 80.9 1779 125.9 1809 2.5 1839 85.7 1869 74.0 1899 12.1
1750 83.4 1780 84.8 1810 0.0 1840 64.6 1870 139.0 1900 9.5
1751 47.7 1781 68.1 1811 1.4 1841 36.7 1871 111.2 1901 2.7
1752 47.8 1782 38.5 1812 5.0 1842 24.2 1872 101.6 1902 5.0
1753 30.7 1783 22.8 1813 12.2 1843 10.7 1873 66.2 1903 24.4
1754 12.2 1784 10.2 1814 13.9 1844 15.0 1874 44.7 1904 42.0
1755 9.6 1785 24.1 1815 35.4 1845 40.1 1875 17.0 1905 63.5
1756 10.2 1786 82.9 1816 45.8 1846 61.5 1876 11.3 1906 53.8
1757 32.4 1787 132.0 1817 41.1 1847 98.5 1877 12.4 1907 62.0
1758 47.6 1788 130.9 1818 30.1 1848 124.7 1878 3.4 1908 48.5
1759 54.0 1789 118.1 1819 23.9 1849 96.3 1879 6.0 1909 43.9
1760 62.9 1790 89.9 1820 15.6 1850 66.6 1880 32.3 1910 18.6
1761 85.9 1791 66.6 1821 6.6 1851 64.5 1881 54.3 1911 5.7
1762 61.2 1792 60.0 1822 4.0 1852 54.1 1882 59.7 1912 3.6
1763 45.1 1793 46.9 1823 1.8 1853 39.0 1883 63.7 1913 1.4
1764 36.4 1794 41.0 1824 8.5 1854 20.6 1884 63.5 1914 9.6
1765 20.9 1795 21.3 1825 16.6 1855 6.7 1885 52.2 1915 47.4
1766 11.4 1796 16.0 1826 36.3 1856 4.3 1886 25.4 1916 57.1
1767 37.8 1797 6.4 1827 49.6 1857 22.7 1887 13.1 1917 103.9
1768 69.8 1798 4.1 1828 64.2 1858 54.8 1888 6.8 1918 80.6
1769 106.1 1799 6.8 1829 67.0 1859 93.8 1889 6.3 1919 63.6
1770 100.8 1800 14.5 1830 70.9 1860 95.8 1890 7.1 1920 37.6
1771 81.6 1801 34.0 1831 47.8 1861 77.2 1891 35.6 1921 26.1
1772 66.5 1802 45.0 1832 27.5 1862 59.1 1892 73.0 1922 14.2
1773 34.8 1803 43.1 1833 8.5 1863 44.0 1893 85.1 1923 5.8
1774 30.6 1804 47.5 1834 13.2 1864 47.0 1894 78.0 1924 16.7
1775 7.0 1805 42.2 1835 56.9 1865 30.5 1895 64.0
1776 19.8 1806 28.1 1836 121.5 1866 16.3 1896 41.8
1777 92.5 1807 10.1 1837 138.3 1867 7.3 1897 26.2
1778 154.4 1808 8.1 1838 103.2 1868 37.6 1898 26.7

Figure 1 shows a plot of the numbers tabulated above. You will of course
notice that the numbers exhibit some kind of periodicity; for a lot of time this
somewhat unexpected regularity has been of great interest to astronomers.
Can we design a systematic procedure to infer something about it? The first
answer that comes to mind is: let’s model the phenomenon as a constant
plus a sinusoid plus some noise,

n(t) = K +A sin(ωt+ φ) + e(t),
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Figure 1: Wolf’s sunspot numbers from 1749 to 1924.

and extract the interesting parameters, above all ω, with some numerical
algorithm (for example nonlinear least squares, see Chapter 4). The philos-
ophy behind the this method is that the phenomenon under investigation is
perfectly deterministic and regular (a sinusoid!), and that the randomness
in the numbers is only due to errors in the measurements.
To the author’s knowledge, George Udny Yule, in his 1927 paper [31], was
the first statistician to model the numbers themselves as the realization of
a stationary stochastic process, and to use autoregressive models in time
series analysis for the first time. He subtracted from Wolf’s number their
mean (y(t) := n(t) − 1

176

∑1924
t=1749 n(t)) to ‘de-trend’ their time series, and

supposed that the result was a realization of an AR model of order 2,

y(t) = ay(t− 1) + by(t− 2) + e(t), (21)

where {e(t)} were independent and identically distributed random variables,
with mean zero and a certain variance σ2. The order 2 is indeed the min-
imum order such that the transfer function of the system can have a pair
of complex conjugate poles; this is a necessary condition for a resonance,
that is a a “peak” in the power spectrum, and a more or less pronounced
oscillatory behavior in realizations.
Yule found an estimate of a and b with the method of least squares, exactly
as we have done in Section 3.5. One could carry on with the computations in
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the usual way, by solving the normal equations (see e.g. the code in Appendix
E.4), but of course ad-hoc software is available and in widespread use. The
most common software package for system identification is Matlab’s System
Identification Toolbox, originally written by Lennart Ljung (see [20]). Here
follows, instead, a short script in the statistically-oriented programming lan-
guage R18, which has both the advantage of providing Wolf’s numbers as a
standard dataset, and that of being probably the most powerful free-software
alternative to Matlab for time series analysis:

require(datasets) # This package contains many standard datasets,

# among them Wolf’s numbers from the 18th to the 20th century

x <- sunspot.year[50:225] # Wolf’s numbers from 1749 to 1924, as in Yule’s paper

x <- x - mean(x) # "Detrend", that is center around 0

# Fit an AR(2) model. aic=FALSE and order.max=2 instruct the routine not to choose

# the model order automatically, but to let it be 2.

# method="ols" means "use ordinary least squares"

model <- ar(x, aic=FALSE, order.max=2, method="ols")

print( round(as.vector(model$ar), digits=2) ) # Print the coefficients

resid_var <- var(model$resid, na.rm=TRUE) # The first two residuals are not available;

# na.rm=TRUE tells var() to ignore them

print( round(resid_var, digits=2) ) # Print the variance of residuals

We find â = 1.34 and b̂ = −0.65, exactly as in Yule’s paper, and we re-
cover an estimate of the variance σ2 as the sample variance of the residuals
{ε(t) = y(t)− ây(t− 1)− b̂y(t− 2)}, which turns out to be σ̂2 = 239.31.

Since the transfer function of (21) is W (z) = 1
1−az−1−bz−2 , in view of Theo-

rem 3.1.1, the spectrum of y is

Sy(ω) = W
(
ejω
)
W
(
e−jω

)
σ2

=
1

1− ae−jω − be−2jω
· 1

1− aejω − be2jω
σ2

=
σ2

1 + a2 + b2 − a(e−jω + e−jω)− b(e2jω + e−2jω) + ab(ejω + e−jω)

=
σ2

1 + a2 + b2 − 2a cosω − 2b cos 2ω + 2ab cosω

=
σ2

1 + a2 + b2 + 2a(b− 1) cosω − 2b cos 2ω
.

Hence, our estimate of the spectrum, based on the assumption that Wolf’s
numbers conform to an AR model of order 2, is

Ŝy(ω) =
σ̂2

1 + â2 + b̂2 + 2â(b̂− 1) cosω − 2b̂ cos 2ω
. (22)

18See e.g. http://www.r-project.org/ .
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Figure 2: Spectrum of the de-trended Wolf’s numbers: estimate with AR(2)
fitting and with periodogram.

Another popular estimate of the spectrum of a sequence {y(t)}, given N of
its samples, is the so-called periodogram, that is a rescaled version of the
square modulus of its discrete Fourier transform (DFT, colloquially called
also “FFT” due to the extreme convenience of the mainstream algorithm
used to compute it):

S̃y(ω) =
1

N
| DFT[y](ω) |2 =

1

N

∣∣∣∣∣
N−1∑
t=0

y(t)ejωt

∣∣∣∣∣
2

.

There are techniques to smoothen the periodogram and extract salient in-
formation from it, but despite these, the periodogram is widely regarded as
a bad estimator of the true spectrum (in particular, it is biased and not at
all consistent). It is, nevertheless, a frequently used estimator. In Figure 2
you can find a comparison of the estimates of the spectrum obtained by the
above two methods.

You can see that a pair of pronounced peaks, symmetric around 0, is present
in both estimates, the positive one being at some frequency between 0 and 1
rad; it is precisely those peaks, in the frequency domain, that represent the
oscillatory behavior so evident in the time domain. We are now interested in
their position: from the periodogram, it can only be guessed by inspection,
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but from the expression of Yule’s estimate it can be computed analytically,
being nothing else than the arg max of Ŝy(ω).
So, what is the frequency ω̄ that maximizes (22)? It has to be the same ω̄
that minimizes the denominator, since the numerator is a constant. We let

0 =
∂

∂ω

[
1 + â2 + b̂2 + 2â(b̂− 1) cosω − 2b̂ cos 2ω

]
= 2â(1− b̂) sinω + 4b̂ sin 2ω

= 2â(1− b̂) sinω + 8b̂ sinω cosω;

we see by inspection that the interesting frequency is neither 0 nor ±π;
hence we can divide on both sides by 2 sinω 6= 0 and obtain19

0 = â(1− b̂) + 4b̂ cosω;

ω̄ = arccos
â(b̂− 1)

4b̂
= arccos

1.34 · (0.65 + 1)

4 · 0.65
' 0.554.

A simpler method to estimate the position of the peaks, which gives a similar
(but not the same) result if the peaks are “high”, is simply to compute the
phase of the corresponding poles of W (z). We have

Ŵ (z) =
z2

z2 − âz − b̂
=

z2

z2 − 1.34z + 0.65
,

the roots of z2 − 1.34z + 0.65 are 0.67± 0.45j ' 0.8e±j0.59, and we recover
the second estimate ω̂ ' 0.590.

Finally, the periods corresponding to ω̄ = 0.554 and ω̂ ' 0.590 are

T̄ =
2π

ω̄
' 11.3, T̂ =

2π

ω̂
' 10.6.

Indeed, it is now a well-known fact that solar activity has a periodicity of
about 11 years. The periodicity of Wolf’s sunspot numbers is but one of many
experimental evidences of this fact. Yule’s method has allowed us to recover
a sufficiently accurate estimate of a physical quantity from the estimate of a
model: this is a typical example in which system identification is employed
to investigate a “hidden” property of a complex system, as opposed to its
other main objective, which is the prediction of future samples.

19We recover ω̄ = 0.554 by the standard definition of the arc cosine, and 0.554 is the
position of the right peak in the spectrum; of course −0.554, the position of the left peak,
is also a solution.
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3.8 Recursive least squares

Suppose that we are given input and output measures from the ARX system
of order p,m:

y(t) =

p∑
t=1

aoi y(t− i) +

m∑
i=1

boiu(t− i) + e(t) (23)

where m ≤ p, and let

yt := y(t) ϕt :=



y(t− 1)
...

y(t− p)
u(t− 1)

...
u(t−m)


θo :=



ao1
...
aop
bo1
...
bom


εi := e(i)

Then (23) reads
yt = ϕ>t θ

o + εt for all t ≥ 1.

But suppose, now, that the measures form a potentially infinite sequence:

t = 1, · · · , n0, · · · , n, · · ·

that is, the system is “running” and it will continue to do so potentially for-
ever. We pose the problem of identifying θo; since in this case the method of
least squares is consistent, the least squares estimate will improve as more
and more measures (ϕt, yt) come, and it will (almost surely) converge to θo.
Of course, the same method of section 3.5 can be applied without changes
(compute θ̂LS at each time), but you can easily guess that in this way com-
putations become more and more expensive as time passes and measures
become available, because sums and inverses have to be computed each
time, and at each time the old solution is discarded. This seems, and is
indeed, a waste of resources.

There is a smarter way to proceed. Suppose that at a certain time n0 the
least squares solution is available and unique, in other words that the matrix

R(n0) :=

n0∑
t=1

ϕtϕ
>
t

has full rank. This implies, of course, that all the sums that will follow

R(n) :=

n∑
t=1

ϕtϕ
>
t = R(n0) +

n∑
t=n0+1

ϕtϕ
>
t
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will also have full rank for all n ≥ n0. For n ≥ n0, denote the least squares
solution at time n

θ̂LS(n) :=

(
n∑
t=1

ϕtϕ
>
t

)−1( n∑
t=1

ϕtyt

)
.

The fact is that, if at time n we store the two sums

R(n) =
n∑
t=1

ϕtϕ
>
t , S(n) =

n∑
t=1

ϕtyt,

(hence θ̂LS(n) = R(n)−1S(n)), then they can be updated to yield the corre-
sponding sums at time n+ 1 quite trivially:

R(n+ 1) =

n+1∑
t=1

ϕtϕ
>
t = R(n) + ϕn+1ϕ

>
n+1,

S(n+ 1) =

n+1∑
t=1

ϕtyt = S(n) + ϕn+1yn+1,

and of course θ̂LS(n+1) = R(n+1)−1S(n+1). If now we store R(n+1), S(n+
1) in place of R(n), S(n), then we can use them to compute R(n+2), S(n+2),
obtain θ̂LS(n + 2)... and so on. The solution will require, at each time, a
matrix inversion and some additions to compute the new solution. And this
is already something noteworthy: storing a finite amount of information,
namely the two matrices, we can update the least square estimate without
recomputing the same sums over and over again20.

But there is more. Since θ̂LS(n) = R(n)−1S(n), of course S(n) = R(n)θ̂LS(n),
and

θ̂LS(n+ 1) = R(n+ 1)−1S(n+ 1)

= R(n+ 1)−1 (S(n) + ϕn+1yn+1)

= R(n+ 1)−1
(
R(n)θ̂LS(n) + ϕn+1yn+1

)
= R(n+ 1)−1

(
R(n+ 1)θ̂LS(n)− ϕn+1ϕ

>
n+1θ̂LS(n) + ϕn+1yn+1

)
= θ̂LS(n) +R(n+ 1)−1ϕn+1

(
yn+1 − ϕ>n+1θ̂LS(n)

)
.

20As an one-shot exercise, you should now write down a recursive algorithm to update an
average: given the average M(n) of the numbers x1, · · · , xn, and a new incoming number
xn+1, find the average M(n + 1) of all the numbers. Note that the algorithm storing
R(n) and S(n) is fragile, because both the sum tend to “explode” as more and more
terms are added. The issue is solved storing the averages instead: R̄(n) = 1

n

∑n
i=1 ϕiϕ

>
i ,

S̄(n) = 1
n

∑n
i=1 ϕiyi.
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On the other hand,

R(n+ 1)−1 =
(
R(n) + ϕn+1ϕ

>
n+1

)−1
.

Apply the matrix inversion lemma (Lemma A.6.1 in the Appendix) with
A = R(n), B = ϕn+1, C = 1, and D = ϕ>n+1. Then

R(n+ 1)−1 =
(
R(n) + ϕn+11ϕ>n+1

)−1

= R(n)−1 −R(n)−1ϕn+1

(
1 + ϕ>n+1R(n)−1ϕn+1

)−1
ϕ>n+1R(n)−1

= R(n)−1 −
R(n)−1ϕn+1ϕ

>
n+1R(n)−1

1 + ϕ>n+1R(n)−1ϕn+1
;

R(n+ 1)−1ϕn+1 = R(n)−1ϕn+1

(
1−

ϕ>n+1R(n)−1ϕn+1

1 + ϕ>n+1R(n)−1ϕn+1

)

=
R(n)−1ϕn+1

1 + ϕ>n+1R(n)−1ϕn+1
;

θ̂LS(n+ 1) = θ̂LS(n) +R(n+ 1)−1ϕn+1

(
yn+1 − ϕ>n+1θ̂LS(n)

)
= θ̂LS(n) +

R(n)−1ϕn+1

1 + ϕ>n+1R(n)−1ϕn+1

(
yn+1 − ϕ>n+1θ̂LS(n)

)
.

Finally, let P (n) := R(n)−1 and

L(n+ 1) :=
P (n)ϕn+1

1 + ϕ>n+1P (n)ϕn+1
,

so that, recursively,

θ̂LS(n+ 1) = θ̂LS(n) + L(n+ 1)
(
yn+1 − ϕ>n+1θ̂LS(n)

)
;

P (n+ 1) =
(
I − L(n+ 1)ϕ>n+1

)
P (n).

This is a new recursive algorithm; to implement it, we must store θ̂LS(n) and
P (n) instead of R(n) and S(n), and to compute L(n+ 1) on-the-fly before
updating. Its job is the same as before: given an old estimate θ̂LS(n) and
a new measure (ϕn+1, yn+1), it provides the new estimate θ̂LS(n+ 1). Why
all these nasty computations, then, if it is just another recursive algorithm
that does the same thing?

Because matrix inversions at each step are not there anymore.

The tricky application of the matrix inversion lemma has indeed turned
a matrix inversion into a division by a scalar (1 + ϕ>n+1P (n)ϕn+1). This
algorithm is faster, and it is your algorithm of choice for on-line least squares
estimation. In the literature, it is known as Recursive Least Squares (RLS).
Some remarks are in order:
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1. In the present form, the algorithm cannot be started at time n = 1
(that is, at the first sample); it must be started at the first n such
that R(n) is invertible, so that P (n) exists. In the above derivation,
we have denoted such time n0. There are workarounds to this (minor)
issue that allow to start at n = 1, if one accepts a sub-optimal estimate
until the algorithm approaches steady state (see [17]).

2. In the above formulas, both R(n) and P (n) are supposed to be sym-
metric and positive definite. This is vital for RLS to work properly.
However, although the update equation

P (n+ 1) =
(
I − L(n+ 1)ϕ>n+1

)
P (n)

guarantees such assumption mathematically by construction, it does
not do so numerically; indeed numerical errors due to computations
may lead this assumption to fail rather quickly. Thus, in order to im-
plement the algorithm correctly, one should adopt a different, “sym-
metrized” version of the same equation in order to guarantee symmetry
by construction (again, refer to [17] for details).

3. Note the similarity between the update equation

θ̂LS(n+ 1) = θ̂LS(n) + L(n+ 1)
(
yn+1 − ϕ>n+1θ̂LS(n)

)
and the (Luenberger) asymptotic observer of linear system theory. The
structure is the same, because ŷn+1 := ϕ>n+1θ̂LS(n) is the best predic-
tion, in the sense of least squares, of the incoming observation yn+1,
given the “old” estimate θ̂LS(n) and the “new” explanatory data ϕn+1;
hence yn+1−ϕ>n+1θ̂LS(n) is a prediction error, and the update equation
reads

new estimate = old estimate + gain× prediction error.

The main differences with the Luenberger observer are that θ̂LS(n) is
the estimate of a fixed quantity θo, not of a time-varying state (but
this is not really a difference, just a particular case), and that the
gain L(n + 1) is time-varying, whereas in the Luenberger observer it
is a constant. The second difference is due to the fact that L(n + 1)
comes from a precise optimization criterion (minimize the overall sum
of squares) instead of a choice of eigenvalues that drive the estimation
error to zero with a prescribed rate.
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3.9 Tracking time-varying models

The RLS can be adapted to estimate the parameters of a time-varying model.
For simplicity, consider an AR model of order p:

y(t) =

p∑
i=1

aiy(t− i) + e(t) (24)

This model describes a stochastic process “generated” by the noise {e(t)}.
As we know, if the model is BIBO-stable, then it describes a wide-sense
stationary process. Think at the sampled version of a sustained note played
by a flute. We can estimate its parameters, as usual, letting

yt := y(t) ϕt :=

 y(t− 1)
...

y(t− p)

 θo :=

 a1
...
ap

 εt := e(t)

and applying the RLS algorithm.
In many applications, though, the process at hand is inherently non-stationary.
Think now at a flute playing a melody. We can try to describe the situa-
tion by means of a slowly time-varying model, that is, an auto-regressive
model whose parameters are not anymore constant with respect to time,
but change slowly in comparison with the dynamics of the model that they
represent:

y(t) =

p∑
i=1

ai(t)y(t− i) + e(t) (25)

We pose the problem of estimating the parameters a1(t), · · · , ap(t) of the
process, which we collect in the vector

θt :=

 a1(t)
...

ap(t)


(the other quantities being defined as before, the model then reads yt =
ϕ>t θ

t + εt). The objective that we have had until now, that of converging to
the one and only, “true” parameter θo, is gone. Still, we may try to track
θt, time after time.
In this case, the least squares solution computed over all the data {(ϕt, yt)}nt=1

is meaningless and useless (whether or not it is computed recursively with
RLS, it does not matter), because it gives equal importance to regressors
and measures belonging to the past (hence following a “past” model, which
should be “forgotten” instead) and more recent regressors and measures.
Instead, in estimating the “recent” model we should care only about “re-
cent” information. An obvious way to pursue this goal is to compute a least
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squares estimate on the lastN samples {(ϕn−N , yn−N ), · · · , (ϕn−1, yn−1), yn},
where N < n is a fixed time lag small enough to ensure that not too many
measurements are “remembered”, but big enough so that the solution exists
and is unique. This is a feasible way, because the amount of information to
store is always the same (the last N samples, in a buffer), and it involves a
matrix inversion at each time.

However, there is a nicer algorithm that does a similar job, and resembles
RLS strongly. Let us start, indeed, from the same objective of ordinary least
squares:

θ̂LS := arg min
θ∈Rp

n∑
t=1

(yt − ϕ>t θ)2,

We modify the least squares criterion weighting the sum (compare with
exercise 3 in Section 1.8), in such a way that the past errors matter less
than recent ones:

θ̂WLS(n) := arg min
θ∈Rp

n∑
t=1

λn−t(yt − ϕ>t θ)2,

where λ is a constant, 0 < λ < 1. We call θ̂WLS(n) the “exponentially
weighted” least squares estimate of θt at time t = n. The fact that remote
errors matter less and less, with exponential rate of decay, means in other
terms that past information gets “forgotten” with exponential rate of decay.
The constant λ is indeed called forgetting factor; the higher is λ, the more
θ̂WLS(n) will “remember” past information. The sum

M =

n∑
t=−∞

λn−t =

+∞∑
t=0

λt =
1

1− λ

is called the asymptotic memory of the estimator, that is the “effective” num-
ber of measurements that will be taken into consideration, in the limit. The
higher the forgetting factor, the higher the asymptotic memory. The solution
to the weighted least squares problem is of course θ̂WLS(n) = R(n)−1S(n),
where

R(n) =
n∑
t=1

λn−tϕtϕ
>
t , S(n) =

n∑
t=1

λn−tϕtyt.
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The trick is now to recognize that

R(n+ 1) =

n+1∑
t=1

λn+1−tϕtϕ
>
t

=
n∑
t=1

λn+1−tϕtϕ
>
t + ϕn+1ϕ

>
n+1

= λ
n∑
t=1

λn−tϕtϕ
>
t + ϕn+1ϕ

>
n+1

= λR(n) + ϕn+1ϕ
>
n+1

and similarly

S(n+ 1) = λS(n) + ϕn+1yn+1,

and then proceed in the same way as in ordinary RLS:

θ̂WLS(n+ 1) = R(n+ 1)−1S(n+ 1)

= R(n+ 1)−1 (λS(n) + ϕn+1yn+1)

= R(n+ 1)−1
(
λR(n)θ̂WLS(n) + ϕn+1yn+1

)
= R(n+ 1)−1

(
R(n+ 1)θ̂WLS(n)− ϕn+1ϕ

>
n+1θ̂WLS(n) + ϕn+1yn+1

)
= θ̂WLS(n) +R(n+ 1)−1ϕn+1

(
yn+1 − ϕ>n+1θ̂WLS(n)

)
R(n+ 1)−1 =

(
λR(n) + ϕn+11ϕ>n+1

)−1

(apply again the matrix inversion lemma...)

=
1

λ

(
R(n)−1 −

R(n)−1ϕn+1ϕ
>
n+1R(n)−1

λ+ ϕ>n+1R(n)−1ϕn+1

)

R(n+ 1)−1ϕn+1 =
R(n)−1ϕn+1

λ+ ϕ>n+1R(n)−1ϕn+1

And letting again P (n) := R(n)−1, we obtain the recursive algorithm

L(n+ 1) =
P (n)ϕn+1

λ+ ϕ>n+1P (n)ϕn+1

θ̂WLS(n+ 1) = θ̂WLS(n) + L(n+ 1)
(
yn+1 − ϕ>n+1θ̂WLS(n)

)
P (n+ 1) =

1

λ

(
I − L(n+ 1)ϕ>n+1

)
P (n),

which is called Exponentially Weighted Least Squares (EWLS).
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4 Nonlinear least squares

4.1 Structure and issues of the problem

Let us return to the first measurement model of Chapter 1:

yi = f(xi, θ) + εi, i = 1, · · · , N.

where yi ∈ R are measures, xi ∈ Rm are explanatory data, θ ∈ Rp is a vector
parameterizing the function family “f”, and εi ∈ R are disturbance terms.
The general least squares problem is to minimize

Q(θ) =
N∑
i=1

(yi − f(xi, θ))
2 (26)

with respect to the parameter θ. Recall that a great advantage of the least
squares method is that if the function f is linear with respect to θ, i.e.
f(xi, θ) = ϕ(xi)

>θ = ϕ>i θ,

Q(θ) =

N∑
i=1

(
yi − ϕ>i θ

)2
, (27)

then Q(θ) is convex and differentiable, hence its minimum can be found by
equating to zero its derivative (i.e. gradient) with respect to θ; this leads to
the normal equations (

N∑
i=1

ϕiϕ
>
i

)
θ =

N∑
i=1

ϕiyi

or, with compact notation, (
Φ>Φ

)
θ = Φ>Y,

which can be solved by algebraic methods. To distinguish this solution from
the general case studied in this chapter, minimizing (27) is often called the
ordinary least squares problem (OLS).

We ask now the question: what if f is not linear with respect to θ? Can we
still devise a method to find

arg min
θ∈Rp

Q(θ) = arg min
θ∈Rp

N∑
i=1

(yi − f(xi, θ))
2 (28)

in order to fit the data {xi, yi} with a suitable f(·, θ)? This is called the
nonlinear least squares problem.
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If we do not require from f(x, θ) any regularity with respect to θ, Q(θ) can
be as nasty as a function can be; hence, the general answer being “no”,
we assume at least that, for all x ∈ Rm, f(x, θ) is sufficiently smooth, that
is, twice continuously differentiable with respect to θ, so that Q(θ) is also
smooth. Even with this assumption, we immediately stumble across two
issues.

For notational simplicity, let us denote fi(θ) := f(xi, θ). If we blindly set
∂Q(θ)
∂θ = 0 to try finding a minimum, we obtain

∂Q(θ)

∂θ
=

∂

∂θ

N∑
i=1

(yi − fi(θ))2 = 2
N∑
i=1

(yi − fi(θ))
(
−∂fi(θ)

∂θ

)
= 0;

V (θ) :=

N∑
i=1

∂fi(θ)

∂θ
fi(θ)−

N∑
i=1

∂fi(θ)

∂θ
yi = 0,

which in general is a highly nonlinear equation. Our first issue is that finding
an analytical solution with an explicit formula, like the one for θ̂LS that we
found in ordinary least squares, is in general impossible.
However, finding one solution to the above equation is not really trouble-
some, because the numerical solution of a nonlinear equation, in our case
the problem of finding a root of the function V (θ), is a well-known and
thoroughly studied problem of numerical analysis: namely, there are a lot of
general-purpose iterative algorithms around, designed to solve it. An iter-
ative “root-finding” algorithm works more or less like this: an initial guess
point θ(0) is provided by the user; the algorithm then uses the information on
the derivative of V at θ(0) to guess a direction that will lead to a point θ(1)

attaining a smaller value, i.e. such that |V (θ(1))| < |V (θ(0))|; then it uses the
information at θ(1) to move to a point θ(2) such that |V (θ(2))| < |V (θ(1))|
... and so on goes the algorithm, finding θ(3), θ(4) etc., until a certain
|V (θ(n))| is so small that it may be regarded as zero for all practical pur-
poses (say, 10−10). The corresponding θ(n) is the numerical solution to the
“root-finding” problem.
However, since we have to resort to numerical analysis and iterative algo-
rithms anyway, it turns out that aiming directly at the minimization of
Q(θ) is better, because this optimization problem has a richer structure21.
Numerical optimization, possibly subject to constraints, is a branch of math-
ematics standing by its own, and many algorithms to find minima, whether
constrained or not, exist and are in widespread use. In particular, if the goal

21For example, a zero of V (θ) could correspond to a maximum, to a saddle, or it could
be a point having no intrinsic extremality property (e.g. consider V : R→ R, V (θ) = θ3:
its derivative vanishes only at θ = 0, which has no extremality property at all). On the
other hand, optimization algorithms always aim at least at a local minimum.
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function to be minimized is convex, constrained and unconstrained mini-
mization are regarded as “easy”, standard problems, “practically solved”.
In the words of Stephen Boyd (see [2]), convex optimization is “almost a
technology”, i.e. it is approaching a stage of maturity in which “it can be
reliably used by many people who do not know, and do not need to know,
the details”22. Thus, if Q(θ) happens to be convex, there is no significant
issue in solving the nonlinear least squares problem (28).

In fact the main, real issue is that whenever the functions fi(θ) are not linear,
there is hardly any hope for Q(θ) to be convex. And with few exceptions
in very specific contexts, non-convex optimization is hard; the higher the
dimension of the problem (that is p, since θ ∈ Rp), the harder the problem.
There are heuristics, randomized methods and other techniques that try
to cope with the issue, but to this date no general-purpose algorithm can
ensure, with sufficiently high reliability, that it will be able to find the global
minimum of an arbitrary non-convex function Q : R10 → R in reasonable
time.
Since Q(θ) is supposed to be sufficiently smooth we will, indeed, employ
algorithms similar to those commonly adopted in convex optimization. But
they can only pursue their goal successfully, and eventually find a solution,
in a region of the space Rp where Q(θ) is locally convex; hence, in the end
our algorithm of choice will find a local minimum point. As reasonable as
such local minimum point may be, in general there is not, and there cannot
be, any guarantee that it also attains a global minimum. For comparison,
keep in mind that the most notable property of convex functions is precisely
that any local minimum is also a global one. Now, it is the user who selects
the region where the algorithm is supposed to find a minimum, precisely by
guessing the initial point θ(0); the choice of such point may be obvious for
some problems, or difficult for others: in any case it boils down to guess-
work, arguably more of an art than of a science.

Unfortunately, there is no general, “off the shelf” way out of this issue. But
fortunately for us, our problem is of a particular nature, that of fitting data
with a function: for this purpose, the data themselves work on our side.
Suppose, for example, that we have to fit some points (t1, y1), · · · , (tN , yN )
with a sinusoid:

yi = A sin(2πFti + φ) + εi,

where the parameter to find is θ = (A,F, φ) ∈ R3. This problem is clearly
nonlinear23; it will be solved by means of an iterative algorithm, hence we

22In comparison, according to him the method of ordinary least squares is a mature
technology.

23because the frequency F is unknown and has to be estimated along with A and φ.
Compare with Problem 2 (amplitude and phase of a sinusoid) at the end of Chapter 1,
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must provide an initial guess θ(0) = (A(0), F (0), φ(0)). If the sinusoidal model
comes from someone else’s guess and, by chance, a plot of the data reveals
clearly that they would better fit by a parabola, or by an exponential, or
anything different from a sinusoid, we may wonder whether the model is
worthy before running any algorithm, and maybe reject it altogether. On
the other hand, suppose that they really conform to the sinusoidal model. If,
as it may happen, the sequence (t1, y1), · · · , (tN , yN ) is the sampled version
of an analog voltage signal, where the variables ti represent time and are
equally spaced, and if the sampling frequency is, say, 8 kHz, both common
sense and Shannon’s sampling theorem will tell us that it is totally pointless
to choose any F (0) > 4 kHz. Instead, a plot of the data may reveal, by
inspection, that the frequency is “something between 10 Hz and 100 Hz”.
Choose, for instance F (0) = 50 Hz! The same plot may show that the
highest measures among the {yi} attain, more or less, values between 310 V
and 330 V. Then choose A(0) = 320 V! But perhaps for φ(0) you have no
clue? Let φ(0) = 0 rad and have faith: if the sinusoidal model is really worth,
the method will work.
Of course engineers should always use common sense, not just before running
a procedure, but also after having obtained the results. Plot the data and
the fitting curve together: you will see immediately whether the fit makes
sense or not. Fitting mathematical models to data is an art! Always inspect
your data before applying an algorithm blindly, always check your results,
please do not exaggerate with those significant digits, and please aim at least
at the same kind of common sense that would lead, say, a physician to reject
a negative blood pressure with disdain, an employee to regard as ‘suspect’
a payment of 2, 000, 000 e for this month’s salary, and your electrician to
mistrust a watt-meter measuring 50 kW as the consumption of your TV set.
You got the idea.

4.2 Iterative algorithms

4.2.1 General discussion

We proceed with a brief discussion of some standard algorithms adopted for
the minimization of convex functions. The fundamental fact about convex
problems is that if a point is locally a minimum, i.e. it satisfies some mini-
mality condition in the neighborhood of a point, then it is a minimum also
globally, hence it is a solution to the problem.
We suppose that the function Q : Rp → R to be minimized is everywhere
differentiable; then, in view of Theorem B.3.1, for all θ, θ̄ ∈ Rp it holds

Q(θ) ≥ Q
(
θ̄
)

+∇Q
(
θ̄
)> (

θ − θ̄
)

where F is known; that problem can be reduced to an OLS problem by means of a simple
trigonometrical trick.
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where ∇Q
(
θ̄
)

denotes the gradient of Q computed at θ̄. Note that the gra-
dient, by definition, should always be interpreted as a row vector; however,
in numerical analysis its transpose is used instead:

∇Q(θ) =
[

∂Q(θ)
∂θ1

∂Q(θ)
∂θ2

· · · ∂Q(θ)
∂θp

]>
.

If we find a particular θ̄ such that ∇Q
(
θ̄
)

= 0, then Q(θ) ≥ Q
(
θ̄
)

for
all θ ∈ Rp, so that θ̄ is a global minimum; thus, for convex differentiable
functions a local test of optimality on the gradient is sufficient to establish
global optimality.
Iterative algorithms for convex minimization proceed in the following way:

• an initial guess θ(0) is given;

• at the i-th step, θ(i) is the current candidate for the optimum point θ̄;
if it is not good enough, it is improved by setting θ(i+1) ← θ(i) + ∆θ(i)

in such a way that Q
(
θ(i+1)

)
< Q

(
θ(i)
)
;

• the iteration is stopped when |∆θ(i)| is sufficiently small, e.g. |∆θ(i)| <
ε = 10−10, which means that θ(i) has ‘settled’ close to a minimum
point, or when the gradient is sufficiently small, e.g. ‖∇Q

(
θ(i)
)
‖ <

ε = 10−10, which means that we are close to ∇Q(θ) = 0 (here the
norm ‖ · ‖ is not necessarily the Euclidean one).

At each step (i), the displacement ∆θ must be chosen in order to improve
the current guess θ. The canonical way is to choose ∆θ = αv, where v is
a “descent direction”, and α > 0 a constant. Recall that the directional
derivative of Q along a certain direction v is defined as

δQ(θ)

δv
:= lim

α→0+

Q(θ + αv)−Q(θ)

α
, (29)

and under regularity assumptions on Q, one finds that

δQ(θ)

δv
= ∇Q(θ)>v; (30)

now, v is by definition a descent direction if

δQ(θ)

δv
< 0, (31)

that is, taking a little step in the direction of the vector v, the function Q
decreases; the classical minimization algorithms differ above all in the choice
of a suitable descent direction.

Note that even if locally v is a descent direction, taking the “full step” v,
that is setting ∆θ = v, may in general be a bad choice, for it can actually

91



attain Q(θ + v) > Q(θ). The step should not be too large, and this is the
reason for introducing a multiplier α in the choice ∆θ = αv. Let v be a
descent direction, and β ∈ (0, 1), for example β = 1

2 . A simple procedure to
select a suitable α is the following one, called backtracking:

• let α(0) = 1;

• if Q(θ + α(k)v) < Q(θ), then α = α(k) is OK;

• otherwise, set α(k+1) ← βα(k) and repeat the previous test.

That the backtracking procedure finds a suitable α is ensured by (29) and
(31), because v is assumed to be a descent direction and the sequence {α(k)}
tends to zero from above.

4.2.2 Steepest descent

Looking at equation (30) you will immediately recognize that, unless∇Q(θ) =
0 (sufficient condition for optimality), v := −∇Q(θ) is always a descent di-
rection; indeed

δQ(θ)

δv
= ∇Q(θ)>v = ∇Q(θ)> (−∇Q(θ)) = −‖∇Q(θ)‖2 < 0.

Actually, among the vectors v with the same modulus as ∇Q(θ), −∇Q(θ) is
the one that guarantees the least possible value of the expression ∇Q(θ)>v;
for this reason the algorithm adopting such descent direction is named steep-
est descent.
One may think that the above one is the best possible choice; this is not
true unless in rather particular cases, because the property of attaining
the steepest descent at a given point is only local: it attains “greedily”
a seemingly fast descent at each step, but in ill-conditioned problems it
may require a huge lot of steps to converge to the minimizing solution θ̄.
There are indeed better choices (the Newton step, discussed below) that
do not pursue the direction with minimum slope at each step, but that
attain a faster convergence rate, in term of the number of steps. However,
it can be proven that the steepest descent algorithm does converge to the
optimal θ̄; its main advantages are that it is the simplest to understand and
to implement, and it requires small computational burden to compute the
descent direction.

4.2.3 The Newton step

A quadratic form on Rp is a function q : Rp → R like the following one:

q(v) = a+ b>v +
1

2
v>Av,
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where a ∈ R, b ∈ Rp, and A ∈ Rp×p.
If A is symmetric and positive semi-definite (A ≥ 0), then q is called a
positive semi-definite quadratic form; if, moreover, A > 0, q is called positive
definite, its graph is that of a convex elliptic paraboloid, and it admits a
unique minimum point (the vertex of the paraboloid). The minimum is
found equating to zero its derivative (i.e. gradient) with respect to v:

0 =
∂q(v)

∂v
= b> + v>A;

Av = −b;

If A > 0 (invertible), then the minimum point is

v = −A−1b.

Basically, the Newton algorithm works in the following way:

• an initial guess θ(0) is given;

• at the i-th step, θ(i) is the current candidate for the optimum point θ̄;
the algorithm approximates the function Q locally around θ(i) with a
quadratic form;

• it sets θ(i+1) = the minimum point of the quadratic form;

• the iteration is stopped when |∇Q
(
θ(i)
)
| is sufficiently small.

To approximate the function Q around a certain θ = θ(i) with a quadratic
form means to expand it in a Taylor polynomial of order 2 around θ:

Q(θ + v) ' qθ(v) := Q(θ) +∇Q(θ)>v +
1

2
v>H(θ)v. (32)

This is a quadratic form in the variable v. Here, ∇Q(θ) ∈ Rp is the gradient
of Q at θ, and H(θ) ∈ Rp×p is the Hessian matrix:

H(θ) =


∂2Q(θ)
∂θ2

1

∂2Q(θ)
∂θ1∂θ2

· · · ∂2Q(θ)
∂θ1∂θp

∂2Q(θ)
∂θ2∂θ1

∂2Q(θ)
∂θ2

2
· · · ∂2Q(θ)

∂θ2∂θp
...

...
. . .

...
∂2Q(θ)
∂θp∂θ1

∂2Q(θ)
∂θp∂θ2

· · · ∂2Q(θ)
∂θ2
p


Since Q is supposed to be twice continuously differentiable, by Schwarz’s
theorem it is a symmetric matrix (the order of differentiation does not mat-
ter); supposing, further, that Q is at least locally convex, H(θ) is at least
positive semi-definite (H(θ) ≥ 0). If it happens that H(θ) > 0, then the
minimum point of (32) is

v = −H(θ)−1∇Q(θ). (33)
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The v in (33) is the typical displacement of Newton’s algorithm. It is im-
mediate to check that it is a descent direction; indeed if H(θ) > 0, then
H(θ)−1 > 0 as well, and

δQ(θ)

δv
= ∇Q(θ)>v = −∇Q(θ)>H(θ)−1∇Q(θ) < 0.

Thus, the update step in Newton’s algorithm is as follows,

• set θ(i+1) = θ(i) − αH(θ)−1∇Q(θ), where α is a suitable backtracking
constant chosen in (0, 1].

In most cases, especially close to the solution θ̄, α = 1 is just fine.

Newton’s algorithm is the workhorse of convex optimization, and a bench-
mark for every other unconstrained optimization algorithm. Its convergence
rate is very high compared to other methods (meaning that the number of
iterations needed to converge to an acceptable solution is much smaller in
comparison).

4.3 Application to nonlinear least squares

4.3.1 The steepest descent algorithm

Now we will adapt the two iterative algorithms seen in Section 4.2 to the
sum of squares of the main problem:

Q(θ) =
N∑
i=1

(yi − fi(θ))2 .

Let us define Y ∈ RN and F : Rp → RN as follows:

Y =


y1

y2
...
yN

 , F (θ) =


f1(θ)
f2(θ)

...
fN (θ)


(then Q(θ) = ‖Y − F (θ)‖2). Let J(θ) ∈ RN×p be the Jacobian matrix of F
computed at θ:

J(θ) =


∂f1(θ)
∂θ1

∂f1(θ)
∂θ2

· · · ∂f1(θ)
∂θp

∂f2(θ)
∂θ1

∂f2(θ)
∂θ2

· · · ∂f2(θ)
∂θp

...
...

. . .
...

∂fN (θ)
∂θ1

∂fN (θ)
∂θ2

· · · ∂fN (θ)
∂θp
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The goal function Q(θ) has a very rich structure; in particular,

∂Q(θ)

∂θk
=

N∑
i=1

2 (yi − fi(θ))
(
−∂fi(θ)

∂θk

)
Then the gradient of Q at θ is

∇Q(θ) =
[

∂Q(θ)
∂θ1

∂Q(θ)
∂θ2

· · · ∂Q(θ)
∂θp

]>
= −2J(θ)>(Y − F (θ))

Thus, the descent direction in the steepest descent algorithm is v = −∇Q(θ) =
2J(θ)>(Y − F (θ)), and its update step is as follows:

• set θ(i+1) = θ(i) +α2J(θ)>(Y −F (θ)), where α is a suitable backtrack-
ing constant chosen in (0, 1].

4.3.2 The Newton algorithm

The Hessian of Q(θ) is the matrix H(θ) ∈ Rp×p having as its k, l-th compo-
nent

[H(θ)]kl =
∂2Q(θ)

∂θk∂θl
=

N∑
i=1

2

(
∂fi(θ)

∂θk

∂fi(θ)

∂θl
− (yi − fi(θ))

∂2fi(θ)

∂θk∂θl

)
.

Due to the burden of computing the second derivatives ∂2fi(θ)
∂θk∂θl

, the New-
ton iteration can be computationally rather demanding. Note that, since
convexity is not guaranteed anymore, it is not necessarily true that H(θ) is
non-singular, nor that it is even positive semi-definite. It can be actually
any symmetric matrix; hence the corresponding quadratic approximation at
θ,

qθ(v) = Q(θ) +∇Q(θ)>v +
1

2
v>H(θ)v

= Q(θ)− 2(Y − F (θ))>J(θ)v +
1

2
v>H(θ)v,

is not necessarily positive semi-definite. Computing the Newton step would
in principle require to solve for v the equation

H(θ)v = −∇Q(θ);

this may be impossible in general, or, since convexity fails to hold, it could
yield a wrong direction, i.e. not a descent direction.

Note, however, that if it so happens that θ is sufficiently close to the solution
θ̄, then the terms (yi−fi(θ)) are relatively small, the terms in the summation
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containing second derivatives become hopefully negligible with respect to
the other ones, and it may become convenient to approximate H(θ) with a
matrix H̃(θ) ∈ Rp×p having as its k, l-th component

[
H̃(θ)

]
kl

:= 2
N∑
i=1

∂fi(θ)

∂θk

∂fi(θ)

∂θl
;

this leads to the approximate Hessian matrix

H̃(θ) = 2J(θ)>J(θ).

The corresponding quadratic approximation at θ,

q̃θ(v) = Q(θ)− 2(Y − F (θ))>J(θ)v + v>J(θ)>J(θ)v,

is always at least positive semi-definite. Correspondingly, we have an ap-
proximate Newton step, which is found solving for v the equation H̃(θ)v =
−∇Q(θ), that is:

J(θ)>J(θ) v = J(θ)>(Y − F (θ)) (34)

Besides seeming a convenient trick to simplify formulas, due to an appar-
ently arbitrary approximation of the Hessian, the above step has manifold
advantages:

1. equation (34) requires only that f(x, θ) is once continuously differen-
tiable with respect to θ, not twice as before;

2. equation (34) demands less computational burden; but above all

3. equation (34) is an instance of the normal equations! (Indeed, recall
that its unknown is v.) Since we know how to solve normal equations,
the approximate Newton descent direction is trivial to compute, once
J(θ) is known.

The third point demands further inquiry. In practice, dropping the terms
containing second derivatives from the Hessian, we have pretended that they
are negligible; the “official” justification for this is the assumption that we
are close to the optimal solution, so that their multipliers (yi − fi(θ)) are
small. But another reason for which we could want to discard those terms
is that we choose to neglect the second derivatives ∂2fi(θ)

∂θk∂θl
altogether, in other

words to employ a linear local approximation of each fi(θ) around θ instead
of a quadratic one.
There is, in particular, a case in which the linear approximation does not
lose any information at all, and of course this is when the fi(θ) themselves
are already linear. In this case, all the second derivatives are zero, and
the approximate Hessian of Q(θ) equals the true one. And now an obvious
question arises:
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what happens if we apply a Newton step when the fi(θ) are linear?

You already know the answer in your heart. If fi(θ) is linear in θ, it means
that we are in the old case fi(θ) = ϕ>i θ; but then

F (θ) =


ϕ>1 θ
ϕ>2 θ

...
ϕ>Nθ

 =


ϕ>1
ϕ>2
...
ϕ>N

 θ = Φθ;

J(θ) =
∂F (θ)

∂θ
= Φ, irrespective of θ.

We are supposed to run the Newton algorithm, hence we need to provide
an initial guess θ(0); in this case, though, we know that Q is convex, hence
the initial guess does not matter very much. We choose θ(0) = 0, we obtain
F
(
θ(0)
)

= 0, and equation (34) reads

Φ>Φ v = Φ>Y.

Except for the change of a symbol from θ to v, these are the normal equations
of ordinary least squares. Thus,

when applied to an ordinary least squares problem, the Newton algorithm
solves it in just one step by solving the standard normal equations.

Coming back to nonlinear least squares and resuming, the approximate
Newton descent direction is, assuming that J(θ)>J(θ) is invertible, v =(
J(θ)>J(θ)

)−1
J(θ)>(Y − F (θ)); the corresponding update step is as fol-

lows:

• set θ(i+1) = θ(i) + α
(
J(θ)>J(θ)

)−1
J(θ)>(Y − F (θ)), where α is a

suitable backtracking constant chosen in (0, 1].

So far we have introduced two iterative algorithms, the steepest descent
method and the Newton method; the second of them can be employed in
a simplified version when the current θ(i) is close to the optimal solution.
The advantages of both the algorithm are exploited in the next (and last)
algorithm that we will cover, which is more or less a standard for the solution
of nonlinear least squares problems.
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4.4 The Levenberg-Marquardt algorithm

4.4.1 A compromise between steepest descent and Newton’s al-
gorithm

Compare the equations for the displacement, at the step (i), of the steepest
descent algorithm,

∆θ = −α∇Q(θ)

= 2αJ(θ)>(Y − F (θ))

that is

λ∆θ = J(θ)>(Y − F (θ)),

where λ := 1
2α , and that of the approximate Newton algorithm:

H̃(θ) ∆θ = −∇Q(θ),

that is

J(θ)>J(θ) ∆θ = J(θ)>(Y − F (θ)).

(35)

Recall that α ∈ (0, 1] is the so-called backtracking constant, that reduces
the full step if it does not lead to a decrease Q(θ + ∆θ) < Q(θ) in the goal
function. The approximate Newton displacement is valid only in the prox-
imity of a minimum: in this case, the full displacement is often just good.

The iterative method adopting the displacement ∆θ that solves the following
equation, (

H̃(θ) + 2λI
)

∆θ = −∇Q(θ),

that is(
J(θ)>J(θ) + λI

)
∆θ = J(θ)>(Y − F (θ)),

(36)

where λ is a positive constant, is called the Levenberg-Marquardt algorithm.
Note that (36) does always admit a unique solution because, since λ > 0,
the matrix H̃(θ) + 2λI = J(θ)>J(θ) + λI is positive definite. Furthermore,
∆θ is always a descent direction; indeed since H̃(θ)+2λI > 0, then (H̃(θ)+
2λI)−1 > 0 as well, hence

δQ(θ)

δ(∆θ)
= ∇Q(θ)>∆θ = −∇Q(θ)>

(
H̃(θ) + 2λI

)−1
∇Q(θ) < 0

unless ∇Q(θ) = 0 (optimality condition).

Now, if the constant λ is very small, then
(
J(θ)>J(θ) + λI

)
' J(θ)>J(θ),

so that

J(θ)>J(θ) ∆θ ' J(θ)>(Y − F (θ)),
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which resembles (35) (in the limit case λ = 0, equation (36) would coincide
with (35)). On the other hand, if λ is large (λ� 1), then

(
J(θ)>J(θ) + λI

)
'

λI, so that

∆θ ' 1

λ
J(θ)>(Y − F (θ)),

which is a steepest descent displacement, with a “kind-of-backtracking” con-
stant already in place.

Therefore, applying the displacement ∆θ provided by (36) is “almost” a
Newton step when λ is small, and “almost” a rescaled steepest descent step
when λ is large.

4.4.2 The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm prescribes that the scaling factor λ is
changed adaptively at each step (i), being in fact a λ(i), starting from a
steepest-descent-like behavior when θ(i) is distant from the minimum, and
decreasing it in order to attain a Newton-like behavior in its proximity (pre-
cisely when the approximate version of the Newton equation, which is (35),
works fine).
The choice of a suitable λ for the next step depends on the so-called gain
ratio

ρ :=
Q(θ)−Q(θ + ∆θ)

q̃θ(0)− q̃θ(∆θ)
, (37)

which measures the ratio between the actual decrease in the goal function
Q and the decrease predicted by its Newton approximation q̃θ computed at
θ, when the displacement ∆θ is applied. Recall that

q̃θ(∆θ) = Q(θ)− 2(Y − F (θ))>J(θ)∆θ + ∆θ>J(θ)>J(θ)∆θ,

hence q̃θ(0) = Q(θ), and since the Levenberg-Marquardt step (36) yields
J(θ)>J(θ) ∆θ = J(θ)>(Y − F (θ))− λ∆θ, we have

q̃θ(0)− q̃θ(∆θ) = 2(Y − F (θ))>J(θ)∆θ −∆θ>J(θ)>J(θ)∆θ

= 2∆θ>J(θ)>(Y − F (θ))−∆θ>J(θ)>J(θ)∆θ

= ∆θ>
(

2J(θ)>(Y − F (θ))− J(θ)>(Y − F (θ)) + λ∆θ
)

= ∆θ>
(
−1

2
∇Q(θ) + λ∆θ

)
= −1

2
∇Q(θ)>∆θ + λ ‖∆θ‖2 .

Recalling that the Levenberg-Marquardt displacement ∆θ is a descent di-
rection, we have that the denominator in (37) is always a positive quantity
(unless ∆θ = 0, which denotes optimality).
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Hence, ρ > 0 if and only if the displacement ∆θ actually attains a decrease
in the goal function. At step (i), the acceptance of the displacement and
the choice of the next λ should be adapted consequently:

• if ρ < 0, reject the displacement ∆θ and increase λ;

• if ρ is positive but small, then the displacement ∆θ can be accepted,
but the quadratic approximation is not very good, hence λ should be
increased, aiming at a steepest-descent-like behavior;

• if ρ is high, the displacement ∆θ should be accepted, the quadratic ap-
proximation is good, and λ should be decreased, aiming at a Newton-
like behavior.

In [19], the following strategy is proposed:

• at the beginning, set ν ← 2;

• at each step (i),

– if ρ > 0, set θ ← θ+∆θ, λ← λmax{1
3 , 1− (2ρ−1)3}, and ν ← 2;

– otherwise, set λ← νλ and ν ← 2ν.

4.5 Example: localization of a transmitter
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5 Machine learning

5.1 Introduction and motivation

In the theory of least squares we have supposed that the data were generated
by a model yi = ϕ>(xi)θ

o + εi linear in the “true” parameter θo, and the
underlying objective was to estimate or approximate θo, a quantity intrinsic
in the model. Recall that such estimate could be useful for three objectives:

• investigate internal properties of the mechanism that generates the
data;

• measure indirectly some physical quantity of interest;

• predict a future value of the output, given a future value of the input.

In many applications, though, either there is no parameter θo, or such pa-
rameter is so complex that its estimation is hopeless and meaningless.

Example. Think at the estimation of the pitch rate (output) of a fixed-wing
airplane, given the inputs to its ailerons, flaps, and canards. In fact, the
estimation of the pitch rate requires a model of the entire airplane and of
the surrounding environment. Models of this kind exist and are used in the
design stage for the structural analysis of aircraft, but are far too complex
for the online computations carried by the on-board computer to help the
pilot.

Example. Think at weather forecasts. Given the current state of a sector of
the atmosphere (pressure, temperature, wind speed etc., i.e. the input), the
problem is that of estimating, say, tomorrow’s minimal or average temper-
ature at a certain location (the output). What is θo here?

In many cases of interest, the “output variable” belongs to a finite set; in
these cases, the problem of “predicting” the output is called classification.

Example. Think at the recognition of a hand-written character (and maybe
have another look at Section 2.2). Here, the input is a bitmap containing a
scan of the character, and the output is an element of the set {A,B,C, · · · , Z}.

Example. Consider the diagnosis of a disease; say, the presence of a melanoma
on the skin of a patient. The definitive diagnosis is typically based on a
biopsy; however, such procedure is expensive and invasive, and for a first
assessment (subject to a certain probability of error), less invasive tech-
niques are preferred. For example, a technique for automatic recognition
of a melanoma relies on the analysis of a photograph; the input, here, is
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a bitmap, and the output is an answer in {Yes,No}. 24 A conceptually
similar problem is the diagnosis of a heart disease given the observation of
an ECG over a time interval [0, T ] (thus the input is, ideally, a function
f : [0, T ] → R12, or if you wish twelve functions, one per each “lead”; the
output is again {Yes,No}). In these examples, can you imagine any θo link-
ing the input to the output?

What matters, in these example, is not really any “true” parameter θo, be-
longing to a finite-dimensional vector space, but the relation between the
input and the output, considered as a mapping. In this chapter we drop the
assumption that we know anything about the particular mechanism that
generates the data (in particular about linearity), and we study the prob-
lem of selecting an entire function to match how nature generates data, with
the purpose of establishing a bound on the probability of producing a wrong
prediction, which is intrinsic to the problem and cannot be avoided. As you
can guess, estimating a function is in general way more complex than esti-
mating a vector; hence we shall introduce other kinds of constraints on the
problems that we are going to deal with, and we will reduce the complexity
of the problem to the minimum possible; still, you will see that establishing
such bound is difficult enough.

We assume that there is a certain random quantity U , called the input, which
we can measure; that the input is fed through a “black box”, managed by
“nature”, whose behavior we don’t know; and that at the other side of the
black box we can measure a second random quantity Y ∈ {0, 1, · · · ,M},
called the output. Finally, we assume that we have measured finitely many
realizations (U1, Y1), · · · , (UN , YN ) (the “data”) of the generation process.
The goal is to find a function Ŷ = f̂(U) that approximates the behavior of
the black box in the best possible way. In view of the hypothesis that Y
can take only finitely many values, this is called a classification problem (we
“classify” U sticking to it a label Ŷ chosen from the set {0, 1, · · · ,M}).
Unlike what we did with respect to least squares, the main goal here is
not to provide robust and reliable algorithms, but to understand what is
going on, and to investigate the limits inherent in the process of matching
our function to nature’s data generation mechanism, a process that we call
machine learning. Even with the hypothesis that Y can take finitely many
values, the general theory of machine learning is beyond the scope of these
notes; we restrict our investigation to the following particular case:

• the input U is scalar (that is, a real random variable);

24We stipulate to call an automatic diagnosis, or a similar problem, a “prediction” even
if it really is not; indeed, there is no time variable in this example, and a {Yes,No} answer
tells something about now with a certain probability, not anything about the future.
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• the output Y is another random variable (hopefully, highly correlated
with U) that can only take the values 0 and 1;

• the goal is, given the data (U1, Y1), · · · , (UN , YN ), to find a function
f̂ : R → {0, 1} that will make, on average, the least possible error in
guessing the future data Yi when Ui will be given.

A problem with these assumptions is called a binary classification problem.
Loosely speaking, f̂ now takes the place of what before was θo; but note that
while θo was supposed to be intrinsic in the data generation mechanism, now
f̂ has nothing to do, in general, with the internals of the “black box”, and
instead pertains to our point of view on how the behavior of the black box
should be approximated. This, as we will see, will have to do above all
with the class of functions in which we search a solution. In particular, the
objectives of investigating internal properties of the data generation rule and
measuring physical quantities (which we stated among the goals of the least
squares method) are gone; the only one that remains is prediction.

5.2 Binary classification and the Bayesian classifier

Let us make the problem a bit more precise. We assume the following:

• a sequence of random pairs (U1, Y1), · · · , (UN , YN ) is observed, where
Ui ∈ R and Yi ∈ {0, 1}. We assume that the pairs are independent and
identically distributed. We hope that in some sense Yi is “predictable”
from Ui, but we do not actually know either the distribution of Ui or
how Yi was generated from Ui.

• We wish to study how a function f̂ : R→ {0, 1} behaves in providing
an estimate Ŷ = f̂(U), and we wish to compare such functions. We
will call the functions f̂ : R → {0, 1} binary classifiers; note that
a binary classifier is the indicator function of a subset of R. As we
shall soon see with some examples, it is not necessarily the case that
the data (U1, Y1), · · · , (UN , YN ) are actually generated by means of a
function Yi = f(Ui), hence we will match with a function a rule which
is not necessarily a function; still, this is the best that we can do.

• “All the indicator functions” is a set far too complex to choose from,
and would immediately make the problem intractable. Therefore we
restrict our attention to families of functions F = {f̂c}c∈C parame-
terized by some set C of indices. We will see that even families that
look relatively simple may be still too complex and inhibit the correct
choice of a classifier.

• The objective is to find the index c that parameterizes the “best”
classifier f̂c ∈ F . What does “best” mean? Similarly to what we did
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with the theory of least squares, we define as the “best” f̂c the one
that minimizes the expected square error:

J̄ = E
[
(Y − Ŷ )2

]
= E

[
(Y − f̂(U))2

]
We shall now investigate how J̄ behaves. Keep in mind that this is an ab-
stract definition concerning some random variables U and Y , but what we
will have available at the end of the day will always be finitely many pairs
of data (U1, Y1), · · · , (UN , YN ). The point is the following: today, while we
are sitting in class and studying the problem from an abstract point of view,
(U1, Y1), · · · , (UN , YN ) are independent random pairs in their own respect,
and we may study them as such; but tomorrow, when someone will come
with “the data” and ask us to run a software to actually compute the best
classifier, they will be a particular realization of the random variables, that
is a bunch of numbers. What we investigate today is, indeed, the average
behavior of the best solution that the software will be able to give tomorrow,
on the sole basis of those numbers.

Example. Consider the following data generation rules:

1. U is Gaussian N(0, 1), and Y = f(U), where

f(u) = 1[−1,0](u) + 1[ 1
2
,1](u).

In this case, the generation is actually done by a function.

2. U is Gaussian N(0, 1); if it happens that U < 0, then

Y =

{
1 with probability 0.8;

0 with probability 0.2.

If instead U ≥ 0, then

Y =

{
1 with probability 0.1;

0 with probability 0.9.

In this case the mechanism is intrinsically probabilistic, i.e. it is not
produced by a function.

3. U is Gaussian N(0, 1); if it happens that U < 0, then Y = 1; if instead
U ≥ 0, then

Y =

{
1 with probability 0.5;

0 with probability 0.5.

In this case the mechanism is also probabilistic.
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In all the three cases, there is indeed a binary classifier f̂ that minimizes

the expected error J̄ = E
[
(Y − f̂(U))2

]
. Note that, since the expression

(Y − f̂(U))2 is 0 when Y = f̂(U) and 1 when Y 6= f̂(U), we can write

J̄ = E
[
1Y 6=f̂(U)

]
= P

[
Y 6= f̂(U)

]
Hence, in order to find the best classifier f̂ it is sufficient to minimize such
probability, point-wise with respect to u.

1. In the first example the optimal classifier is f̂ = f , the same function
that generated the data, which attains J̄ = 0.

2. In the second example, it is not difficult to realize that the classifier
that minimizes the probability of error at each u is

f̂(u) =

{
1 if u < 0;

0 if u ≥ 0.

It attains

J̄ = 0.2 · P [U < 0] + 0.1 · P [u ≥ 0] = 0.15.

3. The third example is similar, but exhibits an issue: if u < 0 it is of
course correct to assign f̂(u) = 1, but if u ≥ 0, it makes no difference
whether f̂(u) = 0 or 1: the error probability will be 0.5 in any case.
The choice is somewhat arbitrary; therefore we choose the constant
function f̂(u) = 1, and attain J̄ = 0.25.

�
The best function f̂ that we have found in the three examples is called the
Bayesian classifier. Computing it does not seem a big deal, after all. Is this
the solution to the classification problem?

No.

We have neglected at least three of the assumptions made in the statement
of the problem. First, to compute f̂ we have exploited a lot of knowledge
on the data generation mechanism (i.e. functions, probabilities), while we
had assumed that of such mechanism we should have no knowledge at all.
Second, we have disregarded the only information that we assumed to have,
that is the data (U1, Y1), · · · , (UN , YN ). Third, we have ignored that we were
supposed to search the classifier in a class of functions F = {f̂c}c∈C and the
goal was to find an optimal c ∈ C, implicitly assuming that the Bayesian
classifier belongs to F . Moreover, the Bayesian classifier could be very hard
to compute, although this is not apparent from the above simple examples.
Summing up: yes, there exists a best classifier, called the Bayesian one,
which could be found if everything were known; but actually very little is
known, and in general we have no hope to compute it exactly.
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5.3 Minimization of the error

To sort things out, the first step to do is to re-define properly the “cost”
that we use to evaluate different classifiers in our family F . To start with,
it must depend on the choice of c, hence it must be a function on the set C:

Definition 5.3.1 The error function is the function J̄ : C → [0, 1], defined
as follows:

J̄(c) := E
[
(Y − f̂c(U))2

]
= E

[
1Y 6=f̂c(U)

]
= P

[
Y 6= f̂c(U)

]
The “true” error J̄(c) will be key to our comprehension of what can be
accomplished with machine learning. The ideal goal of our theory would be
to find its minimum:

c̄ = arg min
c∈C

J̄(c)

But now recall that the only information available comes from the data
(U1, Y1), · · · , (UN , YN ), hence we have no hope to compute either J̄ or its
minimum. The best that we can do is to approximate J̄ , and dedicate our
future efforts to show that the approximation is good.

Definition 5.3.2 The empirical error function, based on the data

(U1, Y1), · · · , (UN , YN ),

is the function ĴN : C → [0, 1], defined as follows:

ĴN (c) :=
1

N

N∑
i=1

(Yi − f̂c(Ui))2 =
1

N

N∑
i=1

1Yi 6=f̂c(Ui)

The empirical error ĴN (c) is our approximation of the true error J̄(c). In
fact, you can think of ĴN (c) as a replica of J̄(c) where the expectation has
been replaced by a sample average over the available data:

E [·]  M [·] =
1

N

N∑
i=1

(·)

More informally, think that if (Ui, Yi) had a joint density p(u, y) (here it is
not the case), the true error would be

J̄(c) = E
[
(Y − f̂c(U))2

]
=

∫
U×Y

(y − f̂c(u))2 p(u, y) du dy

In the same spirit, the empirical error would be

ĴN (c) =
1

N

N∑
i=1

(Yi − f̂c(Ui))2 =

∫
U×Y

(y − f̂c(u))2 pN (u, y) du dy
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with the true density replaced by an “empirical density”, which would now
be a weighted sum of “deltas”, one “delta” per each pair of data:

pN (u, y) =
1

N

N∑
i=1

δUi,Yi(u, y)

(There is nothing rigorous in this reasoning. It is just to support intuition.)

Whatever the interpretation of the empirical error, with the sole knowledge
of the data the best that we can do is to pursue its minimization:

ĉN = arg min
c∈C

ĴN (c)

The main point of this chapter is the following:

• we expect that, for big N , ĴN (c) is close to J̄(c) with high probability;

• we expect that, as N →∞, ĴN tends to J̄ (in which sense?);

• consequently we expect that for big N the minimum of ĴN is close
to the minimum of J̄ with high probability, and that as N → ∞ the
former converges to the latter.

Whether these facts hold or not is a deep subject regarding the limits of
learning; in essence, it depends on both the data-generation mechanism and
the family of classifier functions in which we pursue the empirical minimiza-
tion. In general, our expectations are going to be frustrated, as we shall
immediately see with a pathological example.

Example. Consider the following data generation rule: Ui is Gaussian N(0, 1)
and Yi = f(Ui), where

f(u) = 1[−2,0](u) + 1[ 1
3
,2](u).

First, imagine that we search the best possible classifier among the indicator
functions of closed intervals on the real line. That is to say, the family of
classifiers is

F1 = {1[a,b](·)}.

parameterized by the index c = (a, b), where C = {(a, b) | a ≤ b}. A little
reasoning reveals that the optimal classifier in F1 is attained for c̄ = (−2, 2),
and f̂c̄(u) = 1[−2,2](u). The corresponding true error is

J̄(c̄) =
1√
2π

∫ 1/3

0
e−t

2/2 dt ' 0.13
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Having a lot of data available, say N = 10000, with very high probability
we will find a lot of ones in the interval [−2, 0], a few zeros in the inter-
val [0, 1/3], again a lot of ones in [1/3, 2], and some other zeros elsewhere.
Following common sense, or heuristics, or actually minimizing numerically
the empirical cost, we will choose to forget about the zeros in (0, 1/3) and
select an interval resembling [−2, 2], say ĉN = (−2 − ε1, 2 + ε2), yielding
f̂ĉN (u) = 1[−2−ε1,2+ε2](u). The corresponding empirical error will be com-
parable to the optimal one, say

ĴN (ĉN ) = 0.125.

The real cost will be something more than the optimal one, say:

J̄(ĉN ) =
1√
2π

(∫ −2

−2−ε1
e−t

2/2 dt+

∫ 1/3

0
e−t

2/2 dt+

∫ 2+ε2

2
e−t

2/2 dt

)
= 0.14

As you can see, this situation is fairly good.
Consider now the same data generation rule, but this time suppose that our
family of classifiers is

F2 = F1 ∪ {1(finite set)(·)}.

This new family comprises the interval classifiers of before, plus all the
functions that take the value 1 on finitely many points, and 0 elsewhere
(“needle functions”). (C is a rather messy set which has no real importance
here.) Given the data (U1, Y1), · · · , (UN , YN ), the choice of a classifier in F2

minimizing the empirical error is obvious: indeed choosing ĉN = the index
of the needle function

f̂ĉN =

{
1 at all those Ui for which the corresponding Yi = 1,

0 elsewhere,

the corresponding empirical cost is

ĴN (ĉN ) = 0;

nevertheless, for the same choice it holds

J̄(ĉN ) =
1√
2π

(∫ 0

−2
e−t

2/2 dt+

∫ 2

1/3
e−t

2/2 dt

)
' 0.82.

Actually, the choice of any needle function attains the same true error 0.82,
which is rather bad; therefore the choice of a needle function, obtained by
minimizing the empirical error, is completely wrong, and the correct choice
would have been the interval classifier of before, which still belongs to F2. �

Something got wrong. What? The general, common sense answer is
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The family of classifiers F2 is too complex, and
in general it is advisable to stay away from complexity.

But let us examine more closely what is going on in the second part of the
example. We have seen three quantities of interest:

• J̄(c̄), the minimum true error achievable by choosing among all clas-
sifiers in the family;

• ĴN (ĉN ), the minimum empirical error; and

• J̄(ĉN ), the true error that corresponds to the choice that is optimal
for the empirical error.

The issue is of course that the situation J̄(ĉN ) � J̄(c̄) is unavoidable: no
matter how many data are available, at least one needle function will always
attain empirical error 0 and true error 0.82. More in detail, it so happens
that at all c that select interval classifiers, the empirical error is always more
or less close to the true one, and this is the reason why in the first part of
the example there was no problem; but among the indices c corresponding
to needle functions there always exist one that attains a difference of 0.82.
As N increases, we expect that ĴN gets closer and closer to J̄ in the subset
of C containing interval classifiers; not so for the subset of needle classifiers.
This is precisely the situation that we wish to avoid; only if ĴN (c) and J̄(c)
are everywhere close, in general, we can hope that their respective minima
will be close, and maybe equal in the limit as N →∞. Guided by these few
considerations, here we formulate the principle, to establish which the rest
of this chapter is dedicated:

as N →∞, the function ĴN should tend to J̄ uniformly with respect to c.

This will indeed be the case in some settings of interest; among them, the
choice among interval classifiers. This is the program that we will follow:

1. we will show that, if ĴN → J̄ uniformly, the minimum of ĴN indeed
tends to the minimum of J̄ , therefore the minimization of the empirical
error is “good”;

2. we will study in detail the behavior of the so-called empirical distribu-
tion of a real random variable, and establish probabilistic guarantees
of “uniform closeness” between empirical distribution and true distri-
bution;

3. we will show that for certain simple families of classifiers the results on
empirical distributions transport naturally to the empirical cost ĴN ,
therefore establishing that in these families it actually happens that
ĴN → J̄ uniformly.
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5.4 A lemma on uniform convergence

Forget for a moment that ĴN is a random quantity. Suppose that a real-
ization of the data has been drawn, so that ĴN is just a function. The first
point of the program is precisely the following result:

Lemma 5.4.1 (Uniform convergence). Let C be a set in a normed space,
{ĴN : C → R}∞N=1 a sequence of functions, and J̄ : C → R another function.
Suppose that

1. ĉN := arg min
c∈C

ĴN (c) exists for all N ;

2. c̄ := arg min
c∈C

J̄(c) exists;

3. ĴN → J̄ uniformly, that is,

lim
N→∞

sup
c∈C
|ĴN (c)− J̄(c)| = 0.

Then
lim
N→∞

J̄(ĉN ) = J̄(c̄).

If, in addition,

4. C is compact;

5. J̄ is continuous on C;

6. c̄ is unique,

then
lim
N→∞

ĉN = c̄.

Proof. Suppose that hypotheses 1, 2, and 3 hold. Then

J̄(ĉN ) = ĴN (ĉN ) +
(
J̄(ĉN )− ĴN (ĉN )

)
≤ ĴN (ĉN ) + sup

c∈C
|ĴN (c)− J̄(c)|

= min
c∈C

ĴN (c) + sup
c∈C
|ĴN (c)− J̄(c)|

= min
c∈C

(
J̄(c) +

(
ĴN (c)− J̄(c)

))
+ sup

c∈C
|ĴN (c)− J̄(c)|

≤ min
c∈C

(
J̄(c) + sup

c′∈C
|ĴN (c′)− J̄(c′)|

)
+ sup

c∈C
|ĴN (c)− J̄(c)|

= min
c∈C

J̄(c) + 2 sup
c∈C
|ĴN (c)− J̄(c)|

= J̄(c̄) + 2 sup
c∈C
|ĴN (c)− J̄(c)|.
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Due to uniform convergence, the latter quantity converges to J̄(c̄) from
above. On the other hand, J̄(ĉN ) ≥ J̄(c̄) by definition. Hence, J̄(ĉN )
converges to J̄(c̄) as claimed.
Suppose now that hypotheses 4, 5, and 6 hold as well, and suppose for the
sake of contradiction that ĉN does not converge to c̄. Then there exists an
ε for which it is possible to extract a sub-sequence {ĉNi} in such a way that
‖ĉNi − c̄‖ ≥ ε for all i. Since C is compact, from the latter sequence it is
possible to extract a sub-sub-sequence {ĉNk} which converges in C. Let

ĉ∞ = lim
k→∞

ĉNk

By continuity of the norm it holds ‖ĉ∞− c̄‖ ≥ ε, hence ĉ∞ 6= c̄. Finally, due
to the continuity of J̄ ,

lim
k→∞

J̄(ĉNk) = J̄(ĉ∞) > J̄(c̄),

because c̄ is the unique minimum point of J̄ . But this contradicts the claim
of the first part of the lemma, which must follow from hypotheses 1, 2, and
3. Therefore, {ĉN} converges to c̄ as claimed. �

Example. We provide two counterexamples where one hypothesis of the sec-
ond part of Lemma 5.4.1 fails, and its conclusion is false (of course the
counterexamples that follow do not prove that the hypotheses are neces-
sary; they are meant only to provide insight).
Consider the case in which C = [0,∞) (unbounded, hence not compact),
J̄(c) = ce−c (continuous), and

ĴN (c) =


1
N , if c = 0;

0, if c = N ;

J̄(c) otherwise.

It is easy to see that the unique minimum point of J̄ is c̄ = 0, the unique
minimum point of ĴN is ĉN = N , and ĴN converges to J̄ uniformly as
N →∞; nevertheless hypothesis 4 of the Lemma does not hold, and indeed
limN→∞ ĉN =∞ 6= c̄.
Consider now the case in which C = [0, 1] (compact), J̄ is defined as follows:

J̄(c) =


1, if c = 0;

0, if c = 1;

c otherwise,

(not continuous), and

ĴN (c) =


1, if c = 0;
1
N , if c = 1;

0, if c = 1
N ;

c otherwise.
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Here, again, hypotheses 1 to 3 of the Lemma are satisfied, since the unique
minimum point of J̄ is c̄ = 1, the unique minimum point of ĴN is ĉN = 1

N ,

and ĴN converges to J̄ uniformly as N →∞; but hypothesis 5 of the Lemma
does not hold, and indeed limN→∞ ĉN = 0 6= c̄. �

Lemma 5.4.1 is an asymptotic result. However, provided that an uniform
bound is available, that is, if we know that for a certainN ĴN is “uniformly ε-
close” to J̄ , then given the empirical error ĴN (ĉN ) we can still say something
on the quantities that really matter, J̄(ĉN ) and J̄(c̄). Fix N, ε. If

sup
c∈C
|ĴN (c)− J̄(c)| ≤ ε,

then

J̄(ĉN ) =
(
J̄(ĉN )− ĴN (ĉN )

)
+
(
ĴN (ĉN )− ĴN (c̄)

)
+
(
ĴN (c̄)− J̄(c̄)

)
+ J̄(c̄)

= (≤ ε) + (≤ 0) + (≤ ε) + J̄(c̄)

≤ J̄(c̄) + 2ε.

On the other hand, under the same hypothesis,

J̄(ĉN ) ≤ ĴN (ĉN ) + ε.

5.5 Convergence of the empirical distribution

To establish whether it happens that ĴN → J̄ uniformly, we need some re-
sults on the convergence of the empirical distribution of the data to the
actual distribution. We will focus on real, mono-dimensional data, al-
though the results can be extended to multivariate data (the so-called Vap-
nik/Chervonenkis theory).
Let X1, · · ·XN be independent real random variables, identically distributed
and with distribution function

F (x) := P [X ≤ x] = E [1X≤x]

Here, for any fixed x ∈ R, 1X≤x is a random variable that takes value 1 if
X ≤ x, and 0 if X > x. On the other hand, since X is a random variable,
1X≤x can be understood also as a random function of x which takes value
0 if x < X, and 1 if x ≥ X (in other words, it is the indicator function of
the random interval [X,∞)).
Suppose that the distribution F is unknown; we estimate it with the follow-
ing function, called the empirical distribution of the Xi:

F̂N (x) :=
1

N

N∑
i=1

1Xi≤x
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Think of it as the true distribution with the expectation replaced by a sample
average. You can easily verify that F̂N is actually a distribution function
in its own right: it is monotone non-decreasing, continuous from the right,
and its limits at −∞ and +∞ are 0 and 1 respectively. Note that, since the
Xi are identically distributed,

E
[
F̂N (x)

]
=

1

N

N∑
i=1

E [1Xi≤x] =
1

N

N∑
i=1

F (x) = F (x)

so that, for a fixed x, F̂N (x) is an unbiased estimator of F (x). Does this
estimator enjoy consistency as well? The answer is yes!

Lemma 5.5.1 For any fixed x ∈ R, F̂N (x) converges to F (x) almost surely.

Proof. Indeed, for a fixed x, since Xi are i.i.d. random variables, 1Xi≤x(x)
are i.i.d. random variables as well (but taking only the values 0 and 1).
Therefore, applying the strong law of large numbers (Theorem D.7.2),

lim
N→∞

F̂N (x) = lim
N→∞

1

N

N∑
i=1

1Xi≤x = E [1Xi≤x] = F (x),

almost surely. �

This is an asymptotic result. We wish to say something more on the rate
of convergence to F (x), since we only have N data available. For example,
given a fixed x, define the distribution error:

EN (x) := F (x)− F̂N (x)

=
1

N

N∑
i=1

(P [Xi ≤ x]− 1Xi≤x)

=
1

N

N∑
i=1

νi(x),

where νi(x) := P [Xi ≤ x]−1Xi≤x(x) are now i.i.d. random variables taking
values in [−1, 1], with mean E [νi(x)] = P [Xi ≤ x]− E [1Xi≤x(x)] = 0 and a
certain unknown variance σ2

ν . Of course, then,

E [EN (x)] = 0

Var [EN (x)] = Var

[
1

N

N∑
i=1

νi(x)

]
=

1

N2
Var

[
N∑
i=1

νi(x)

]

=
1

N2

N∑
i=1

σ2
ν =

σ2
ν

N
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and applying Čebyšev’s inequality for a certain ε > 0

P [|EN (x)| ≥ ε] ≤ Var [EN (x)]

ε2
=

σ2
ν

Nε2
→ 0

as N → ∞. Hence, EN (x) → 0 or, which is the same, F̂N (x) → F (x), in
probability, with rate of convergence 1/N .
This result is nice, but not yet satisfactory. Indeed, due to the central limit
theorem, we expect that for big N , the quantity

√
NEN (x) =

1√
N

N∑
i=1

νi(x)

is approximately Gaussian with mean 0 and variance σ2
ν . Hence

P [|EN (x)| ≥ ε] = P

[∣∣∣∣∣ 1

N

N∑
i=1

νi(x)

∣∣∣∣∣ ≥ ε
]

= P

[∣∣∣∣∣ 1√
N

N∑
i=1

νi(x)

∣∣∣∣∣ ≥ √Nε
]

' P
[∣∣N (0, σ2

ν)
∣∣ ≥ √Nε],

and the latter quantity, that is the area of the tails of a Gaussian distribution
beyond ±

√
Nε, tends to zero exponentially as N →∞. Therefore, we expect

that the empirical distribution converges with exponential rate. We will
establish it rigorously with the following result.

5.6 Hoeffding’s inequality

Hoeffding’s inequality is a bound on the probability that a sample average
is distant from the mean. It has a similar purpose to Čebyšev’s inequality,
but it requires more (boundedness) and yields a far tighter bound. We start
with a preliminary result, also by Hoeffding:

Lemma 5.6.1 (Hoeffding). Let Z be a bounded random variable with E [Z] =
0, namely let Z ∈ [a, b], where a ≤ 0 ≤ b. Then for any s ≥ 0

E
[
esZ
]
≤ e

s2(b−a)2

8 .

Proof.
If s = 0 or a = b (which implies a = b = 0 and hence Z = 0 almost surely),
the statement reads 1 ≤ 1 and is trivially true. Hence, let us suppose in the
following that s > 0 and a < b.
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Note that esZ is a convex function in Z for any s > 0. Let λ = Z−a
b−a ; then

1− λ = b−Z
b−a , and since Z ∈ [a, b] we have λ ≥ 0, 1− λ ≥ 0 and moreover

λb+ (1− λ)a = Z.

Therefore

esZ = es(λb+(1−λ)a)

≤ λesb + (1− λ)esa (by convexity)

=
Z − a
b− a

esb +
b− Z
b− a

esa;

taking expectations,

E
[
esZ
]
≤ besa − aesb

b− a
,

and taking logarithms,

log E
[
esZ
]
≤ log

besa − aesb

b− a
= sa+ log

b− aes(b−a)

b− a
(for small s the argument of the logarithm is not zero, because a < b). Let
c = −a

b−a , and apply the change of variable t = s(b− a):

log E
[
esZ
]
≤ −ct+ log(1− c+ cet) := f(t).

(Again, for small t the expression 1− c+ cet is not zero since a < b.)
Now we expand f in a Taylor polynomial around t = 0 (which corresponds
to s = 0). By Taylor’s theorem

f(t) = f(0) + f ′(0)t+
f ′′(u)

2
t2

for a certain u between 0 and t. Consider that

f(0) = 0

f ′(t) = −c+
cet

1− c+ cet

f ′(0) = 0

f ′′(t) =
cet(1− c+ cet)− (cet)2

(1− c+ cet)2
=

(1− c)cet

(1− c+ cet)2

The last expression is of the form αβ
(α+β)2 , and since for any numbers α, β

such that α+ β 6= 0 it holds

0 ≤ α2 − 2αβ + β2 = (α− β)2

4αβ ≤ α2 + 2αβ + β2 = (α+ β)2

αβ

(α+ β)2
≤ 1

4
,
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we have f ′′(t) ≤ 1
4 for all t. But then

log E
[
esZ
]
≤ f(t) =

f ′′(u)

2
t2 ≤ t2

8
=
s2(b− a)2

8
.

Finally, taking exponentials establishes the claim. �

Theorem 5.6.1 (Hoeffding’s inequality). Let Zi ∈ [ai, bi] be independent,
bounded random variables for i = 1, · · · , N , and let SN = 1

N

∑N
i=1 Zi. Then

P [SN − E [SN ] ≥ ε] ≤ exp

(
−2N2ε2∑N
i=1(bi − ai)2

)
;

P [SN − E [SN ] ≤ −ε] ≤ exp

(
−2N2ε2∑N
i=1(bi − ai)2

)
.

Note that the variables {Zi} are not supposed to be identically distributed,
and E [SN ] is not necessarily a constant.

Proof. For all s ≥ 0,

P [SN − E [SN ] ≥ ε] = P
[
es(SN−E[SN ]) ≥ esε

]
≤

E
[
es(SN−E[SN ])

]
esε

(Chernoff’s bound)

=
E
[
e
s
N

∑N
i=1(Zi−E[Zi])

]
esε

=

∏N
i=1 E

[
e
s
N

(Zi−E[Zi])
]

esε
(by independence).

Now, Zi − E [Zi] is a random variable with mean 0 taking values in [ai −
E [Zi], bi − E [Zi]]. Therefore, from Lemma 5.6.1 we get

E
[
e
s
N

(Zi−E[Zi])
]
≤ exp

(
s2

N2 (bi − E [Zi]− ai + E [Zi])
2

8

)

= exp

(
s2(bi − ai)2

8N2

)
;

hence

P [SN − E [SN ] ≥ ε] ≤

∏N
i=1 exp

(
s2(bi−ai)2

8N2

)
esε

= exp

(
s2
∑N

i=1(bi − ai)2

8N2
− sε

)
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for all s ≥ 0. In particular, the inequality holds for the minimum over s ≥ 0
of the right-hand side, which is attained at the minimum exponent, which
in turn is attained for s = 4N2ε/

∑N
i=1(bi − ai)2; namely,

P [SN − E [SN ] ≥ ε] ≤ exp

(
−2N2ε2∑N
i=1(bi − ai)2

)
,

and the first part of the claim is proven. The proof of the second part of
the claim is obtained in a similar way, starting from a Chernoff bound on
P [E [SN ]− SN ≥ ε]. �

Corollary 5.6.1 Under the same hypotheses of Theorem 5.6.1,

P [|SN − E [SN ]| ≥ ε] ≤ 2 exp

(
−2N2ε2∑N
i=1(bi − ai)2

)
.

Proof. The statements follows trivially from the Theorem, since the events
whose probabilities are bounded by Hoeffding’s inequality are disjoint:

P [|SN − E [SN ]| ≥ ε] = P [SN − E [SN ] ≥ ε] + P [SN − E [SN ] ≤ −ε].

�

Example. Let us test our new result, and compare it with Čebyšev’s in-
equality. We toss a fair coin N = 100 times, and compute bounds on the
probability that the number of heads that we get is at most 10 or at least
90. For i = 1, · · · , 100 define the independent Bernoulli variables

Zi =

{
1, with probability p = 1

2 , if at the i-th outcome we get a head;

0, with probability 1− p = 1
2 , if at the i-th outcome we get a tail.

The total number of heads is
∑100

i=1 Zi, which is a binomial variableB(N, p) =
B(100, 1

2) with mean Np = 50 and variance Np(1−p) = 25. The event “the

number of heads is at most 10 or at least 90” reads
∣∣∣∑100

i=1 Zi − 50
∣∣∣ ≥ 40.

Therefore Čebyšev’s inequality yields

P

[∣∣∣∣∣
100∑
i=1

Zi − 50

∣∣∣∣∣ ≥ 40

]
≤ 25

402
' 1.56× 10−2.
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On the other hand, the Zi are bounded random variables taking values in
[0, 1], hence Hoeffding’s inequality yields

P

[∣∣∣∣∣
100∑
i=1

Zi − 50

∣∣∣∣∣ ≥ 40

]
= P

[∣∣∣∣∣ 1

100

100∑
i=1

Zi −
50

100

∣∣∣∣∣ ≥ 40

100

]

= P

[
|S100 − E [S100]| ≥ 2

5

]
≤ 2 exp

(
−2 · 1002 ·

(
2
5

)2∑100
i=1(1− 0)2

)
= 2e−32 ' 2.53× 10−14.

You can see that Hoeffding’s bound is much tighter than Čebyšev’s one.
Compare the bounds with the true probability:

P

[(
100∑
i=1

Zi ≤ 10

)
∨

(
100∑
i=1

Zi ≥ 90

)]

=

10∑
k=0

(
100

k

)(
1

2

)k (1

2

)100−k
+

100∑
k=90

(
100

k

)(
1

2

)k (1

2

)100−k

= 2 · 2−100 ·
10∑
k=0

(
100

k

)
' 3.06× 10−17.

�

5.7 Exponential convergence of the empirical distribution

We can now apply Hoeffding’s inequality to the empirical distribution. For
a fixed x, let

Zi = 1Xi≤x

E [Zi] = P [Xi ≤ x] = F (x)

SN =
1

N

N∑
i=1

Zi = F̂N (x)

E [SN ] = F (x)

[ai, bi] = [0, 1]

We obtain

P
[∣∣∣F̂N (x)− F (x)

∣∣∣ ≥ ε] ≤ 2 exp

(
−2N2ε2∑N
i=1(1− 0)2

)
= 2e−2Nε2 .
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In words: at all x, the empirical distribution converges in probability to the
true distribution, with exponential rate of convergence.

It so happens that the exponential rate of convergence is enough to establish
almost sure convergence as well. Although we already know that almost sure
convergence holds from the strong law of large numbers (Lemma 5.5.1), in
Appendix F.1 we provide an alternative proof based on Hoeffding’s inequal-
ity. The proof is somewhat subtle, but instructive and worth some effort.

Summing up, we would say that the empirical distribution behaves quite
nicely, but these results are still not sufficient to say something about the
empirical error ĴN , and its uniform convergence to the real error J̄ . For
this, we need to establish that the empirical distribution converges to the
true one uniformly; this is the statement of the Glivenko/Cantelli theorem.

5.8 Uniform convergence of the empirical distribution

Theorem 5.8.1 (Glivenko/Cantelli). Let {Xi} be a sequence of indepen-
dent variables, identically distributed according to the distribution F (x), and
let the empirical distribution F̂N (x) be defined as before. Then, almost
surely, F̂N → F uniformly, that is,

lim
N→∞

sup
x∈R
|F̂N (x)− F (x)| = 0 almost surely.

Proof. Although the theorem is true in general, we provide a simple proof
for the particular case when F is continuous. You can find a general proof
in [5] or [1, Theorem 20.6, p. 269].

Since F is continuous, for any ε > 0 there exist finitely many points

x1 < · · · < xj < · · · < xK

such that F (x1) ≤ ε/2, 1−F (xK) ≤ ε/2, and F (xj+1)−F (xj) ≤ ε/2 for all
j = 1, · · · ,K − 1. Given the K points, let us denote, for the sake of clarity,
“x0 = −∞” and “xK+1 = +∞” so that F (x0) = 0, F (xK+1) = 1, and the
requirement reads: F (xj+1)− F (xj) ≤ ε/2 for all j = 0, · · · ,K.

Now, by the strong law of large numbers, at all points xj it holds F̂N (xj)→
F (xj) almost surely. Hence, almost surely for all ε > 0 there exists Nj such
that |F̂N (xj)−F (xj)| ≤ ε/2 for all N ≥ Nj . Since the xj are finitely many,
it is well defined the index N̄ := maxj=1···K Nj , such that for all N ≥ N̄ the
inequalities

|F̂N (xj)− F (xj)| ≤ ε/2, j = 1, · · · ,K
hold simultaneously. The other two inequalities

|F̂N (x0)− F (x0)| ≤ ε/2, |F̂N (xK+1)− F (xK+1)| ≤ ε/2
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hold trivially, since F̂N (−∞) = F (−∞) = 0 and F̂N (+∞) = F (+∞) = 1.
Note that N̄ is random, but this is inessential here; the crucial point is that
since the {xj} are finitely many, N̄ exists finite almost surely.
Consider now any real number x. There exists a certain index j ∈ {0, · · · ,K}
such that x belongs to an interval delimited by xj and xj+1, namely x ∈
(x0, x1) if x < x1, or x ∈ [xj , xj+1) for a certain j ∈ {1, · · · ,K} otherwise.
Thus, for all N ≥ N̄ ,

F̂N (x) ≥ F̂N (xj) (by the monotonicity of F̂N )

≥ F (xj)−
ε

2
(by the inequalities that hold for N ≥ N̄)

≥ F (x)− ε (by construction of the {xj}),

and by similar arguments

F̂N (x) ≤ F̂N (xj+1)

≤ F (xj+1) +
ε

2
≤ F (x) + ε.

The latter inequalities together yield |F̂N (x)− F (x)| ≤ ε.
Summing up, almost surely for all ε there exists N̄ such that, for all N ≥ N̄ ,
it holds |F̂N (x)− F (x)| ≤ ε for all x, and consequently

sup
x∈R
|F̂N (x)− F (x)| ≤ ε.

In other terms,

sup
x∈R
|F̂N (x)− F (x)| → 0 almost surely.

�

As before, we wish to investigate the behavior of F̂N (x) for finite N , to
establish a result on “uniform closeness”. To do this, first notice that in the
proof of the Glivenko/Cantelli theorem the number K of points is a simple
function of ε, namely K = d2/εe − 1; for the sake of clarity, take K = 2/ε,
and assume that it is an integer number.
Then, for fixed ε, the probability that |F̂N (xj)−F (xj)| > ε/2 at any of the
K points is

P

 K⋃
j=1

{
|F̂N (xj)− F (xj)| > ε/2

} ≤ K∑
j=1

P
[
|F̂N (xj)− F (xj)| > ε/2

]

≤
K∑
j=1

2e−2N(ε/2)2
(Hoeffding)

=
4

ε
e−Nε

2/2.
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Hence, with probability at least 1− 4
εe
−Nε2/2 the inequalities

|F̂N (xj)− F (xj)| ≤ ε/2, j = 1, · · · ,K

hold simultaneously. Repeating the other steps in the proof of Glivenko/Cantelli’s
theorem, we obtain the following result:

Lemma 5.8.1 Fix ε > 0, N . Then

P

[
sup
x∈R
|F̂N (x)− F (x)| ≤ ε

]
≥ 1− 4

ε
e−Nε

2/2.

This probability tends to 1 with exponential rate as N → ∞. We remark
that this convergence rate would be enough to establish again almost sure
convergence, as in Glivenko/Cantelli’s theorem.

The last step that we need before returning to classification problems is an
extension to two variables, one of which is binary.
Let {(Xi, Yi)} be a sequence of independent and identically distributed ran-
dom pairs, where Xi ∈ R and Yi ∈ {0, 1}. Let P [Yi = 0] = α,P [Yi = 1] =
1− α, and define

F 0(x) := P [Xi ≤ x, Yi = 0],

F 1(x) := P [Xi ≤ x, Yi = 1].

Then of course

F (x) = P [Xi ≤ x]

= P [(Xi ≤ x ∧ Yi = 0) ∨ (Xi ≤ x ∧ Yi = 1)]

= P [Xi ≤ x ∧ Yi = 0] + P [Xi ≤ x ∧ Yi = 1]

= F 0(x) + F 1(x);

moreover,

lim
x→−∞

F 0(x) = lim
x→−∞

P [Xi ≤ x ∧ Yi = 0]

= lim
n→∞

P [{Xi ≤ −n} ∩ {Yi = 0}]

= P

[ ∞⋂
n=1

{Xi ≤ −n} ∩ {Yi = 0}

]
= P [∅ ∩ {Yi = 0}] = 0;

lim
x→∞

F 0(x) = lim
x→∞

P [Xi ≤ x ∧ Yi = 0] = P [Yi = 0] = α;

lim
x→−∞

F 1(x) = 0;

lim
x→∞

F 1(x) = P [Yi = 1] = 1− α.
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The functions F 0 and F 1 behave like distribution functions, except for their
limits at +∞. Define now

F̂ 0
N (x) :=

1

N

N∑
i=1

1Xi≤x,Yi=0 ,

F̂ 1
N (x) :=

1

N

N∑
i=1

1Xi≤x,Yi=1 .

These are the respective “empirical” counterparts of F 0 and F 1. Since
E [1Xi≤x,Yi=0] = P [Xi ≤ x, Yi = 0] = F 0(x), and analogously for F 1(x), by
the strong law of large numbers we get, for all x ∈ R,

F̂ 0
N (x)→ F 0(x) almost surely as N →∞;

F̂ 1
N (x)→ F 1(x) almost surely as N →∞.

Hence we can repeat the proof of Glivenko/Cantelli theorem, with minor
changes, to show that

sup
x∈R
|F̂ 0
N (x)− F 0(x)| → 0 almost surely;

sup
x∈R
|F̂ 1
N (x)− F 1(x)| → 0 almost surely.

For example, to prove the convergence of F̂ 0
N to F 0, the differences from the

“standard” Glivenko/Cantelli proof are that

1. the limit of F 0 as x→∞ is α, not 1;

2. the limit of F̂ 0
N as x→∞ is αN := number of Yi equal to 0

N , that is different
from α; hence, with the same notation of Theorem 5.8.1, the inequality

|F̂ 0
N (xK+1)− F 0(xK+1)| ≤ ε/2

is not satisfied trivially. However, αN → α almost surely by the strong
law of large numbers, hence this issue is easily solved for N̄ large
enough.

Finally, we can repeat our considerations for the probabilistic bound of
Lemma 5.8.1. Since now the “distributions” F 0 and F 1 do not have the
co-domain [0, 1], but [0, α] and [0, 1− α] respectively, the number of points
to “split” the co-domains in sub-intervals of length ε/2 and carry on with
Glivenko/Cantelli-like proofs are now K0 = 2α/ε for F 0, and K1 = 2(1 −
α)/ε for F 1. The result reads as follows:

Lemma 5.8.2 Let {(Xi, Yi)} be a sequence of independent and identically
distributed random pairs, where Xi ∈ R and Yi ∈ {0, 1}. Let P [Yi = 0] = α
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and let the functions F 0(·), F 1(·), F̂ 0
N (·), F̂ 1

N (·) be defined as before. Then,
for any ε > 0 and N ,

P

[
sup
x∈R
|F̂ 0
N (x)− F 0(x)| ≤ ε

]
≥ 1− 4α

ε
e−Nε

2/2,

P

[
sup
x∈R
|F̂ 1
N (x)− F 1(x)| ≤ ε

]
≥ 1− 4(1− α)

ε
e−Nε

2/2.

5.9 Threshold classifiers

Armed with a lot of results from the previous sections, namely

• the strong law of large numbers,

• Hoeffding’s inequality and its consequences,

• the Glivenko/Cantelli theorem and its generalizations, and

• the lemma on uniform convergence,

we can finally return to classifiers and the uniform convergence of the em-
pirical error. Consider the following family of mono-dimensional classifiers:

FT = {1(−∞,c](·)}.

These are called threshold classifiers, and are parameterized by a number
c ∈ R. (The parameter set is C = R.) A classifier in this family has the
form

f̂c(u) =

{
1, if u ≤ c;
0, if u > c.

Suppose that the data (U1, Y1), · · · , (UN , YN ) are available, and recall the
following definitions regarding true and empirical error:

J̄(c) = P
[
Yi 6= f̂c(Ui)

]
,

ĴN (c) =
1

N

N∑
i=1

1Yi 6=f̂c(Ui) ,

c̄ = arg min
c∈C

J̄(c),

ĉN = arg min
c∈C

ĴN (c).

To establish the convergence of the minimum empirical error, we are going to
exploit Lemma 5.4.1, which requires the existence of ĉN and c̄, and possibly
their uniqueness.
It is easy to convince ourselves that ĉN always exists. Indeed ĴN (c) takes
constant values in each of the intervals (−∞, U1), [U1, U2), [U2, U3), · · · , [UN ,∞);
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since these intervals are finitely many, minc∈R ĴN (c) is the minimum of those
finitely many constant values. On the other hand, ĉN is never unique, be-
cause ĴN (c) takes the same value over the entire interval that attains the
minimum.

The same questions arise with respect to c̄. In fact, neither its existence nor
its uniqueness are automatically guaranteed for the threshold classifiers, as
the following example shows:

Example. Let Ui be Gaussian with mean 0 and variance 1, and let

Yi =

{
0 with probability α = 0.1,

1 with probability 1− α = 0.9,

irrespective of Ui. Then

J̄(c) = 0.1 · 1√
2π

∫ c

−∞
e−u

2/2 du+ 0.9 · 1√
2π

∫ ∞
c

e−u
2/2 du.

Then infc∈R J̄(c) = limc→∞ J̄(c) = 0.1, but J̄(c) = 0.1 is not attained for
any c ∈ R, hence the minimum point c̄ does not exist. As another example,
let Ui be uniform in [0, 3], and

Yi =

{
1, if Ui ∈ [0, 1] or Ui ∈ [2, 3];

0, otherwise.

Here, infc∈R J̄(c) = 1
3 , which is attained at both c̄ = 1 and c̄ = 3. Thus, the

minimum point is not unique. �

Regarding uniqueness, we do not really care, because we will use only the
first part of Lemma 5.4.1, which does not require it. On the other hand,
the existence of c̄ is needed, but it depends crucially on the data-generation
rule, which we suppose unknown. Therefore the best that we can do is to
assume it as a hypothesis.

Our final result shows that under this and other fairly general hypotheses,
convergence holds, so that the minimization of the empirical error in FT
actually makes sense:

Theorem 5.9.1 Let FT = {1(−∞,c](·)}, parameterized by c ∈ C, where
C = R. Suppose that (U1, Y1), · · · , (UN , YN ) are independent and identically
distributed, where Ui has continuous distribution F (u), Yi ∈ {0, 1}, and
P [Yi = 0] = α. Define J̄(c), ĴN (c), c̄, and ĉN as usual, and assume that c̄
exists. Then:

1. almost surely, ĴN → J̄ uniformly;
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2. almost surely, J̄(ĉN )→ J̄(c̄);

3. for fixed ε > 0 and N , it holds

P

[
sup
c∈C
|ĴN (c)− J̄(c)| ≥ ε

]
≤ 8

ε
e−Nε

2/8.

Proof. For each Ui define Vi = −Ui, and denote G(u) the distribution of
Vi. Define, as we did in the previous section,

F 0(u) = P [Ui ≤ u, Yi = 0]

F̂ 0
N (u) =

1

N

N∑
i=1

1Ui≤u,Yi=0

G1(u) = P [Vi ≤ u, Yi = 1] (it tends to P [Yi = 1] = 1− α as u→∞)

Ĝ1
N (u) =

1

N

N∑
i=1

1Vi≤u,Yi=1

Note that:

J̄(c) = P
[(
f̂c(Ui) = 1 ∧ Yi = 0

)
∨
(
f̂c(Ui) = 0 ∧ Yi = 1

)]
= P [Ui ≤ c, Yi = 0] + P [Ui > c, Yi = 1]

= P [Ui ≤ c, Yi = 0] + P [Vi < −c, Yi = 1]

= F 0(c) +G1(−c)

where the last equality holds in particular because, since Ui and consequently
Vi have continuous distributions, P [Vi = −c] = P [Ui = c] = 0. Moreover,

ĴN (c) =
1

N

N∑
i=1

1{(f̂c(Ui)=1∧Yi=0)∨(f̂c(Ui)=0∧Yi=1)}

=
1

N

N∑
i=1

1Ui≤c,Yi=0 + 1Ui>c,Yi=1

=
1

N

N∑
i=1

1Ui≤c,Yi=0 + 1Vi<−c,Yi=1

= F̂ 0
N (c) + Ĝ1

N (−c)− 1

N

N∑
i=1

1Vi=−c,Yi=1

Exploiting these expressions for J̄(c) and ĴN (c),∣∣∣ĴN (c)− J̄(c)
∣∣∣ ≤ ∣∣∣F̂ 0

N (c)− F 0(c)
∣∣∣+
∣∣∣Ĝ1

N (−c)−G1(−c)
∣∣∣

+

∣∣∣∣∣ 1

N

N∑
i=1

1Ui=c,Yi=1

∣∣∣∣∣ .
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As N →∞, the supremum over C of the first two terms on the right-hand
side tends almost surely to zero by the Glivenko/Cantelli theorem. On the
other hand, the third term is almost surely equal to zero because Ui has
continuous distribution (the event {Ui = c} has probability zero). There-
fore the supremum of |ĴN (c) − J̄(c)| tends also almost surely to zero; this
establishes the first part of the claim.

In other words, ĴN (c) → J̄(c) uniformly almost surely; applying Lemma
5.4.1 establishes the second part of the claim.

Now fix ε and N . By Lemma 5.8.2,

P [A] := P

[
sup
c∈R

∣∣∣F̂ 0
N (c)− F 0(c)

∣∣∣ ≥ ε] ≤ 4α

ε
e−Nε

2/2;

P [B] := P

[
sup
c∈R

∣∣∣Ĝ1
N (−c)−G1(−c)

∣∣∣ ≥ ε] ≤ 4(1− α)

ε
e−Nε

2/2.

On the other hand, the event
{∣∣∣ 1

N

∑N
i=1 1Ui=c,Yi=1

∣∣∣ ≥ ε} has probability 0

for all ε > 0, since Ui = −Vi has continuous distribution. Putting together
the inequalities,

P

[
sup
c∈R
|ĴN (c)− J̄(c)| ≥ 2ε

]
≤ P [A ∪ B] ≤ P [A] + P [B] ≤ 4

ε
e−Nε

2/2.

The third part of the claim follows immediately from a change of variable
2ε = ε′. �

Using the simple arguments shown after the proof of Lemma 5.4.1, one can
also show that for fixed ε > 0 and N , both the events J̄(ĉN ) ≤ ĴN (ĉN ) + ε
and J̄(ĉN ) ≤ J̄(c̄) + 2ε have probability at least 1 − 8

εe
−Nε2/8. Unfortu-

nately, the probabilistic bound established by Theorem 5.9.1 is not really
tight unless N is very large, as the following example shows.

Example. Suppose we wish that the empirical error is within distance at
most ε = 0.1 from the true one. The theorem says that this happens with
probability at least 1− P, where

P =
8

1/10
e−N

(1/10)2

8 = 80e−
N

800 .

Solving for N ,

N = 800 · log

(
80

P

)
.

To attain, for instance, P = 0.0001, one needs N ' 11000 measures.
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Suppose now that we ask that the empirical error is within distance at most
ε = 0.05 from the true one. This happens with probability at least 1 − P,
where

P =
8

5/100
e−N

(5/100)2

8 = 160e−
N

3200 ,

and solving for N ,

N = 3200 · log

(
160

P

)
.

Even to attain P = 0.01, now we need N ' 31000 measures. �

Thus, the applicability and practical usefulness of Theorem 5.9.1 depends on
how many data are available. In fact, the bound established by this result is
not the tightest available. Moreover, it comes in the form of a probabilistic
inequality for an uniform bound over a large set; hence, the bound is loose
because we are asking a lot from it. In practice, the empirical error will be
more likely to be close to the true one than what the bound says.

However, you will not fail to recognize that Theorem 5.9.1 is mathemati-
cally interesting for another reason, which has been left implicit from the
beginning:

the bound does not depend on either the distribution of the data
(U1, Y1), · · · , (UN , YN ), or the way in which Yi depends on Ui.

The result is, in other words, distribution-free. Many statistical methods
in widespread use assume hypotheses like Gaussianity like they were just
obvious, while they are in fact rather restrictive, if not sometimes unrealistic,
and rely on the estimation of parameters like mean and variance of Gaussian
variables. Instead, the above result makes the least possible assumptions
on the data (the most demanding one being that they actually come in
independent pairs); and common sense tells us that the less assumptions
we make on our data, the broader will be the area in which our theory
can be applied. This is not to say that inferential statistics based on the
Gaussian, Fisher, and Student’s distributions should be avoided (the central
limit theorem stands there as a milestone suggesting just the opposite), but
that we should refrain as much as possible from pretending hypotheses “for
free” just because the consequent theses are mathematically more appealing,
or simpler, or traditional. Indeed, more and more research is being done,
nowadays, on statistical methods that do not assume that the data belong
to restricted classes of distributions, parameterizable with a few numbers
(mean, variance, and so on). “Non-parametric statistics” is the generic
term encompassing such methods; in the following chapters, we will study
other two of them.
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5.10 Interval classifiers

We propose some arguments, analogous to those of the previous section,
applied to a family of interval classifiers similar to those that we have already
encountered. The family is the following:

FI = {1(a,b](u)}.

They are the indicator functions of intervals open on the left and closed on
the right, parameterized by a pair c = (a, b) ∈ C, where C = {(a, b) ∈
R2 | a < b}.) A classifier in this family has the form

f̂c(u) =

{
1, if a < u ≤ b;
0, otherwise.

Let us define, as before,

F 0(u) = P [Ui ≤ u, Yi = 0]

G1(u) = P [Vi ≤ u, Yi = 1]

etc.
Now the only subtle point to notice is that, exactly like for a distribution
function it holds

P [a < X ≤ b] = F (b)− F (a),

for the “marginal” distribution functions it holds

P [a < Ui ≤ b, Yi = 0] = F 0(b)− F 0(a)

The rest relies on tedious, but straightforward computations, which we sum-
marize briefly:

J̄(c) = J̄((a, b))

= P [(a < Ui ≤ b, Yi = 0) ∨ (Ui ≤ a, Yi = 1) ∨ (Ui > b, Yi = 1)]

= F 0(b)− F 0(a) + F 1(a) +G1(−b);
ĴN (c) = ĴN ((a, b))

=
1

N

N∑
i=1

1a<Ui≤b,Yi=0 + 1Ui≤a,Yi=1 + 1Ui>b,Yi=1

= F̂ 0
N (b)− F̂ 0

N (a) + F̂ 1
N (a) + Ĝ1

N (−b) +
1

N

N∑
i=1

1Vi=−b,Yi=1;
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Therefore∣∣∣ĴN (c)− J̄(c)
∣∣∣ =

∣∣∣ĴN ((a, b))− J̄((a, b))
∣∣∣

≤
∣∣∣F̂ 0
N (a)− F 0(a)

∣∣∣+
∣∣∣F̂ 0
N (b)− F 0(b)

∣∣∣
+
∣∣∣F̂ 1
N (a)− F 1(a)

∣∣∣+
∣∣∣Ĝ1

N (−b)−G1(−b)
∣∣∣

+

∣∣∣∣∣ 1

N

N∑
i=1

1Ui=b,Yi=1

∣∣∣∣∣ .
With these observations, using only the Glivenko/Cantelli theorem (al-
though now C ⊂ R2), one can prove the following result, analogous of
Theorem 5.9.1:

Theorem 5.10.1 Let FI = {1(a,b](u)}, parameterized by c ∈ C, where C =
{(a, b) ∈ R2 | a < b}. Suppose that (U1, Y1), · · · , (UN , YN ) are independent
and identically distributed, where Ui has continuous distribution F (u), Yi ∈
{0, 1}, and P [Yi = 0] = α. Define J̄(c), ĴN (c), c̄, and ĉN as usual, and
assume that c̄ exists. Then:

1. almost surely, ĴN → J̄ uniformly;

2. almost surely, J̄(ĉN )→ J̄(c̄);

3. for fixed ε > 0 and N , it holds

P

[
sup
c∈C
|ĴN (c)− J̄(c)| ≥ ε

]
≤ 16

ε
e−Nε

2/32.

(As you can guess from the example in the previous section, the bound is
now rather loose.)

5.11 Exercises for Chapter 5

Problem 1 (complaint telephone calls).
A big company receives N complaint calls {ti}, i = 1, · · · , N , and for each
call it records the region {ri}, i = 1, · · · , N , of the caller. Suppose that the
{ri} are independent and identically distributed random variables taking val-
ues, say, in the set of the 20 Italian regions {Piedmont,Lombardy, · · · ,Sicily}
with respective probabilities P = {p(Piedmont), p(Lombardy), · · · , p(Sicily)}
(which depend, in general, on the region’s population, on the quality of ser-
vice in the region, etc.). Using Hoeffding’s inequality, compute how many
telephone calls should be recorded in order to estimate the “mass distribu-
tion” P so that, with confidence at least 1 − 10−4, the estimation error of
the probability is at most ε = 1% at all the regions simultaneously.
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Problem 2 (finitely many classifiers).
Prove the following

Theorem 5.11.1 Let F be a family of classifiers, parameterized by c ∈ C,
where C is a finite of Rp, namely |C| = K. Suppose that (U1, Y1), · · · , (UN , YN )
are independent and identically distributed, where Ui has continuous distri-
bution F (u) and Yi ∈ {0, 1}. Define J̄(c), ĴN (c), c̄, and ĉN as usual. Now
the points ĉN , c̄ ∈ C trivially exist, since C is finite; assume that c̄ is unique.
Then:

1. almost surely, ĉN → c̄;

2. for fixed ε > 0 and N , it holds

P

[
max
c∈C
|ĴN (c)− J̄(c)| ≥ ε

]
≤ 2Ke−2Nε2 .
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6 The LSCR method

6.1 Introduction and motivation

Suppose that a sample {y1, · · · , yN} of independent and identically dis-
tributed random variables is drawn from a Gaussian distribution N (θo, σ2)
whose mean θo is not known. The goal of this chapter (and the leitmotif of
this course) is to extract information about θo from the data.
In the spirit of Chapter 1, the sample can be seen as N measures

yi = θo + εi, i = 1, · · · , N,

to be “explained” in terms of the “true” parameter θo, corrupted by some
errors εi ∼ N (0, σ2). The approach of Chapter 1 would be to provide a
point estimate of θo minimizing some cost criterion (the sum of the squared
residuals); as we know, the estimate provided by the least squares method
is

θ̂ =
1

N

N∑
i=1

yi

(we also know that this estimate is unbiased, consistent, and a lot of other
stuff).
However, such an estimate, for finite N , comes with no guarantee at all.
The only thing that can be said from the probabilistic standpoint, on the
sole basis of θ̂, is that P[θ̂ = θo] = 0, since the distribution of the {yi} is
continuous, and this is not valuable information. Instead, a “guarantee” on
the usefulness of θ̂ should be a “certificate” that θ̂ and θo are probably close.
In parametric statistics such “certificate” usually comes in two forms, that
in the present case are strictly related to each other:

• the variance of θ̂. Since E[θ̂] = θo, the smaller its variance, the closer
it is, on average, to θo;

• a statement like “the probability P[|θ̂ − θo| ≥ d] is α”, for a certain
threshold d and significance α, say α = 5% = 0.05. If α is fixed,
a smaller threshold d implies that with a fixed probability the two
quantities are closer (this is the usual way to pose the problem). If,
on the other hand, d is fixed, a smaller significance α implies that the
two quantities are close with higher probability.

How can we provide such “certificates”?
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6.2 Confidence intervals, the standard way

If σ2 is known, there is no problem. Indeed,

Var
[
θ̂
]

= E
[
(θ̂ − θo)2

]
= E

( 1

N

N∑
i=1

εi

)2
 =

1

N2
E

( N∑
i=1

εi

)2
 =

1

N2

N∑
i=1

E
[
ε2
i

]
=
σ2

N
.

Moreover, since a sum of independent Gaussian variables is itself Gaussian,

it follows that θ̂ ∼ N
(
θo, σ

2

N

)
. Hence, the random variable

z :=
θ̂ − θo

σ/
√
N

is N (0, 1), i.e. with density 1√
2π
e−

t2

2 . Now, in statistical books or using any

statistical software, we can find a percentile zα such that

P

[∣∣∣∣∣ θ̂ − θoσ/
√
N

∣∣∣∣∣ ≥ zα
]

= P [|z| ≥ zα] = 1−
∫ zα

−zα

1√
2π
e−

t2

2 dz = α.

But then also

P

[∣∣∣θ̂ − θo∣∣∣ ≥ σzα√
N

]
= α,

hence d = σzα√
N

provides a “certificate” of the second kind. Another way to

say the same thing is that the interval

Iα :=

[
θ̂ − σzα√

N
, θ̂ +

σzα√
N

]
contains θo with probability 1 − α. We should be careful, here, about the
use of the word “probability”. Before the sample is drawn, the interval Iα is
itself random, and whether or not it will contain θo depends on the outcome
of the experiment; namely, it will happen with probability 1 − α. But after
the sample has been drawn the interval becomes deterministic. Either it
contains θo or it does not; in other words, the probability that θo ∈ Iα is
either 1 or 0. Thus, 1 − α is not anymore the “probability” of anything;
the usual name for it is confidence. Since it aims at what can be said after
a sample is drawn, the notion of confidence is often introduced from the
“frequentist” point of view; in this perspective, it means more or less the
following: if we run M � 0 experiments in parallel, that is, we draw M
samples

{y(1)
1 , · · · , y(1)

N }, {y
(2)
1 , · · · , y(2)

N }, · · · , {y
(M)
1 , · · · , y(M)

N },
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and we construct the respective intervals

I(1)
α , I(2)

α , · · · , I(M)
α ,

then
number of intervals that contain θo

M
' 1− α.

The above reasoning can be resumed as follows:

Lemma 6.2.1 Suppose that {y1, · · · , yN} are independent and identically
distributed random variables drawn from a Gaussian distribution N (θo, σ2)
whose variance σ2 is known but whose mean θo is not. Let θ̂ = 1

N

∑N
i=1 yi.

Then

Iα =

[
θ̂ − σzα√

N
, θ̂ +

σzα√
N

]
is a (1− α)-confidence interval for θo.

For example, if α = 5%, this means that if we re-sampled and computed
the interval a lot of times under the same assumptions, the interval would
contain the mean about 95% of the times.
However, this is not really a useful result. The problem with the above con-
struction is that it gives for granted that we know the variance σ2, whereas
in general this is not the case. There is a standard way, though, to construct
a (1−α)-confidence interval for θo, which does not rely on the knowledge of
any parameter (σ2). Intuitively, since less knowledge is assumed, the result
will be less precise (and notably so for little N), i.e. the confidence interval
will be larger.

The trick is, of course, to estimate σ2 from the dispersion of the data; the
following is the standard estimator, called the sample variance of the {yi}:

s̄2 =
1

N − 1

N∑
i=1

(yi − θ̂)2

It can be shown that s̄2 is a consistent estimator of σ2 (that is, it converges to
σ2 almost surely as N →∞). Note that the sum is weighted with 1

N−1 , not
1
N as one would expect. In this way, s̄2 becomes also an unbiased estimator
(i.e. E[s̄2] = σ2).
Let us recall here some results which are also stated in the Appendix:

Lemma 6.2.2 Let y1, · · · , yN ∼ N (0, 1) be independent random variables.
Then

N∑
i=1

y2
i ∼ χ2(N)
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In words: a sum of N squared independent “standard” (N (0, 1)) Gaussian
variables has a chi-square distribution with N degrees of freedom. A chi-
square is a continuous random variable taking values in [0,∞).

Theorem 6.2.1 Let y1, · · · , yN ∼ N (θo, σ2) be independent random vari-
ables. Then

• θ̂ ∼ N (θo, σ
2

N );

• (N − 1) s̄
2

σ2 ∼ χ2(N − 1);

• θ̂ and s̄2 are independent.

The reason why (N−1) s̄
2

σ2 has N−1 degrees of freedom is because it happens

to be the sum of N terms of the form
(
yi−θ̂
σ

)2
; this is more or less what

happens in Lemma 6.2.2, but in this case the terms are not independent: the
sum has indeed “one less degree of freedom”, namely due to the constraint
that links y1, · · · , yN to the value of θ̂.
On the other hand, that θ̂ and s̄2 are independent is crucial, because this
allows us to apply the following

Theorem 6.2.2 Let Z ∼ N (0, 1), V ∼ χ2(n) be independent random vari-
ables. Then

T =
Z√
V/n

∼ t(n)

In words, the ratio of two independent variables, one a standardized Gaus-
sian, and the other the square root of a chi-square, divided by its own degrees
of freedom, is distributed as a Student’s t with the same number of degrees
of freedom.

The “Student’s” distribution t, and the test of hypothesis named “Student’s”
t-test based on it were found and published in 1908 by William S. Gosset, a
statistician working for the Guinness brewery in Dublin. Since the brewery
management did not want the concurrence to know that the company was
running statistical tests on its products to ensure quality, Gosset published
its result somewhat anonymously, under the pseudonym “Student”. The
shape of a t(n) density resembles that of a Gaussian N (0, 1), namely it is
symmetric around 0 and is close to the Gaussian one, but it has fatter tails.
As n→∞, the t(n) density converges to the N (0, 1) density.
An immediate consequence of Theorem 6.2.2 is the following:

Theorem 6.2.3 Let y1, · · · , yN ∼ N (θo, σ2) be independent random vari-
ables. Then

T :=
θ̂ − θo

s̄/
√
N
∼ t(N − 1)
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Proof.

T =
θ̂ − θo

s̄/
√
N

=

θ̂−θo
σ/
√
N

s̄
σ

=

θ̂−θo
σ/
√
N√

(N−1)s̄2

σ2 /(N − 1)
=

Z√
V/(N − 1)

The last quantity is the ratio of a standardized Gaussian and the square
root of a chi-square divided by its own degrees of freedom, independent of
each other. The claim follows by Theorem 6.2.2. �

Theorem 6.2.3 is a powerful tool in inferential statistics: it says that the
distribution of the statistic T , depending on a normal sample {y1, · · · , yN}
and containing as much information about θo as the sample itself, has a
distribution t(N−1) that depends only on the sizeN of the sample. Since the
cumulative distribution of a t(N −1) variable, and its inverse, are tabulated
in books and available in every statistical software, one can use T to make
inferences about θo.
Any statistic of the data, which does not depend on the parameters of their
distribution, but only on their number, is called a “pivotal” statistic. Here,
t(N − 1) is indeed a “pivotal” distribution, that allows to make inferences
about θo without any knowledge on σ2.

For example, suppose that we have reasons to believe that θo 6= 0, and
that we want to provide a statistical justification to this claim. Making the
opposite hypothesis θo = 0 (called, in statistical jargon, the null hypothesis),
the statistic T becomes

T =
θ̂

s̄/
√
N
∼ t(N − 1).

We find on books or through software, the percentile tα such that∫ tα

−tα
f(x) dx = 1− α,

where f(x) is the density of a t(N − 1) random variable. Now we compute
T for the sample at hand, and if |T | > tα, we can “reject the hypothesis
that θo = 0, with confidence 1 − α”. In other words, if α is, say, 5%, we
can affirm that “the mean is not 0”, and if we repeat the whole procedure
a lot of times, we will be wrong in only 5% of the cases. This is a typical
Student’s t-test of hypothesis.
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Suppose, on the other hand, that we do not make hypotheses on θo. Since,
anyway, P [|T | ≤ tα] = 1− α, with probability 1− α it still holds

−tα ≤
θ̂ − θo

s̄/
√
N
≤ tα

θ̂ − tα
s̄√
N
≤ θo ≤ θ̂ + tα

s̄√
N

In other terms, the random interval

Iα =

[
θ̂ − tα

s̄√
N
, θ̂ + tα

s̄√
N

]
contains θo with probability 1 − α, before the sample is drawn. And after
the sample has been drawn, we have finally

Theorem 6.2.4 Suppose that {y1, · · · , yN} are independent and identically
distributed random variables drawn from a Gaussian distribution N (θo, σ2)
whose parameters θo and σ2 are not known. Let θ̂ = 1

N

∑N
i=1 yi and s̄2 =

1
N−1

∑N
i=1(yi − θ̂)2. Then

Iα =

[
θ̂ − s̄tα√

N
, θ̂ +

s̄tα√
N

]
is a (1− α)-confidence interval for θo.

We have now a beautiful “pivotal” result, very popular in applied statistics,
which extracts all the possible information from a sample to yield a certi-
fied, reliable confidence interval for a parameter, and does not assume the
knowledge of the other one. In our search for results with the least possible
hypotheses on the data, Theorem 6.2.4 is definitely in the right direction. It
has, still, a drawback, that has been left implicit from the beginning of this
chapter:

it still depends crucially on the Gaussianity of data.

Theorem 6.2.4 is still based on the knowledge that the “true” distribution
belongs to a precise family, parameterized by two numbers θo, σ2. Such re-
sult is not distribution free.

Now that you are familiar with the concept of confidence interval, you are
ready for the main question of this chapter. Suppose that the measures

yi = θo + εi, i = 1, · · · , N,

are “explained” in terms of the “true” parameter θo, corrupted by some
errors εi, which are independent random variables drawn from a continuous
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distribution. Is it possible to provide a confidence interval for θo without
restricting the distribution of the errors to some parametric family?
A positive answer has been provided in recent years by a clever method
named LSCR (Leave-out Sign-dominant Correlation Regions) due to Marco
Campi and Erik Weyer, under the only further hypothesis, quite reasonable,
that the density of εi is symmetric around 0. We will approach the method
by means of an example; its starting point may be quite surprising.

6.3 Groups

Definition 6.3.1 A group (G, ∗) is a set G endowed with an operation ∗,
i.e. a function ∗ : G × G → G (whose values are usually denoted a ∗ b in
place of ∗(a, b)), such that the following properties hold:

• for all a, b, c ∈ G, ((a ∗ b) ∗ c) = (a ∗ (b ∗ c)) (associativity);

• there exist an element e ∈ G, called the identity element, such that
e ∗ a = a ∗ e = a for all a ∈ G;

• for all a ∈ G, there exist an element a−1 ∈ G such that a ∗ a−1 =
a−1 ∗ a = e; such a−1 is called the inverse of a.

You already know some groups; for example:

• the set of invertible functions of a set S onto itself, where ∗ denotes
composition of functions (i.e. f ∗ g is the function such that f ∗ g(s) =
f(g(s)) for all s ∈ S), and e is the identity function e(s) = s;

• the symmetries of a regular polygon, that is, those rigid movements
of the plane (rotations, reflections) that map the polygon onto itself;
again, ∗ denotes composition (applying one movement after another),
and e denotes “no movement”;

• the set of all the invertible matrices in Rn×n, where ∗ is matrix mul-
tiplication, e = I, and a−1 is the inverse matrix;

• the set of sequences of moves that can be done on a Rubik cube, where
∗ means applying a sequence of moves after another, and e is “make
no move”.

In none of the above examples it happens, in general, that any two elements
commute (that is, a ∗ b = b ∗ a).

Definition 6.3.2 A group (G, ∗) in which the following further property
holds:

• for all a, b ∈ G, a ∗ b = b ∗ a (commutativity)
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is called a commutative, or Abelian group.

In Abelian groups, usually, the operation ∗ is denoted + (plus), the identity
element is denoted 0 (zero), and the inverse of a is denoted −a. Of course
you know a lot of Abelian groups: (Z,+), (Q,+), (R,+), (C,+), (Rn,+),
(Rm×n,+), etc.; any vector space, in particular, must by definition be an
Abelian group with respect to its own + operation.

Definition 6.3.3 A subgroup of (G, ∗) is a set H ⊆ G which is closed with
respect to the operation ∗ (if a, b ∈ H, then also a∗b ∈ H). In other words, a
subgroup of (G, ∗) is a pair (H, ∗), where H ⊆ G and ∗ is the same operation
restricted to H, such that (H, ∗) is a group in its own right.

Any subgroup of (G, ∗) has the same identity element of (G, ∗). For example,
(Q,+) is a subgroup of (R,+), and has the same identity element 0.
Here is one of the simplest possible finite Abelian groups:

B = ({◦, •},+),

where addition is defined in the following way:

+ ◦ •
◦ ◦ •
• • ◦

(its identity element is ◦, and the inverse of each element is the element itself;
it is nothing else than addition of digits in binary, i.e. modulo 2, arithmetics).
And here follows a group that will serve us for our “canonical” example:

G7 =

1 2 3 4 5 6 7

I1 • • ◦ • • ◦ ◦
I2 • ◦ • • ◦ • ◦
I3 ◦ • • ◦ • • ◦
I4 • • ◦ ◦ ◦ • •
I5 • ◦ • ◦ • ◦ •
I6 ◦ • • • ◦ ◦ •
I7 ◦ ◦ ◦ • • • •
I8 ◦ ◦ ◦ ◦ ◦ ◦ ◦

It is a group with 8 elements, namely the rows I1, · · · , I8 of the above table;
addition is defined component-wise25, for example

I1 + I2 =
[
• • ◦ • • ◦ ◦

]
+
[
• ◦ • • ◦ • ◦

]
=
[
◦ • • ◦ • • ◦

]
= I3,

25Think at the bitwise XOR between two strings of 7 bits.
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It is, in particular, a subgroup of (B7,+), the set of all the 27 = 128 possible
7-tuples of elements in {◦, •} with component-wise addition. Any two rows
in the above table have another row as their sum; the identity element is I8,
and the inverse of a certain row is the row itself.

6.4 Confidence intervals revisited

Now comes our prototypical example. We suppose that we are given 7
measures (very few, indeed)

yi = θo + εi, i = 1, · · · , 7.

We suppose that {εi} are continuous variables with a density centered
around zero (with mean zero), independent but not necessarily identically
distributed. The standard way to estimate θo would be to compute

θ̂ =
1

7

7∑
i=1

yi,

but here we are not interested in an estimate; our aim is a confidence interval.
Consider, for each measure, an affine function in the (θ, z) plane:

fi(θ) = yi − θ.

It intersects the θ-axis at exactly one point. Now, for each of the first seven
elements, Ii = I1, · · · , I7, of the group in section 6.3, consider a point-wise
average of 4 such functions, namely the 4 ones whose indices are marked •
in the corresponding row:

g1(θ) =
1

4

∑
k∈{1,2,4,5}

fk(θ)

=
1

4

∑
k∈{1,2,4,5}

yk − θ =
1

4

∑
k∈{1,2,4,5}

θo + εk − θ = (θo − θ) +
1

4

∑
k∈{1,2,4,5}

εk;

...

gi(θ) =
1

4

∑
Ii[k]=•

fk(θ) = (θo − θ) +
1

4

∑
Ii[k]=•

εk;

...

g7(θ) =
1

4

∑
k∈{4,5,6,7}

fk(θ) = (θo − θ) +
1

4

∑
k∈{4,5,6,7}

εk;

The average corresponding to I8 is trivial, namely

g8(θ) =
1

4

∑
I8[k]=•

fk(θ) =
1

4

∑
k∈∅

fk(θ) = 0.
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Each of the gi(·) i = 1, · · · , 7, has exactly one intersection with the θ-axis;
let us call it θi:

θi := the only θ such that gi(θ) = 0.

The θi are random points coming in some order on the θ-axis; since the errors
εi are independent and have continuous distributions, almost surely no two
of the intersections θi coincide, and none of them equals θo. Furthermore,
let θ̄1, · · · , θ̄7 denote the same seven points, but sorted26, i.e. such that θ̄1 <
θ̄2 < · · · < θ̄7. These points split the θ-axis in 8 intervals (the outermost
ones are semi-infinite, namely (−∞, θ̄1) and (θ̄7,∞)).
Now note that at θ = θo it holds

g1(θo) =
1

4

∑
k∈{1,2,4,5}

εk,

...

g7(θo) =
1

4

∑
k∈{4,5,6,7}

εk.

Each average on the right-hand side is a sum of independent variables, with
density symmetric around 0. Hence, the average has also a density symmet-
ric around 0, and any gi(θ

o) has equal probabilities of lying above or below
the θ-axis, i.e. positive or negative sign. However, any gi(θ

o) is averaging
4 noise variables, thus is intuitively more concentrated towards zero than
them.
The ingenious idea of the LSCR method is to compare the signs of each
gi(θ

o), depending on where is θo, namely in which one of the 8 intervals. If
θo ∈ (−∞, θ̄1), the leftmost interval, then g1(θo) > 0, g2(θo) > 0, · · · , g7(θo) >
0; intuitively, that all the gi(θ

o) have positive sign has little probability (but
what probability, indeed?). On the other hand if θo ∈ (θ̄7,∞), the rightmost
interval, then g1(θo) < 0, g2(θo) < 0, · · · , g7(θo) < 0. If θo belongs to the sec-
ond interval, (θ̄1, θ̄2), then one and only one among g1(θo), g2(θo), · · · , g7(θo)
has negative sign, etc.

Here is the point: what is the probability of these events?
The first one (θo ∈ (−∞, θ̄1), hence g1(θo) > 0, · · · , g7(θo) > 0) happens

26The random variables θ̄1, · · · , θ̄7 are the so-called order statistics of θ1, · · · , θ7.
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exactly when

ε1 +ε2 +ε4 +ε5 > 0,
ε1 +ε3 +ε4 +ε6 > 0,

ε2 +ε3 +ε5 +ε6 > 0,
ε1 +ε2 +ε6 +ε7 > 0,
ε1 +ε3 +ε5 +ε7 > 0,

ε2 +ε3 +ε4 +ε7 > 0,
ε4 +ε5 +ε6 +ε7 > 0.

(38)

If θo ∈ (θ̄1, θ̄2), then exactly one gi(θ
o) among g1(θo), · · · , g7(θo) has negative

sign, hence all the other values at θo (including g8(θo) = 0) are greater than
it. Suppose, to fix ideas, that the incriminated gi is g1. Then

0 > ε1 +ε2 +ε4 +ε5,
ε1 +ε3 +ε4 +ε6 > ε1 +ε2 +ε4 +ε5,

ε2 +ε3 +ε5 +ε6 > ε1 +ε2 +ε4 +ε5,
ε1 +ε2 +ε6 +ε7 > ε1 +ε2 +ε4 +ε5,
ε1 +ε3 +ε5 +ε7 > ε1 +ε2 +ε4 +ε5,

ε2 +ε3 +ε4 +ε7 > ε1 +ε2 +ε4 +ε5,
ε4 +ε5 +ε6 +ε7 > ε1 +ε2 +ε4 +ε5.

Simplifying and bringing every term to the left-hand side we obtain

−ε1 −ε2 −ε4 −ε5 > 0,
−ε2 +ε3 −ε5 +ε6 > 0,

−ε1 +ε3 −ε4 +ε6 > 0,
−ε4 −ε5 +ε6 +ε7 > 0,

−ε2 +ε3 −ε4 +ε7 > 0,
−ε1 +ε3 −ε5 +ε7 > 0,
−ε1 −ε2 +ε6 +ε7 > 0.

(39)

And now you see that the sets of inequalities (38) and (39) are very similar,
the only differences being that the inequalities appear in different orders, and
that some of the signs are changed. That the sets of inequalities contain
terms with the same indices happens precisely due to the group structure
according to which the averages have been built. Moreover, comparing the
corresponding inequalities, say the first ones, you see that events like

{ε1 + ε2 + ε4 + ε5 > 0},
{−ε1 − ε2 − ε4 − ε5 > 0}

happen exactly with the same probability, because all the εi have symmetric
densities. The same reasoning applies to the entire sets of inequalities.
Hence

the probabilities that θo ∈ (−∞, θ̄1) and that θo ∈ (θ̄1, θ̄2) are equal.
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But the very same procedure could have been applied to any of the intervals;
hence θo belongs to any of the intervals with the same probability; the
intervals are 8, therefore such probability is 1

8 . And finally, the probability
that θo belongs to any of the two outermost intervals is 1

8 + 1
8 = 1

4 , hence
the probability that the converse happens is 3

4 . What we have shown is an
informal proof of the following

Theorem 6.4.1 (Campi, Weyer). Let

yi = θo + εi, i = 1, · · · , 7;

suppose that {εi} are continuous variables with a density centered around
zero (with mean zero), independent but not necessarily identically distributed.
Construct the functions g1(·), · · · , g7(·) and sort their intersections with the
θ-axis, θ̄1 < · · · < θ̄7, as above. Then

I :=
[
θ̄1, θ̄7

]
is a 3

4 = 75%-confidence interval for θo.

Some remarks are in order. The applicability of the method is of course not
limited to 7 measures. The case for 7 measures was presented because it is
sufficiently instructive, yet it does not involve overwhelming computations;
with more measures, the proof transports without significant changes. The
only real issue with the general, N -measures case is how is one supposed to
construct a suitable subgroup of (BN ,+). Such group should be “balanced”
in the sense that it should be fairly small (i.e. its cardinality should not
grow exponentially with N), that the number of bullets (•) should be the
same in each row, and it should be approximately half the size of a row. This
construction is actually easy when N = 2n−1 for some n. For N = 3 = 22−1
we have

G3 =

1 2 3

I1 • • ◦
I2 • ◦ •
I3 ◦ • •
I4 ◦ ◦ ◦

For N = 7 = 23 − 1 we have the group of the above example:

G7 =

1 2 3 4 5 6 7

I1 • • ◦ • • ◦ ◦
I2 • ◦ • • ◦ • ◦
I3 ◦ • • ◦ • • ◦
I4 • • ◦ ◦ ◦ • •
I5 • ◦ • ◦ • ◦ •
I6 ◦ • • • ◦ ◦ •
I7 ◦ ◦ ◦ • • • •
I8 ◦ ◦ ◦ ◦ ◦ ◦ ◦

=

1 2 3 4 5 6 7

I1 ◦
I2 G3 G3 ◦
I3 ◦
I4 •
I5 G3 Ḡ3 •
I6 •
I7 ◦ ◦ ◦ • • • •
I8 ◦ ◦ ◦ ◦ ◦ ◦ ◦
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where Ḡ3 is the complement of the matrix representing G3 (• ↔ ◦). Bal-
anced groups for the next powers of 2 can be constructed recursively in this
fashion; you can find the precise construction procedure in the appendix of
[7] or, for a deeper discussion, in the paper [13] cited therein.

Note that, as N increases and the number of measures in each average is
kept approximately equal to N

2 , as happens in the above construction, two
things happen:

• the number of intervals remains equal to N+1; hence, all of them hav-
ing the same probability 1

N+1 , some more intervals can be discarded,
other than the two outermost ones, in order to obtain a smaller inter-
val (with of course a smaller confidence). In this way, the confidence is
“tunable”, although not continuously as in the Gaussian/Student case.
The fact that the confidence interval is obtained discarding the outer-
most intervals where the signs of the functions gi(θ) are equal, or any-
way a set of intervals where a vast majority of them has the same sign,
explains three letters in the acronym LSCR: Leave-out Sign-dominant
... Regions.

• Since approximately N
2 noise terms are averaged in each intersection,

we can expect the final confidence interval to shrink towards θo as N
increases; under fairly general conditions, it could be shown that the
extremes of the interval converge to θo almost surely as N → ∞; for
example, if we make the further assumption that the εi are identically
distributed, this is a simple consequence of the strong law of large
numbers.

6.5 The case with inputs

The construction of a confidence interval for θo can be extended to the case
where an input (i.e. an “explanatory variable”) is involved. Let

yi = θoui + εi, i = 1, · · · , 7.

As usual, we suppose that {εi} are independent continuous variables with
a density symmetric around zero. The inputs ui can be deterministic or
random, but if we want the same construction of the previous section to
be useful, and the confidence interval to “shrink” towards θo for big N , we
should pretend, in some sense, that they “stay away from zero”:

• if they are deterministic, they are nonzero, and they do not tend to
zero as N →∞;

• if they are random (to simplify, suppose also identically distributed),
they are independent of εi, and they do not have zero mean.
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This said, we can develop the theory of section 6.4 again, with minor changes.
Consider, for each measure, an affine function:

fi(θ) = yi − θui.

Differently from before, these functions may have different slopes. But ex-
actly as before, they intersect the θ-axis at one point (unless ui = 0, but
we have assumed above that this is not the case). For each Ii = I1, · · · , I7

consider an average of 4 different fk, according to the group structure:

g1(θ) =
1

4

∑
k∈{1,2,4,5}

fk(θ)

=
1

4

∑
k∈{1,2,4,5}

yk − θuk =
1

4

∑
k∈{1,2,4,5}

θouk + εk − θuk

=
θo − θ

4

∑
k∈{1,2,4,5}

uk +
1

4

∑
k∈{1,2,4,5}

εk;

...

g7(θ) =
1

4

∑
k∈{4,5,6,7}

fk(θ)

=
θo − θ

4

∑
k∈{4,5,6,7}

uk +
1

4

∑
k∈{4,5,6,7}

εk;

These are also affine functions with different slopes, intersecting the θ-axis
at one point. Then we can build θ̄1 < · · · < θ̄7 as before, and since

g1(θo) =
1

4

∑
k∈{1,2,4,5}

εk,

...

g7(θo) =
1

4

∑
k∈{4,5,6,7}

εk,

the reasoning of Section 6.4 applies without any other change.
[
θ̄1, θ̄7

]
is a

75%-confidence interval for θo.

As already mentioned, this result is useful because the inputs ui “stay away
from zero”. Now, what happens if the inputs {ui} are random, independent
of the {εi}, but their mean is indeed 0? Consider the intersection of (say)
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g1(θ) with the θ-axis. It is the point θ1 such that

0 = g1(θ1) = (θo − θ1)

1

4

∑
k∈{1,2,4,5}

uk

+
1

4

∑
k∈{1,2,4,5}

εk;

θ1 = θo +

1
4

∑
k∈{1,2,4,5} εk

1
4

∑
k∈{1,2,4,5} uk

.

The issue with this case is evident: as more measures (and bigger groups)
come into the picture, the term 1

(N+1)/2

∑
k uk at the denominator of the

last expression, which is also the coefficient of θ in the expression of g1(θ),
tends to 0. The same phenomenon happens for all the gi; this means that
the straight lines corresponding to each of these is approximately horizontal,
the intersections tend to be very distant from each other, and the confidence
interval gets enormous, i.e. practically useless.

To this issue, there is a remedy. Suppose, to fix ideas, that the inputs are
independent and identically distributed, that E[ui] = 0, and E[u2

i ] = σ2 > 0
(if E[u2

i ] was also equal to 0, then it would be ui = 0 almost surely, and we
would be pretending too much from the theory). We consider, now, instead
of the functions gi above, the following ones:

fi(θ) = (yi − θui)ui = yiui − θu2
i , i = 1, · · · , 7;

g1(θ) =
1

4

∑
k∈{1,2,4,5}

fk(θ)

=
1

4

∑
k∈{1,2,4,5}

θou2
k + εkuk − θu2

k

= (θo − θ)

1

4

∑
k∈{1,2,4,5}

u2
k

+
1

4

∑
k∈{1,2,4,5}

εkuk;

...

g7(θ) = (θo − θ)

1

4

∑
k∈{4,5,6,7}

u2
k

+
1

4

∑
k∈{4,5,6,7}

εkuk.

You see? Now the intersection of (say) g1(θ) with the θ-axis is given by

0 = g1(θ1) = (θo − θ1)

1

4

∑
k∈{1,2,4,5}

u2
k

+
1

4

∑
k∈{1,2,4,5}

εkuk;

θ1 = θo +

1
4

∑
k∈{1,2,4,5} εkuk

1
4

∑
k∈{1,2,4,5} u

2
k

.
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The denominator poses no problem: as more measures come into the pic-
ture, the term 1

(N+1)/2

∑
k u

2
k tends almost surely to E[u2

i ] > 0 (by the strong

law of large numbers), so that the functions gi have slopes with compara-
ble magnitude. On the other hand, as far as the {ui} are independent of
the {εi}, the terms εkuk still have densities symmetric around 0, so that
the fundamental idea of LSCR (the manipulation of the sets of inequali-
ties exploiting the group structure) applies without changes. Thus, with 7
measures,

[
θ̄1, θ̄7

]
is once again a 75%-confidence interval for θo.

Moreover, the numerator has the form 1
(N+1)/2

∑
k εkuk which, under fairly

general conditions, converges at least weakly to E[εiui] = E[εi]E[ui] = 0;
hence, we expect smaller and smaller confidence intervals as the number N
of measures increases.

6.6 Leave-out Sign-dominant Correlation Regions

Finally, the LSCR method generalizes to (and actually was conceived for)
system identification. Consider, for example, the simple autoregressive (AR)
process

yi = θoyi−1 + εi,

where i is a discrete time index. Along the lines of the previous section, one
may be tempted to start defining

fi(θ) = yi − θyi−1

(which is a prediction error of yi given yi−1; note that now, to develop
the canonical example, 8 measures of the process are needed instead of 7).
But after the above considerations (E[ui] = 0) this choice reveals hopeless.
Indeed, in the typical case when the process is stationary, that is, when
the transfer function W (z) = z

z−θo is BIBO-stable27, it is unavoidable that
E[yi−1] = 0. Therefore, Campi and Weyer went for the following functions
instead:

fi(θ) = (yi+1 − θyi)(yi − θyi−1).

27This in turn means that its only pole θo is in the open unit disc; hence, since it is
real, it holds −1 < θo < 1.
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The remaining construction is similar:

g1(θ) =
1

4

∑
k∈{1,2,4,5}

fk(θ)

=
1

4

∑
k∈{1,2,4,5}

(yk+1 − θyk)(yk − θyk−1)

=
1

4

∑
k∈{1,2,4,5}

((θo − θ)yk + εk+1) ((θo − θ)yk−1 + εk)

= (θo − θ)2

1

4

∑
k∈{1,2,4,5}

ykyk−1

+ (θo − θ)

1

4

∑
k∈{1,2,4,5}

ykεk


+ (θo − θ)

1

4

∑
k∈{1,2,4,5}

yk−1εk+1

+
1

4

∑
k∈{1,2,4,5}

εk+1εk

(and analogously for g2, · · · , g7). The functions gi now are not anymore
affine — they are parabolas — hence their intersections with the θ-axis are
not anymore supposed to be unique. Nevertheless, they still split the θ-
axis in a finite number of intervals. Or better, they split the θ-axis in of 8
regions, that are unions of one or more disjoint intervals, where one out of
eight situations happen: 1) all the gi are positive; 2) exactly 1 of the gi is
negative, 3) exactly 2 of the gi are negative, ..., 8) all the gi are negative.
For each such region we can repeat the familiar reasoning: what happens
if θo belongs to this region? Note that since εk+1 and εk are independent,
each with symmetric density, their product εk+1εk also has symmetric den-
sity. Note, also, that g1(θo) = 1

4

∑
k∈{1,2,4,5} εk+1εk; in words: at θ = θo,

g1(θ) is an average of terms with symmetric density (the same happens for
g2(θo), · · · , g7(θo)).
Then we can repeat the proof of section 6.4, which is based only on the
symmetry and the group structure, to conclude that the regions have equal
probability 1

8 . Discarding the regions where the gi have all the same sign,
we obtain, again, a 75%-confidence region for θo. 28

We can also “tune” the confidence discarding some other regions, typically
those where at most one among the functions gi has its sign opposite to the
others; in this way we obtain a 50%-confidence region. We note, finally, that
a function like

g1(θ) =
1

4

∑
k∈{1,2,4,5}

(yk+1 − θyk)(yk − θyk−1) =
1

4

∑
k∈{1,2,4,5}

εk(θ)εk−1(θ)

28In their paper [7], Campi and Weyer exploit some more a-priori information, namely
that the process is stationary (i.e. −1 < θo < 1) to reduce the set of intervals where θo

may actually belong; in this way, they come up with a confidence region which happens
to be an interval.
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is indeed an empirical 1-lag correlation between two prediction errors; these
observations, at last, should make every word explicit in the name of the
method: Leave-out Sign-dominant Correlation Regions.

The LSCR method has been applied to the identification of way more general
system structures; extending it to a multi-dimensional setting (θo ∈ Rp)
one must cope with new numerical problems, but the essence of the theory
remains the same. For more details, see [7] and the references therein29.

6.7 Exercises for Chapter 6

Problem 1 (discrete distribution, wrong confidence).
Suppose that three measures are available:

y1 = θo + ε1,

y2 = θo + ε2,

y3 = θo + ε3,

where ε1, ε2, and ε3 are independent and identically distributed with discrete
distribution, each taking only the values 1 or −1 with equal probabilities:

ε1 =

{
1 with probability 1

2 ,

−1 with probability 1
2 ,

ε2 =

{
1 with probability 1

2 ,

−1 with probability 1
2 ,

ε3 =

{
1 with probability 1

2 ,

−1 with probability 1
2 .

Let θo = 1. We employ LSCR method with the following group:

1 2 3

I1 • • ◦
I2 • ◦ •
I3 ◦ • •
I4 ◦ ◦ ◦

and select the interval [θ̄1, θ̄3] which, according to the LSCR theory, should
have a 50%-confidence interval. Show that the confidence of such interval
is not 50% (this may be the case if the distribution is discrete). Hint: see
what happens for every possible value of ε1, ε2, and ε3.

Problem 2 (discrete distribution, correct confidence).

29The method has also been applied to the identification of nonlinear systems; see [4].
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Suppose that three measures are available:

y1 = θo + ε1,

y2 = θo + ε2,

y3 = θo + ε3,

where ε1, ε2, and ε3 are independent but with discrete distribution, each
taking only two possible values symmetrically around 0. Namely:

ε1 =

{
1 with probability 1

2 ,

−1 with probability 1
2 ,

ε2 =

{
1
2 with probability 1

2 ,

−1
2 with probability 1

2 ,

ε3 =

{
2 with probability 1

2 ,

−2 with probability 1
2 .

Let θo = 1, and verify that the LSCR method with the following group:

1 2 3

I1 • • ◦
I2 • ◦ •
I3 ◦ • •
I4 ◦ ◦ ◦

correctly provides a 50%-confidence interval even though the errors do not
have a density. In order to do this, see what happens for every possible value
of ε1, ε2, and ε3.
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It’s not what we don’t know that hurts us, it’s what

we know for certain that just ain’t so.

Mark Twain.

Le doute n’est pas un état bien agréable, mais

l’assurance est un état ridicule.

Voltaire, in a letter to Frederick the Great, 1770.

7 Interval predictor models

7.1 Introduction and motivation

In Chapter 1 we have seen how to construct a model

y = âLS + b̂LS x (40)

given some measures (x1, y1), · · · , (xN , yN ) of explanatory variables x and
explained variables y. It was stated there, that one of the objectives of
such a model is to predict the value of a future variable yN+1 when the
corresponding explanatory variable xN+1 will be available. The predicted
value is

ŷN+1 = âLS + b̂LS xN+1.

But what does it really mean that ŷN+1 predicts the value of yN+1?

To start with, if yN+1 is a random variable, in general it is impossible that
the two values are equal (the probability that this happens is 0, if yN+1 has
a density); and in general, if the density is not bounded (for example if it is
Gaussian), it is not even possible to say, with certainty, that it will be close
to the predicted value. Indeed, unless very strong assumptions are made on
the law that generates data, very little can be hold for sure about the future
observation (recall the above quotes by Mark Twain and Voltaire)30.
Thus, ŷN+1 is just a “plausible” value for the future observation, that comes
with the hope that the future observation be close to it. Our way to quantify
“hope” is probability, hence we will retain that the prediction is meaningful if
we can prove that the density of yN+1 is concentrated around ŷN+1. Usually,
this means two things:

30Here are some examples of strong assumptions:

• the pairs are generated by a differentiable function y = g(x), where |g′(x)| ≤ 1 for
all x;

• the pairs are generated by the model y = ao+box+ε, where ε is a bounded random
variable, namely ε ∈ [−δ, δ] almost surely, for a known small constant δ ∈ R.

This is the kind of illusory knowledge that we do not want to assume.
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• that the means of yN+1 and ŷN+1 are equal, and the variance of their
difference is small;

• that there exists an interval [a, b], preferably small, that contains both
ŷN+1 and yN+1 with known probability (the higher, the better).

In this chapter we will focus on the second one. Thus, our goal is now
to construct, given the data (x1, y1), · · · , (xN , yN ) and a future observation
xN+1, an interval that contains yN+1 with certified probability. We will not
start from a model like (40) and build the interval around a point estimate
ŷN+1, although in the end we will recover something similar.

How can we build a “prediction interval” for yN+1? As we shall now see,
the problem is not trivial even if, to simplify the problem as much as possi-
ble, we discard the explanatory data {xi} and build such interval with the
sole knowledge of the past observations y1, · · · , yN . We will develop our
construction in four steps:

1. we will show, just for comparison, how a prediction interval for yN+1

is built in the “classical” way, under the (strong) assumption that the
{yi} are Gaussian;

2. we will show how a radical change of perspective lets us build a pre-
diction interval for yN+1 without any knowledge on the underlying
density;

3. we will change again our point of view, and obtain the same prediction
interval as a solution to a convex optimization problem;

4. finally, we will easily extend the convex optimization approach re-
introducing the explanatory data. This will end up in a model that,
given xN+1, yields an entire prediction interval for yN+1, with certified
probability, instead of a single-point prediction ŷN+1.

7.2 Prediction intervals, the standard way

Let us start, then, by making an assumption on the distribution of the data,
rather strong for our purposes, but common in applied statistics. Sup-
pose that we extract a sample {y1, · · · , yN} from a Gaussian distribution
N (θo, σ2). Can we provide an interval [a, b] in which a future observation
yN+1 will fall with probability 1− α, say 95%?
If we knew θo and σ2 the answer would be trivial and would not rely on the
sample at all, because in that case

yN+1 − θo

σ
∼ N (0, 1),
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and since we can find the cumulative distribution function of a N (0, 1)
variable, and its inverse, tabulated in any book on statistics or computed in
any statistical software, we can easily find the percentile zα such that∫ zα

−zα
f(z) dz = 1− α,

where f(z) is the Gaussian density N (0, 1). Then

P

[∣∣∣∣yN+1 − θo

σ

∣∣∣∣ ≤ zα] = 1− α,

or
θo − zασ ≤ yN+1 ≤ θo + zασ

with probability 1− α = 0.95. The interval

[a, b] = [θo − zασ, θo + zασ]

is called a prediction interval for yN+1.

Anyway, it is seldom, if at all, the case that we know θo and σ2, and we wish
to construct a prediction interval based on the observed data. The usual
result is very similar to the one regarding the construction of a confidence
interval for θo, based on the sample average θ̂ and the sample variance s̄2,
along the lines of Section 6.2.
Note that, if all the variables are independent and Gaussian, the variable
yN+1 − θ̂ is also Gaussian, with mean and variance:

E
[
yN+1 − θ̂

]
= 0,

Var
[
yN+1 − θ̂

]
= σ2

(
1 +

1

N

)
.

We have

Theorem 7.2.1 Let y1, · · · , yN ∼ N (θo, σ2) independent and one more
measure yn+1 ∼ N (θo, σ2). Then

yN+1 − θ̂

s̄
√

1 + 1
N

∼ t(N − 1)

Proof.

yN+1 − θ̂

s̄
√

1 + 1
N

=

yN+1−θ̂
σ
√

1+ 1
N√

N−1s̄
σ /

√
N − 1

,
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where
yN+1−θ̂
σ
√

1+ 1
N

is N (0, 1) and independent of
√
N−1s̄
σ /

√
N − 1, which is the

square root of a χ2(N − 1) variable, divided by the number of its degrees of
freedom. The result follows from Theorem D.9.2. �

Now we can find on books or through software, the percentile tα such that∫ tα

−tα
f(t) dt = 1− α,

where f(t) is the density of a t(N − 1) random variable. It holds

P

∣∣∣∣∣∣ yN+1 − θ̂

s̄
√

1 + 1
N

∣∣∣∣∣∣ ≤ tα
 = 1− α.

Repeating the steps in the construction of a confidence interval for θo, finally
we find the (1− α)-probability prediction interval for yN+1:

[a, b] =

[
θ̂ − tαs̄

√
1 +

1

N
, θ̂ + tαs̄

√
1 +

1

N

]
.

As usual, we must pay attention to what we mean with the word “proba-
bility”. Before the sample is drawn, 1 − α = 95% is the probability that a
random interval ([a, b]) covers an independent random variable (yN+1). Af-
ter the sample is drawn, it is the probability that yN+1, which is still random,
falls in the deterministic interval [a, b]. It is still a probability (we will not
use the word “confidence” here), but conditioned to the values of y1, · · · , yN .
To distinguish the two, one usually calls the first “a priori probability”.
This result is quite nice, because it exploits all the available information and
does not depends on parameters other than the size of the sample, but it
still has a fundamental flaw:

it depends crucially on the Gaussianity of data,

whereas it is seldom known, if at all, that the data are distributed according
to a precise parametric family of distributions.

7.3 Prediction intervals, a different perspective

Here we sketch a procedure to build a prediction interval in a radically dif-
ferent way; the construction will not depend on the distribution of the data
and, above all, it will generalize nicely to more complex prediction problems.
Let us consider a “chain” of examples, that get closer and closer to the main
point.
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Example. An urn contains N + 1 balls, of which 2 are red and the others
are white. We extract one ball from the urn. What is the probability that
the extracted ball is red? The answer is, according to classical probability,

2
N+1 . �

Example. An urn contains N + 1 balls, of which 2 are labeled “extreme
point” and the others are white. We extract a ball from the urn. What is
the probability that the extracted ball has the label? Of course the answer
is again 2

N+1 . �

Example. We have a list of N + 1 different numbers. We write each number
on a ball, and mark the two balls with the minimum and the maximum
number as “extreme point”. Now we put the balls in an urn, shake, and
extract one ball. What is the probability that the extracted ball is an ex-
treme? Same story: 2

N+1 . �

Example. We repeat the previous experiment, but this time we extract all
the balls in random order. What is the probability that the last ball is
an extreme? It is immediate to convince ourselves that if all the different
(N + 1)! orders have the same probability, the selection of the last ball is
equivalent to the extraction of a single ball. Hence the requested probability
is again 2

N+1 .
More explicitly, the permutations of the balls that have either the minimum
or the maximum at the last position are N ! + N ! = 2N !; therefore, all the
permutations having the same probability, the probability of extracting a
permutation with an extreme at the last position is 2N !

(N+1)! = 2
N+1 . �

Example. We extract N + 1 independent samples y1, y2, · · · , yN+1 of a ran-
dom variable having density f(y). What is the probability that yN+1 is
either the maximum or the minimum? Denote the event “the last num-
ber yN+1 is an extreme” as E , and the event “any two numbers among
y1, · · · , yN+1 are equal” as N . Due to the hypothesis that the random vari-
ables have a density, the probability of N is 0, and the probability of E
conditioned to the extraction of N +1 different numbers is always the same.
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Hence the requested probability is

p =

∫
RN+1

P [E | y1, · · · , yN+1] f(y1) · · · f(yN+1) dy1 · · · dyN+1

=

∫
RN+1\N

P [E | y1, · · · , yN+1] f(y1) · · · f(yN+1) dy1 · · · dyN+1

=

∫
RN+1\N

2

N + 1
f(y1) · · · f(yN+1) dy1 · · · dyN+1

=
2

N + 1

∫
RN+1\N

f(y1) · · · f(yN+1) dy1 · · · dyN+1 =
2

N + 1
.

�

Example. We extract N independent samples y1, y2, · · · , yN , from a random
variable with density f(y). Let a and b be their minimum and maximum
respectively. We ask now what is the probability that a “future” sample
yN+1 falls outside the interval [a, b]. Guess what? The probability is 2

N+1 ,
because the above procedure is nothing more than a rephrasing of “we ex-
tract N + 1 independent samples and ask about the last one”, and yN+1 is
outside [a, b] exactly whenever it is either the maximum or the minimum of
the whole sample. �

The above chain of examples is actually an informal proof of the following

Lemma 7.3.1 Let y1, y2, · · · , yN be independent and identically distributed
variables with density f(y). Let a and b be their minimum and maximum
respectively. Then [a, b] is a prediction interval for a future sample yN+1,
with probability 1− 2

N+1 = N−1
N+1 .

Some remarks are in order:

• the probability 1 − 2
N+1 with which the future sample will fall inside

the prediction interval is exact (i.e. exactly as happens for the LSCR
method, and unlike the Hoeffding-type theory we have developed in
machine learning, it is not an upper-bound);

• note the radical change in the point of view: in the “standard way”
(Section 7.2), the key aspect of randomness that was taken into ac-
count was the common distribution of the sample; now it is the order
in which the sample is drawn;

• the great advantage of this method is that the prediction interval is
distribution-free, that is, completely independent of the density of the
{yi};
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• comparing with the “standard way”, we have some less freedom in
“tuning” the probability. It could be shown that other prediction
intervals, with different a priori probability can be built selecting not
the minimum and the maximum, but some other points, close to the
extremes (in other words, discarding some “outliers”); thus the a priori
probability could still be tuned, but not continuously (90%, 95.2%,
99.9% etc.) as in the Gaussian case. In this chapter we will maintain
the simplest possible choice; thus, the probability is 1 − 2

N+1 , that is
it.

7.4 Convex problems and Helly’s theorem

Definition 7.4.1 We will call convex problem an optimization problem of
the form:

minimize f(θ)

subject to f1(θ) ≤ 0,

f2(θ) ≤ 0,

...

fn(θ) ≤ 0,

θ ∈ Θ ⊆ Rd,

where f, f1, · · · , fn are convex functions and Θ is a convex set. Each of
the inequalities fi(θ) ≤ 0 is called a constraint. The problem is said to be
feasible if there exists at least a point θ̄ ∈ Θ that satisfies all the constraints,
that is, such that fi(θ̄) ≤ 0 for all i = 1, · · · , n.

Note that a constraint of the form fi(θ) ≤ 0 is the 0-sublevel set of a convex
function, which is a convex set; hence, the problem is asking for the minimum
value that a convex function f attains in the intersection of n + 1 convex
sets, which is again a convex set. Usually the definition of a convex problem
includes equality constraints, of the form hi(θ) = 0; we will not need any
such constraint here.
The fundamental fact about convex problems is that if a point is locally a
minimum, i.e. it satisfies some minimality condition in the neighborhood of
a point, then it is a minimum also globally, hence it is a solution to the
problem; thus, a local test of optimality is sufficient to establish global op-
timality. Convex problems are considered “easy”, because we have readily
available efficient and robust algorithms to solve them numerically (interior
point methods & co.). Recognizing that a particular optimization problem
can be formulated as a convex problem may be hard; but once this has been
done, you can consider it as “practically solved”. In the words of Stephen
Boyd, convex optimization is “almost a technology”, that is, it is approach-
ing a stage of maturity in which “it can be reliably used by many people
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who do not know, and do not need to know, the details”. In comparison,
according to him the method of least squares is a mature technology. See
the standard reference [2] for further observations.

A convex problem may or may not have a solution, and a solution may not
be unique.

Example. The following scalar problem:

minimize
1

θ
subject to θ ∈ [1,∞)

does not have a solution, because infθ∈[1,∞)
1
θ = 0, but 1

θ 6= 0 for all θ ∈
[1,∞). The following scalar problem:

minimize θ2

subject to θ ∈ [1,∞)

has the unique solution θ∗ = 1. The following linear problem:

minimize θ1 + θ2

subject to − θ1 − θ2 ≤ 0,

θ2 − θ1 − 1 ≤ 0,

θ1 − θ2 − 1 ≤ 0,

(θ1, θ2) ∈ R2,

has infinitely many solutions, namely all the points (θ∗1, θ
∗
2) belonging to

the line segment that joins the points (−1
2 ,

1
2) and (1

2 ,−
1
2). (To see why,

draw a picture with all the constraints and think at the direction in which
f(θ1, θ2) = θ1 + θ2 decreases.) �

In the following, we will consider (d+ 1)-dimensional problems of this form:

minimize γ

subject to g1(θ)− γ ≤ 0

g2(θ)− γ ≤ 0,

...

gn(θ)− γ ≤ 0,

(θ, γ) ∈ Θ× R,

where g1, · · · , gn are convex functions and Θ ⊆ Rd. You can easily recognize
that it is a particular case of Definition 7.4.1 (yet sufficiently general for
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our purposes). Indeed the goal function f(θ, γ) = γ is trivially convex, and
if gi(θ) is convex, then the constraint function fi(θ, γ) = gi(θ) − γ is also
convex31. We will assume that all the problems under consideration are
feasible and admit a unique solution; or better, since the constraints will
arise from random data, we will assume that this happens almost surely.
We will denote the minimizing solution (θ∗, γ∗).

Definition 7.4.2 Consider the following convex problem:

minimize γ

subject to g1(θ)− γ ≤ 0,

...

gn(θ)− γ ≤ 0,

(θ, γ) ∈ Θ× R.

Let (θ∗, γ∗) be its solution, and consider one of its constraints, gi(θ)−γ ≤ 0.
We will call the latter a support constraint if the solution (θ∗∗, γ∗∗) to the
problem obtained by removing the constraint,

minimize γ

subject to g1(θ)− γ ≤ 0,

...

gi−1(θ)− γ ≤ 0,

gi+1(θ)− γ ≤ 0,

...

gn(θ)− γ ≤ 0,

(θ, γ) ∈ Θ× R.

is strictly “better” than (θ∗, γ∗), meaning that it attains γ∗∗ < γ∗.

In words, removing a support constraint the solution “falls”. In particular,
such a constraint is active, meaning that the inequality “≤ 0” actually works
as an equality “= 0” for the solution.

31Indeed:

fi(λθ
1 + (1− λ)θ2, λγ1 + (1− λ)γ2)

= gi(λθ
1 + (1− λ)θ2)− λγ1 − (1− λ)γ2

≤ λgi(θ1) + (1− λ)gi(θ
2)− λγ1 − (1− λ)γ2

= λfi(θ
1, γ1) + (1− λ)fi(θ

2, γ2).
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An obvious but crucial observation is that if a constraint is not a support con-
straint, then it can be removed from the problem without any consequence
(the solution is the same). Another crucial observation is that if we add a
constraint to a problem, and it happens to become a support constraint in
the new problem, then the new γ∗ of the solution must increase with respect
to the old solution (indeed, removing it again γ∗ must decrease).
The main result of this chapter is that the support constraints of our d+ 1-
dimensional convex problems are at most d + 1. In order to prove it, we
need a classical result, which we state here without proof:

Theorem 7.4.1 (Helly). Let S1, · · · , Si, · · · , SN be convex subsets of Rn.
If the intersection of any n+ 1 of these subsets is nonempty, that is,

n+1⋂
k=1

Sik 6= ∅ for any choice of {i1, · · · , in+1} ⊂ {1, · · · , N},

then the intersection of all the subsets is nonempty, that is,

N⋂
i=1

Si 6= ∅.

Proof. See [25]. �

The following result is a simplified version of one of the cornerstones in a
general theory about robust optimization, called “scenario approach”, due
to Marco C. Campi, Giuseppe Calafiore, Simone Garatti, and others.

Theorem 7.4.2 Any feasible convex problem like the following:

minimize γ

subject to g1(θ)− γ ≤ 0

g2(θ)− γ ≤ 0,

...

gn(θ)− γ ≤ 0,

θ ∈ Rd, γ ∈ R,

has at most d+ 1 support constraints.

(Note that the number d+ 1 is due to the particular structure of the prob-
lem under consideration, which is (d + 1)-dimensional; a general statement
should indeed read “any d-dimensional feasible convex problem has at most
d support constraints”.)

160



Proof. Let (θ∗, γ∗) be the solution to the problem, and define

S1 =
{

(θ, γ) ∈ Rd+1
∣∣ g1(θ) ≤ γ

}
,

...

Sn =
{

(θ, γ) ∈ Rd+1
∣∣ gn(θ) ≤ γ

}
,

Z =
{

(θ, γ) ∈ Rd+1
∣∣ γ < γ∗

}
.

The sets S1, · · ·Sn ⊂ Rd+1 are the epigraphs of the convex functions g1(·), · · · , gn(·),
hence they are convex sets; a point belongs to Si if and only if it satisfies
the i-th constraint. The set Z ⊂ Rd+1 is an open half-plane, hence of course
another convex set. Any point belonging to Z is “super-optimal” (γ < γ∗);
there cannot exist a point that satisfies all the constraints and belongs to
Z, otherwise (θ∗, γ∗) would not be the minimizing solution.
For the sake of contradiction, assume now that the support constraints of
the problem are (without loss of generality) d + 2. Extract an arbitrary
collection of d+ 2 sets from S1, · · ·Sn, Z.
If Z happens to be in the collection, then the collection contains exactly d+1
(epigraphs of) constraints, of which at most d + 1 are support constraints.
Since the support constraints are assumed to be d+ 2, at least one of them
has been “removed”, and the solution “falls”, namely there exists a point
(θ∗∗, γ∗∗) which satisfies the d + 1 constraints (meaning that it belongs to
the d+ 1 sets {Si}) and attains γ∗∗ < γ∗ (meaning that it belongs to Z).
On the other hand, if Z is not in the collection, the latter contains just d+2
constraints, and since the problem is feasible, there exists at least a point
satisfying all of them.
Summing up, for any choice of d + 2 sets in S1, · · ·Sn, Z, their intersection
is non-empty. Applying Helly’s theorem we obtain that

S1 ∩ · · · ∩ Sn ∩ Z 6= ∅,

but this is clearly in contradiction with the hypothesis that (θ∗, γ∗) is the
solution to the problem. The contradiction stems from the assumption that
the support constraints were more than d+1, and is enough to establish the
claim. �

7.5 Prediction intervals revisited

A simple question in the style of Section 7.3 will clarify what is our final
objective:

Example. An urn contains N + 1 balls, of which d+ 1 are labeled “support
constraint” and the others are white. We extract a ball from the urn. What
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is the probability that the extracted ball has the label? The answer is of
course d+1

N+1 . �

Let y1, y2, · · · , yN a random sample drawn from the density f(y), and con-
sider the following convex problem (the constraints are now random):

minimize γ

subject to |θ − y1| − γ ≤ 0

...

|θ − yN | − γ ≤ 0

θ ∈ R, γ ∈ R,

Note that a constraint of the form g(θ, γ) = |θ − y| − γ ≤ 0 is convex in the
variables (θ, γ). Indeed, any set of the form |θ − y|−γ ≤ 0 is the intersection
of two half-spaces:

θ − y ≤ γ,
θ − y ≥ −γ.

Hence it is the intersection of two convex sets, which is itself convex. There-
fore, the problem is in turn convex.
The solution to the problem is the pair (θ∗, γ∗) attaining the minimum γ
such that θ has distance at most γ from all the points {yi}. It is not difficult
to convince ourself that the solution to this problem is such that

θ∗ − γ∗ = min
i
{yi},

θ∗ + γ∗ = max
i
{yi}.

Recall that the support constraints of the problem are at most d+ 1 = 2. It
may actually be the case that they are less than 2; this happens if and only
if there are more than one point equal to the minimum or to the maximum
(for example, if two measures are equal to the maximum, removing one of
them, that is removing the corresponding constraint, the maximum does
not change). But since the random variables have a density, this happens
with probability 0. Hence, almost surely the support constraints are exactly
2 (we say that the problem is “fully supported”), and the constraints cor-
responding to the minimum and the maximum are precisely the 2 support
constraints of this 2-dimensional problem.
The solution yields the prediction interval that we had obtained before:

[a, b] = [θ∗ − γ∗, θ∗ + γ∗] =

[
min
i
{yi}, max

i
{yi}

]
.

162



The question now arises as whether or not the solution to the above problem
remains the same if another constraint, corresponding to a new measure
yN+1 drawn from the same density, is added:

minimize γ

subject to |θ − y1| − γ ≤ 0

...

|θ − yN | − γ ≤ 0

|θ − yN+1| − γ ≤ 0

θ ∈ R, γ ∈ R,

If yN+1 ∈ [a, b], then the last constraint does not change anything, and the
solutions to the two problems are identical.
On the other hand, if yN+1 /∈ [a, b] (the new measure falls outside the predic-
tion interval), then the last constraint |θ − yN+1|−γ ≤ 0 becomes a support
constraint for the new problem, and the solution must change (the solution
must increase when the new support constraint is added, indeed because it
must decrease when the constraint is removed). In this case we say that the
new constraint violates the previous solution.

What is the probability that the new constraint violates the old solution?
Consider the second problem, with N + 1 constraints, and let the event

E = {the new constraint |θ − yN+1| − γ ≤ 0 is a support constraint

for the problem with N + 1 constraints} .

Since the support constraints are almost surely d + 1, conditioning to the
extraction y1, y2, · · · , yN , yN+1, the reasoning of Section 7.3 applies without
any substantial change:

p =

∫
RN+1

P [E | y1, · · · , yN+1] f(y1) · · · f(yN+1) dy1 · · · dyN+1

=

∫
RN+1\N

P [E | y1, · · · , yN+1] f(y1) · · · f(yN+1) dy1 · · · dyN+1

=

∫
RN+1\N

d+ 1

N + 1
f(y1) · · · f(yN+1) dy1 · · · dyN+1

=
d+ 1

N + 1

∫
RN+1\N

f(y1) · · · f(yN+1) dy1 · · · dyN+1

=
d+ 1

N + 1
.

Summing up: we have considered a convex problem with N constraints, and
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its solution has yielded the prediction interval that we knew from before. A
new measure yN+1 falls outside this prediction interval exactly when, adding
to the problem a new constraint corresponding to yN+1, this becomes a
support constraint, in other words it violates the old solution. By virtue of
the same reasoning on the ordering of measurements that we have considered
in Section 7.3, the probability of violation is d+1

N+1 . Finally, since in this

example d = dimension of θ = 1, the violation probability is 2
N+1 , as we had

found before.

7.6 Interval predictor models

What in the previous section may have looked like a tricky way to build a
prediction interval for a scalar variable yN+1, reveals its true power when
explanatory variables are added.
Let (x1, y1), (x2, y2), · · · , (xN , yN ), (xN+1, yN+1) be random pairs, indepen-
dent and identically distributed according to an unknown density, where
xi, yi ∈ R. Consider the optimization problem with the constraints corre-
sponding to the first N measures:

minimize γ

subject to |θ1 + θ2x1 − y1| − γ ≤ 0

...

|θ1 + θ2xN − yN | − γ ≤ 0

(θ1, θ2) ∈ R2, γ ∈ R.

Note that a constraint of the form g(θ1, θ2, γ) = |θ1 + θ2x− y| − γ ≤ 0 is
convex in the variables (θ1, θ2, γ), because any set of the form |θ1 + θ2x− y|−
γ ≤ 0 is the intersection of two half-spaces:

θ1 + θ2x− y ≤ γ,
θ1 + θ2x− y ≥ −γ,

hence it is the intersection of two convex sets, which is itself convex. There-
fore, the problem is convex. The solution to the problem is a certain triple
(θ∗1, θ

∗
2, γ
∗). The parameters θ∗1, θ

∗
2 yield a linear model:

y = θ∗1 + θ∗2 x (41)

which is “closest to the data (x1, y1), (x2, y2), · · · , (xN , yN ) as much as pos-
sible”, in the sense that the quantity

max
i=1,··· ,N

|θ∗1 + θ∗2 xi − yi| = γ∗

is the minimum that can be obtained letting θ1, θ2 vary. The linear model
(41) is of course not the least squares model, because what is minimized
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here is the maximum among the moduli of the errors32, not the sum of their
squares, and in general

min max
i=1,··· ,N

|θ∗1 + θ∗2 xi − yi| 6= min
N∑
i=1

(θ∗1 + θ∗2 xi − yi)2

interval predictor models 6= least squares;

however, for well-behaved data one can expect that the two models are not
too different from each other. Now, as the “next” explanatory variable xN+1

comes, we can predict the value of yN+1 as follows:

ŷN+1 = θ∗1 + θ∗2 xN+1

and append a “certificate” to this prediction: it will hold

|ŷN+1 − yN+1| = |θ∗1 + θ∗2 xN+1 − yN+1| > γ∗

with little probability, namely the same probability with which the new
constraint

|θ1 + θ2xN+1 − yN+1| − γ ≤ 0 (42)

would violate the solution (θ∗1, θ
∗
2, γ
∗) if added to the problem. Since here

d = dimension of θ = 2, the maximum number of support constraints in this
problem is d+1 = 3. Further, it could be shown that the number of support
constraints is less than 3 exactly when more than three points belong to the
straight lines

y = θ∗1 + θ∗2x− γ∗

y = θ∗1 + θ∗2x+ γ∗

that delimit the “stripe” containing all the data, and that this happens with
probability 0. Therefore, almost surely the support constraints are exactly
3, and according to the same reasoning of the previous section the violation
probability is

p =
d+ 1

N + 1
=

3

N + 1
.

In other terms, the interval

[a, b] = [θ∗1 + θ∗2 xN+1 − γ∗, θ∗1 + θ∗2 xN+1 + γ∗]

is a prediction interval for yN+1 with probability 1− 3
N+1 .

More in general, if we consider the whole pair (xN+1, yN+1) as the future
observation, we can predict that it will fall outside the region{

(x, y) ∈ R2
∣∣∣ |θ∗1 + θ∗2 x− y| > γ∗

}
32Problems like the one at hand are usually called “min-max problems”.
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with the same probability of violation of the constraint (42), which is again
d+1
N+1 = 3

N+1 . In other words, such region is a
(

1− 3
N+1

)
-probability “pre-

diction set” for the new observation.

The method can be generalized to multi-dimensional explanatory variables
and to nonlinear regressors:

minimize γ

subject to
∣∣∣ϕ(x1)>θ − y1

∣∣∣− γ ≤ 0

...∣∣∣ϕ(xN )>θ − yN
∣∣∣− γ ≤ 0

θ ∈ Rd, γ ∈ R;

the problem remains convex because the expressions within moduli are linear
in the parameter θ, and the results about the violation probability transport
without much effort.
The only subtle point remains the exact number of support constraints:
when the data (xi, yi) are continuous, i.e. distributed according to a density,
it could be shown that for a large family of regressor functions ϕ the support
constraint are almost surely d+ 1, hence the violation probability is exactly
d+1
N+1 . On the other hand, if the data are not distributed according to a
density (for example if yi takes a certain value ȳ with non-zero probability),
then the support constraints may be less than d + 1, and the violation
probability is not exact. However, it satisfies an inequality in the “good”
direction:

P
[∣∣∣ϕ(xN+1)>θ∗ − yN+1

∣∣∣ > γ∗
]
≤ d+ 1

N + 1

so that, given xN+1, the following

[a, b] =
[
ϕ(xN+1)>θ∗ − γ∗, ϕ(xN+1)>θ∗ + γ∗

]
is a prediction interval for yN+1 with probability at least 1− d+1

N+1 .

It is also possible to construct prediction intervals with exact probability
when certain unrealistic samples are discarded as “outliers”. For a broad
and rigorous exposition of the subject, you can refer to the research paper
[6] and to the references therein.
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A Brief reminder of linear algebra

This appendix is a collection of definitions and facts in no particular order; it
is only meant as a refresher, and most of the material covered should already
belong to the background of any student in information engineering. There
is absolutely no pretension of mathematical rigor here.
References for linear algebra: [16] (intermediate), [10] (intermediate), [29]
(intermediate to advanced), [14] (advanced).

A.1 Subspaces

Definition A.1.1 We say that a set V ⊂ Rp is a subspace of Rp if V
is closed with respect to the operations of addition and multiplication by a
scalar that hold in Rp. In other terms, V is a subspace if

v1, v2 ∈ V ⇒ αv1 + βv2 ∈ V

for all α, β ∈ R.

Definition A.1.2 Let v1, · · · , vn ∈ Rp. We denote

span {v1, · · · , vn} =

{
n∑
i=1

aivi

∣∣∣ a1, · · · , an ∈ R

}
the subset of Rp made of all the linear combinations of v1, · · · , vn.

As an exercise, you should prove that span {v1, · · · , vn} is actually a sub-
space of Rp. If V = span {v1, · · · , vn}, we also say that the vectors v1, · · · , vn
generate V .

Definition A.1.3 Let v1, · · · , vn ∈ Rp. We say that v1, · · · , vn are linearly
independent if the only linear combination that yields zero,

n∑
i=1

aivi = 0,

is the one with zero coefficients a1 = · · · = an = 0. If v1, · · · , vn are not
linearly independent, we call them linearly dependent.

Proposition A.1.1 Any p + 1 vectors in Rp are linearly dependent. In
other words, if v1, · · · , vn are linearly independent then n ≤ p.

Definition A.1.4 If v1, · · · , vn ∈ Rp are linearly independent and V =
span {v1, · · · , vn}, we say that the set {v1, · · · , vn} is a basis of the subspace
V . In particular, if n = p and span {v1, · · · , vn} = Rp, the set {v1, · · · , vn}
is a basis of Rp.

167



Proposition A.1.2 If v1, · · · , vn ∈ Rp are linearly independent, then there
exist vn+1, · · · , vp ∈ Rp such that v1, · · · , vp is a basis of Rp.

In words, every linearly independent subset of Rp can be extended to form
a basis.

These definitions (span, linear independence, basis) generalize quite natu-
rally to abstract vector spaces V , real or complex. Then one can show that
if V has a finite basis {v1, · · · , vn} with n elements, then every other basis of
V has the same number of elements. V is then said to be finite-dimensional;
the number n is called the dimension of V , and denoted dimV . In particular,
dimRp = p, because Rp admits at least the following basis of p vectors:

1
0
...
0

 ,


0
1
...
0

 , · · · ,


0
0
...
1

 ,
called the canonical basis.
Exercise: prove that the above canonical “basis” is really a basis of Rp.

A.2 Scalar products and orthogonality

Definition A.2.1 A scalar product in a real vector space V is a function
〈·, ·〉 : V × V → R that satisfies these properties:

• 〈x, x〉 ≥ 0 for all x ∈ V , and 〈x, x〉 = 0 if and only if x = 0 (positive
definiteness);

• 〈x, αy + βz〉 = α 〈x, y〉 + β 〈x, z〉 for all x, y, z ∈ V and α, β ∈ R
(linearity);

• 〈x, y〉 = 〈y, x〉 for all x, y ∈ V (symmetry).

The following is the prototypical scalar product in Rp:

〈x, y〉 = x>y, x, y ∈ Rp

Definition A.2.2 Similarly, a scalar product in a complex vector space V
is a function 〈·, ·〉 : V × V → C that satisfies these properties:

• for all x ∈ V it holds 〈x, x〉 ∈ R, 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only
if x = 0;

• 〈x, αy + βz〉 = α 〈x, y〉+ β 〈x, z〉 for all x, y, z ∈ V and α, β ∈ C;

• 〈x, y〉 = 〈y, x〉 for all x, y ∈ V .
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The only difference with the real case is the conjugation in the “symmetry”
property. The following is the prototypical scalar product in Cp:

〈x, y〉 = x∗y, x, y ∈ Cp

where ∗ denotes transpose-conjugate. Of course, when both x and y happen
to be real, the scalar product in Cp coincides with the previous one in Rp.

Definition A.2.3 A norm in a vector space V (real or complex) is a func-
tion ‖ · ‖ : V → R that satisfies these properties:

• ‖x‖ ≥ 0 for all x ∈ V , and ‖x‖ = 0 if and only if x = 0;

• ‖αx‖ = |α| ‖x‖ for all x ∈ V and α ∈ R;

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V (triangular inequality).

Proposition A.2.1 Let 〈·, ·〉 be a scalar product in a vector space V (real
or complex). Then the following:

‖x‖2 =
√
〈x, x〉

is a well-defined norm. In the vector spaces Rp and Cp, if the scalar product
is defined respectively as 〈x, y〉 = x>y or 〈x, y〉 = x∗y, this norm is called
the Euclidean norm.

Definition A.2.4 Two vectors v, w ∈ Rp are orthogonal if 〈v, w〉 = 0. This
is denoted v ⊥ w.

Theorem A.2.1 (Pythagoras). If v and w are orthogonal vectors, then

‖v + w‖2 = ‖v‖2 + ‖w‖2.

Proof.

‖v + w‖2 = 〈v + w, v + w〉 = 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉
= 〈v, v〉+ 〈w,w〉 = ‖v‖2 + ‖w‖2.

�

Proposition A.2.2 If the nonzero vectors {v1, · · · , vn} are orthogonal to
each other, then they are linearly independent.

Proof. Let vi ⊥ vj for all i, j = 1 · · ·n, i 6= j. Suppose that

a1v1 + · · ·+ aivi + · · ·+ anvn = 0.
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Then, taking the scalar product with vi,

0 = a1 〈vi, v1〉+ · · ·+ ai 〈vi, vi〉+ · · ·+ an 〈vi, vn〉
= a1 · 0 + · · ·+ ai‖vi‖2 + · · ·+ an · 0
= ai‖vi‖2.

Since vi is nonzero, it must be ai = 0. Repeating for i = 1, · · · , n we get
a1 = · · · = an = 0. Therefore the only linear combination yielding zero is
the one with all the coefficients equal to zero, hence {v1, · · · , vn} are linearly
independent by definition. �

Definition A.2.5 Given a subset S ⊂ Rp, the orthogonal complement of
S in Rp is the set

S⊥ = {v ∈ Rp | v ⊥ w for all w ∈ S} .

Whatever set is S, S⊥ is a subspace of Rp; indeed if v1, v2 ∈ S⊥, then for
all w ∈ S, 〈w, av1 + bv2〉 = a 〈w, v1〉+ b 〈w, v2〉 = 0, so that av1 + bv2 ∈ S⊥
as well.

Proposition A.2.3 Let V be a subspace of Rp. Then33(
V ⊥
)⊥

= V.

Theorem A.2.2 Let W be a subspace of Rp. Then every vector v ∈ Rp can
be expressed in an unique way as

v = w + w⊥

where w ∈W and w⊥ ∈W⊥ 34.

The vector w is called the orthogonal projection of v on the subspace W
(similarly, w⊥ is the orthogonal projection of v on the subspace W⊥).

A.3 Range and null space of a matrix

Definition A.3.1 The range of a matrix A ∈ Rn×p is the set35

range A = {v ∈ Rn | there exists w ∈ Rp such that v = Aw} .

Note that
range A = span {columns of A} .

33This is not true for a subspace V of any vector space H. It is essential that H is
finite-dimensional, like H = Rp.

34In other words, Rp is the direct sum of W and W⊥.
35The range of A is the image of Rp under A understood as a linear mapping from Rp

to Rn. Hence it is also denoted Im A in the literature.
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Definition A.3.2 The null space of a matrix A ∈ Rn×p is the set36

null A = {v ∈ Rp | Av = 0} .

Of course null A is a subspace of Rp; indeed if v1, v2 ∈ null A, then A(av1 +
bv2) = aAv1 + bAv2 = 0, hence av1 + bv2 ∈ null A as well. In other terms,
the null space of A is orthogonal complement in Rp of the set of the columns
of A> (transposes of the rows of A):

null A =
{

columns of A>
}⊥

.

Theorem A.3.1 Let A ∈ Rn×p, understood as a linear mapping from Rp
to Rn. Then

p = dim range A+ dim null A.

Proposition A.3.1 Let A ∈ Rn×p, understood as a linear mapping from
Rp to Rn. Then

1. range A =
(
null A>

)⊥
;

2. null A =
(
range A>

)⊥
;

3. range A> = (null A)⊥;

4. null A> = (range A)⊥.

As an exercise, you should give an interpretation to each of these properties.
For example, the first goes as follows. Let ri be the i-th row of A>. Then
null A> = {v | riv = 0 for all i} = {v | c>i v = 〈ci, v〉 = 0 for all i}, where
now ci is the i-th column of A. Then null A> is the orthogonal complement
of span {columns of A} = range A. Taking its orthogonal complement, we
obtain range A.

Corollary A.3.1 For any matrix A ∈ Rm×n,

range A = range AA>

Proof. Suppose that v ∈ null A>. This means A>v = 0, hence also AA>v =
0 and v ∈ null AA>. Suppose, on the other hand, that v ∈ null AA>. Then
AA>v = 0, hence also ‖A>v‖22 = (A>v)>A>v = v>AA>v = 0. This implies
that A>v = 0 and v ∈ null A>. Hence null A> = null AA>, and by the
previous Proposition,

range A = (null A>)⊥ = (null AA>)⊥ = range AA>.

Note that this proof is nothing more than a compact form of the proof of
Lemma 1.4.1, if we let A = Φ> =

[
ϕ1 · · · ϕN

]
. �

36In the literature, the null space of A is also called the kernel of A, and denoted Ker A.
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Definition A.3.3 Let A ∈ Rn×p. The rank of A is the maximum dimen-
sion of a square matrix, obtained from A by suppressing some rows and/or
columns, with nonzero determinant.

The following characterizations are more intuitive and more useful:

Proposition A.3.2 The rank of A is equal to:

• the dimension of the subspace of Rn generated by its columns:

rank A = dim span {columns of A}
= dim range A;

• the dimension of the subspace of Rp generated by its rows:

rank A = dim span {rows of A}
= dim span {columns of A>}
= dim range A>.

If A ∈ Rn×p, where n ≥ p (“tall” matrix, i.e. more rows than columns), we
say that A has full rank if rank A = p = number of columns. Then the
columns of A are linearly independent, and the subspace of Rn generated
by them has dimension p (the maximum possible).

Conversely, if n ≤ p (“flat” matrix, i.e. more columns than rows), we say
that A has full rank if rank A = n = number of rows. Then the rows of A
are linearly independent, and their span has dimension n.

In particular, if A ∈ Rp×p (square), the following statements are equivalent:

• A has full rank (= p);

• the columns of A are linearly independent, and form a basis of Rp;

• the columns of A> (transposes of the rows of A) are linearly indepen-
dent, and form a basis of Rp;

• A is invertible, i.e. non-singular, its determinant is nonzero, etc.

A.4 Eigenvalues, eigenvectors, and diagonalization

Definition A.4.1 A real square matrix A ∈ Rp×p is called:

• symmetric, if it coincides with its transpose: A = A>. The rows of a
symmetric matrix, taken in order, are the transposes of its columns,
taken in the same order.

172



• orthogonal, if it is invertible and its inverse coincides with its trans-
pose: AA> = A>A = Ip. The columns of an orthogonal matrix form
an orthonormal basis of Rp, and so do its rows. Orthogonal transfor-
mations preserve scalar products and Euclidean norms in Rp: indeed

〈Ax,Ay〉 = (Ax)>Ay = x>A>Ay = x>y = 〈x, y〉

‖Ax‖2 =
√
〈Ax,Ax〉 =

√
〈x, x〉 = ‖x‖2

(In geometric language, one says that orthogonal mappings, such as
rotations and reflections, preserve angles and lengths.)

• normal, if it commutes with its transpose: AA> = A>A. In particular,
symmetric and orthogonal matrices are normal.

Correspondingly, a complex square matrix A ∈ Cp×p is called:

• Hermitian, if it coincides with its transpose-conjugate: A = A∗. The
rows of a Hermitian matrix, taken in order, are the transpose-conjugates
of its columns, taken in the same order.

• unitary, if it is invertible and its inverse coincides with its transpose-
conjugate: AA∗ = A∗A = Ip. The columns of a unitary matrix form
an orthonormal basis of Cp, and so do its rows. Unitary transforma-
tions preserve scalar products and Euclidean norms in Cp.

• normal, if it commutes with its transpose-conjugate: AA∗ = A∗A. In
particular, Hermitian and unitary matrices are normal in the complex
sense.

Definition A.4.2 Let A ∈ Cp×p. If there exist a nonzero vector v ∈ Cp
and a complex number λ such that

Av = λv,

then λ is called an eigenvalue of A, and v an eigenvector of A corresponding
to that eigenvalue.

The above requirement about v 6= 0 is the same as the following: the linear
system

(λI −A)v = 0

admits a nonzero solution v. For this to hold, the matrix λI − A must be
non-invertible (or “singular”), i.e.

det(λI −A) = 0.

The function χ(λ) = det(λI − A) is a polynomial in the variable λ, called
the characteristic polynomial of A; its (complex) roots are the eigenvalues
of A.
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Definition A.4.3 A complex matrix A ∈ Cp×p is called diagonalizable if it
admits a decomposition

A = MΛM−1

where M is an invertible matrix (in general, complex) and Λ is a diagonal
matrix (in general, with complex entries on the diagonal).

The same terminology applies to real matrices A ∈ Rp×p, but while complex
eigenvalues and complex eigenvectors always exist (in particular eigenvalues
always exist because any polynomial of degree ≥ 1 has at least one root, by
the fundamental theorem of algebra), such eigenvalues and eigenvectors are
real only in particular cases. In the same fashion, it may very well happen
that a real matrix A is diagonalizable with complex M and Λ, but not with
real M and Λ. For example,[

0 −1
1 0

]
=

[
1 1
−i i

] [
i 0
0 −i

] [
1 1
−i i

]−1

admits a complex diagonalization but not a real one, because its eigenvalues
are complex.
Anyway, any such diagonal decomposition is of paramount importance. In-
deed, suppose that A ∈ Rp×p is diagonalizable with real M and Λ. If we let
m1, · · · ,mp be the columns of M and we multiply on the right-hand side by
M ,

AM = MΛ = M

 λ1 0 0

0
. . . 0

0 0 λp


which, read column by column, means

Ami = λimi

In other words, any diagonal decomposition yields a basis of Rp made of
eigenvectors of A. Any column mi is an eigenvector of A, and λi is the
corresponding eigenvalue.

Definition A.4.4 We call a complex matrix A ∈ Cp×p unitarily diagonal-
izable if it is diagonalizable with M unitary. Since the inverse of an unitary
matrix is its transpose-conjugate, the decomposition reads:

A = MΛM∗.

One of the most fundamental results in finite-dimensional linear algebra is
the following:
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Theorem A.4.1 (Spectral theorem). A matrix A ∈ Cp×p is unitarily diag-
onalizable if and only if it is normal.

As a particular case, then, Hermitian matrices are unitarily diagonalizable;
but in this case we can say more. Indeed, if A is Hermitian, v is an eigen-
vector, and λ is the corresponding eigenvalue, then

λ‖v‖2 = λv∗v = v∗Av = v∗A∗v = (Av)∗v = (λv)∗v = λ̄v∗v = λ̄‖v‖2

Since any eigenvector is supposed to be nonzero, ‖v‖2 is a positive quantity,
hence λ̄ = λ, that is, λ is real. Thus, the eigenvalues of a Hermitian matrix
are real.
An analogous result holds in the real case. The eigenvalues of a symmetric
matrix A ∈ Rn×n are real; in this case, moreover, there exist an orthonormal
basis of Rn made of real eigenvectors of A, therefore A admits a decompo-
sition

A = MΛM>

where Λ is diagonal with real entries, and M is real and orthogonal.

A.5 Positive semi-definite matrices

Definition A.5.1 A symmetric matrix P = P> ∈ Rp×p is called positive
semi-definite if for all v ∈ Rp it holds v>Pv ≥ 0; this property is denoted
P ≥ 0.
If, in addition, v>Pv > 0 for all v 6= 0, then P is called positive definite;
this property is denoted P > 0.

A positive semi-definite matrix P is diagonalizable, because it is supposed
to be symmetric; moreover, the entries on the diagonal matrix (that is,
the eigenvalues of P ) are greater than or equal to zero. Indeed, if v is an
eigenvector and λ the corresponding eigenvalue,

λ‖v‖2 = λv>v = v>λv = v>Av ≥ 0

Since any eigenvector is supposed to be nonzero, ‖v‖2 is a positive quantity,
hence λ ≥ 0.
A similar proof shows that the eigenvalues of a positive-definite matrix must
be strictly positive. In this case, the diagonal decomposition reads

P = MΛM>

where the diagonal entries of Λ are strictly positive, hence Λ is invertible.
Consequently, any positive definite matrix P is invertible.
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For any positive semi-definite matrix P = MΛM>, where

Λ =

 λ1

. . .

λp

 ,
we define the square root of P as follows:

P 1/2 := M


√
λ1

. . . √
λp

M>.
Given P , P 1/2 is the unique positive semi-definite matrix such that

(
P 1/2

)2
=

P . If P is positive definite, hence invertible, then P 1/2 is also invertible, and
we denote its inverse as P−1/2 (as an exercise, define P−1/2 in terms of
M,M>, and λ1, · · · , λp).

Positive semi-definiteness induces a partial ordering between square matri-
ces; for any A,B ∈ Rp×p we write A ≥ B (equivalently, B ≤ A) whenever
A − B ≥ 0, and A > B (equivalently, B < A) whenever A − B > 0. This
ordering is transitive:

• if A ≥ B and B ≥ C, then A ≥ C;

• if A ≥ B and B > 0, then A > 0 (hence both A and B are invertible);

Proposition A.5.1 If A ≥ B and B > 0, then A−1 ≤ B−1.

Proof. Suppose, first, that B = I, that is A ≥ I. Multiplying both sides by
A−1/2, we obtain

B−1 = I = A−1/2AA−1/2 ≥ A−1/2IA−1/2 = A−1.

Now to the general case: if A ≥ B, then multiplying by B−1/2 on both sides,

B−1/2AB−1/2 ≥ I.

Hence, applying the previous case,(
B−1/2AB−1/2

)−1
= B1/2A−1B1/2 ≤ I,

and multiplying on each side by B−1/2 we obtain the claim. �
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A.6 Other matrix computations

Lemma A.6.1 (matrix inversion lemma). Let A and C be square, invert-
ible matrices. Then

(A+BCD)−1 = A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1

for any two matrices B,D with compatible dimensions.

Proof. The simplest way to prove the assertion is to show that the right-
hand side, multiplied by A+BCD, yields the identity. Indeed:(
A−1 −A−1B

(
C−1 +DA−1B

)−1
DA−1

)
(A+BCD)

= A−1A+A−1BCD −A−1B
(
C−1 +DA−1B

)−1
DA−1A

−A−1B
(
C−1 +DA−1B

)−1
DA−1BCD

= I +A−1BCD −A−1B
((
C−1 +DA−1B

)−1
+
(
C−1 +DA−1B

)−1
DA−1BC

)
D

= I +A−1BCD −A−1B
((
C−1 +DA−1B

)−1
C−1C +

(
C−1 +DA−1B

)−1
DA−1BC

)
D

= I +A−1BCD −A−1B
((
C−1 +DA−1B

)−1 (
C−1 +DA−1B

))
CD

= I +A−1BCD −A−1BCD = I.

�
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B Review of some concepts in mathematical anal-
ysis

References for mathematical analysis: [28] (intermediate).

B.1 Uniform convergence

Let C be a set, f : C → R a function and {fn}∞n=1 a sequence of functions
fn : C → R.

Definition B.1.1 We say that fn converges to f point-wise if

lim
n→∞

fn(x) = f(x) for all x ∈ C.

Definition B.1.2 We say that fn converges to f uniformly if

lim
n→∞

sup
x∈C
|fn(x)− f(x)| = 0.

This means that for all ε > 0 there exists N ≥ 0 such that, for all n ≥ N ,
|fn(x)−f(x)| ≤ ε over all the domain C (in words, the fn are all “uniformly
ε-close” to f after a certain index N). If the fn converge to f uniformly,
then they do so also point-wise (in general the converse is false). Indeed,

lim
n→∞

|fn(x)− f(x)| ≤ lim
n→∞

sup
x∈C
|fn(x)− f(x)| = 0

Uniform convergence plays an important role in classical analysis, where it is
often required to establish results on continuity and Riemann-integrability.
For example, recall these properties from calculus courses:

Theorem B.1.1 Let fn be continuous on the interval [a, b] ⊂ R, and sup-
pose that fn → f uniformly on [a, b]. Then

• f is continuous on [a, b];

• limn→∞
∫ b
a fn(x)dx =

∫ b
a f(x) dx.

B.2 Compactness

Definition B.2.1 A subset C of a metric space X is called compact if from
any sequence of points xn ⊆ C it is possible to extract a sub-sequence that
converges to a point belonging to C.
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Here, “metric space” means any space in which there exist the notion of
a distance, e.g. the vector space Rp endowed with the Euclidean distance
d(x, y) = ‖x− y‖2 is a metric space.
Example. The closed interval C̄ = [0, 1] ⊂ R is compact. For instance, from
the sequence 1

2 ,
1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 , · · · ,

1
k ,

k−1
k , · · · we can extract the subsequence

1
2 ,

1
3 ,

1
4 , · · · ,

1
k , · · · which converges to 0 ∈ C̄. The open interval C = (0, 1) ⊂

R is not compact, because any subsequence extracted from the sequence
xn = 1

n+1 converges to 0 /∈ C. The set N = {0, 1, 2, 3, · · · } ⊂ R is not
compact, because any subsequence extracted from the sequence xn = 2n
diverges. �

Theorem B.2.1 (Heine/Borel). A subset C of a finite-dimensional vector
space is compact if and only if it is closed and bounded.

The hypothesis of finite dimensionality (think of Rp) is crucial. For example,
the set {x | ‖x‖ ≤ 1}, which is compact in Rp by the Heine/Borel theorem,
is never compact in any infinite-dimensional space, by a theorem of Riesz.
Compactness is often required to establish the existence of a solution to
some problem. For example, the following fundamental result generalizes a
property that you already know from calculus courses:

Theorem B.2.2 (Weierstrass). Let C be a subset of a metric space and
f : C → R a function. If C is compact and f is continuous, then there exist
x, x̄ ∈ C such that

f(x) = min
x∈C

f(x),

f(x̄) = max
x∈C

f(x).

(Here x and x̄ are, respectively, the so-called “arg min” and “arg max” of f
over C.)

B.3 Convexity

Definition B.3.1 A subset S of a vector space is called convex if, whenever
the points x, y belong to S, the point zλ = λx + (1 − λ)y also belongs to S
for all λ ∈ [0, 1]. (Any such zλ is called a convex combination of x and y.)

Intuitively, this means that whenever x, y ∈ S, the whole line segment join-
ing x and y is contained in S. For example:

• subspaces and their translations, hyperplanes etc. are convex sets;

• closed and open balls (i.e. sets of the form {x ∈ Rp | ‖x − c‖ ≤ r} or
{x ∈ Rp | ‖x− c‖ < r}) are convex sets.

Lemma B.3.1 An arbitrary intersection of convex sets is itself convex.
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Proof. Let {Si}i∈I be convex sets, S = ∩i∈ISi, and let λ ∈ [0, 1]. If x, y ∈ S,
then x and y belong to each Si; since each Si is convex, λx+ (1− λ)y also
belongs to Si for all i, and therefore it must belong to their intersection,
which is S. Hence, S is convex. �

Definition B.3.2 A function f : S → R defined on a convex set S is called
convex if, for all x, y ∈ S and all λ ∈ [0, 1], it holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

The function f is called strictly convex if it is convex and the above inequality
is strict (<) whenever x 6= y and 0 < λ < 1.

For example:

• linear and affine functions (f(x) = c>x+ d) are convex, indeed

f(λx+ (1− λ)y) = c>(λx+ (1− λ)y) + d

= c>(λx+ (1− λ)y) + (λd+ (1− λ)d)

= λ(c>x+ d) + (1− λ)(c>y + d)

= λf(x) + (1− λ)f(y)

(the inequality “≤” holds as “=”);

• any norm is a convex function, indeed

‖λx+ (1− λ)y‖ ≤ ‖λx‖+ ‖(1− λ)y‖ = λ‖x‖+ (1− λ)‖y‖.

• the square function f : R→ R, f(x) = x2, is strictly convex;

• any composition of a convex function f with an affine function g(x) =
c>x+ d is convex. Indeed:

f
(
c>(λx+ (1− λ)y) + d

)
= f

(
λ(c>x+ d) + (1− λ)(c>y + d)

)
≤ λf(c>x+ d) + (1− λ)f(c>y + d);

• any sum of [strictly] convex functions is [strictly] convex.

Definition B.3.3 The epigraph of a function f : S → R is the subset of
S × R defined as follows:

Epi f =
{

(x, y) ∈ S × R
∣∣ f(x) ≤ y

}
.

In words, the epigraph of f is the set of all points lying over its graph.
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Lemma B.3.2 A function f : S → R is convex if and only if Epi f is a
convex set.

Proof. Suppose that f is convex, and let (x1, y1), (x2, y2) ∈ Epi f . This
means that

f(x1) ≤ y1,

f(x2) ≤ y2;

but then, for all λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

≤ λy1 + (1− λ)y2,

and this means that λ(x1, y1) + (1 − λ)(x2, y2) ∈ Epi f . Hence Epi f is
convex.
Suppose, on the other hand, that Epi f is convex, and let x1, x2 ∈ S, λ ∈
[0, 1]. Then of course (x1, f(x1)), (x2, f(x2)) ∈ Epi f . Since Epi f is convex,
then λ(x1, f(x1)) + (1− λ)(x2, f(x2)) ∈ Epi f or, which is the same,

(λx1 + (1− λ)x2, λf(x1) + (1− λ)f(x2)) ∈ Epi f,

and this in turn means that

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

Thus, f is convex. �

Definition B.3.4 The k-sublevel set of a function f : S → R, where k ∈ R,
is the subset of S defined as follows:

Sk =
{
x ∈ S

∣∣ f(x) ≤ k
}
.

Lemma B.3.3 The sublevel sets of a convex function f : S → R are convex
sets.

The converse is in general false (find a counterexample).

Proof. Suppose that f is convex and k ∈ R, and let Sk be the k-sublevel
set of f . If x1, x2 ∈ Sk and λ ∈ [0, 1], then

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

≤ λk + (1− λ)k = k,

hence also λx1 + (1− λ)x2 ∈ Sk, and Sk is convex. �
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Theorem B.3.1 Suppose that f : S → R is convex and differentiable over
S (its gradient ∇f(x̄) exists at each point x̄ ∈ S). Then

f(x) ≥ f(x̄) +∇f(x̄)>(x− x̄)

for all x, x̄ ∈ S.

Proof. See [2, p. 70]. �

Corollary B.3.1 If f : S → R is convex and differentiable over S, and a
certain x̄ ∈ S is such that ∇f(x̄) = 0, then f(x̄) ≤ f(x) for all x ∈ S. In
other words, x̄ is a global minimum point for f .
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C Review of discrete-time linear, time-invariant
systems

References for discrete-time systems: [22] (intermediate).

C.1 Discrete-time signals and systems

A deterministic discrete-time signal {u(t)} = {u(t)}+∞−∞ is a sequence of
numbers · · · , u(−2), u(−1), u(0), u(1), u(2), · · · , infinite in both directions37.
A signal {u(t)} is called bounded if there exists a constant Ku ≥ 0 such that

|u(t)| ≤ Ku for all t ∈ Z.

The bounded signal

δ(t) =

{
1, if t = 0,

0, otherwise,

is called the (discrete-time) impulse.

A signal {u(t)} is called summable if

+∞∑
t=−∞

|u(t)| = M <∞.

The convolution of two signals {u(t)}, {v(t)} is the signal {u ∗ v(t)} defined
as follows:

u ∗ v(t) :=

+∞∑
τ=−∞

u(t− τ)v(τ) = lim
T→∞

T∑
τ=−T

u(t− τ)v(τ); (43)

the above expression is well-defined only if the series converges. The con-
volution ‘∗’ is an operation between sequences: it maps a pair of sequences
into another sequence; as an operation, it has both the associative property
((u ∗ v) ∗ w = u ∗ (v ∗ w)) and the commutative property (u ∗ v = v ∗ u).
Moreover, it possesses an identity element, which is precisely the impulse
sequence:

δ ∗ u(t) = u ∗ δ(t) =

+∞∑
τ=−∞

u(t− τ)δ(τ) =
∑
τ=0

u(t− τ) = u(t) for all t,

that is δ ∗ u = u ∗ δ = u.

37The numbers can be real or complex; at one point, namely C.4, we will consider
complex sequences of the form u(t) = ejωt; in real-world applications, signals are usually
real.
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A discrete-time linear system is, basically, a linear map ϕ from a vector space
U of discrete-time signals, called the input set, to another vector space Y of
discrete-time signals, called the output set. To any sequence {u(t)} ∈ U , ϕ
associates another sequence {y(t)} ∈ Y:

ϕ : {· · · , u(−1), u(0), u(1), · · · } 7→ {· · · , y(−1), y(0), y(1), · · · }

The law governing some systems impose that the output sample y(t) is a
function of the sole input sample u(t), and possibly of the time t, for all t:

y(t) = f(t, u(t)).

These systems are called instantaneous transformations. Despite the fact
that they are indeed useful models for a lot of phenomena considered in
control engineering and telecommunications (e.g. quantizers, saturations,
“dead zones”, etc.), they are not much interesting from our point of view.
In the cases that we are going to consider, the output sample y(t) is in
general a function of the whole input signal {u(t)}, or of part of it, and
possibly of the time t; for instance, with loose notation,

y(t) = f(t, · · · , u(t+ 1), u(t), u(t− 1), · · · ) (time-varying, non-causal system),

y(t) = f(u(t), u(t− 1), · · · ) (time-invariant causal system).

These are called dynamical systems (from the Greek word “dynamis”, force),
because they are suitable models of physical systems subject to forces, ac-
celerations and so on.
Among these, linear dynamical systems are of paramount importance in
practically every branch of science and engineering. Recall that linearity
means that the superposition principle holds: if

ϕ : {u1(t)} 7→ {y1(t)} and ϕ : {u2(t)} 7→ {y2(t)},

then for any constants a and b,

ϕ : {au1(t) + bu2(t)} 7→ {ay1(t) + by2(t)}

(“to the sum of the causes corresponds the sum of the effects”). The system
is called time-invariant if to the translation in time of an input corresponds
the translation in time of the output, with the same time lag τ : if

ϕ : {u(t)} 7→ {y(t)}

then for any τ ∈ Z,

ϕ : {u(t+ τ)} 7→ {y(t+ τ)}

A time-invariant system has the following property: the output correspond-
ing to a certain input {u(t)} is the convolution between {u(t)} and the
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output {w(t)} = ϕ [{δ(t)}] corresponding to {δ(t)}. Indeed, with loose no-
tation,

y(t) = ϕ [{u(t)}] = ϕ [{δ ∗ u(t)}] = ϕ

[{
+∞∑

τ=−∞
δ(t− τ)u(τ)

}]

=

+∞∑
τ=−∞

ϕ [{δ(t− τ)}]u(τ) =

+∞∑
τ=−∞

w(t− τ)u(τ) = w ∗ u(t),

(44)

where the fourth equality is an application of linearity that deliberately
ignores convergence details (the sum is infinite!), and the fifth one is due to
time-invariance. The sequence {w(t)} is called the impulse response of the
system. In what follows we will always refer to discrete-time systems that
are both linear and time-invariant, and we will call them LTI systems for
short.

C.2 Stability and causality

An LTI system is called externally stable, or BIBO-stable, if any bounded
input signal is mapped to an output signal which is also bounded38. More
precisely, if |u(t)| ≤ Ku for all t, then there exists Ky such that |y(t)| ≤
Ky for all t. It is easy to show that if the impulse response is summable,
then the system is BIBO-stable39. Indeed, suppose that {w(t)} is such that∑+∞

t=−∞ |w(t)| = M <∞ and that |u(t)| ≤ Ku for all t; then

|y(t)| =

∣∣∣∣∣
+∞∑

τ=−∞
u(τ)w(t− τ)

∣∣∣∣∣ ≤
+∞∑

τ=−∞
|u(τ)| |w(t− τ)|

≤ Ku

+∞∑
τ=−∞

|w(t− τ)| = KuM := Ky

for all t, so that {y(t)} is a bounded signal as well.

An BIBO-stable LTI system is called causal if whenever two input sequences
satisfy

u1(τ) = u2(τ), τ = · · · , t− 2, t− 1, t;

the corresponding output sequences satisfy

y1(τ) = y2(τ), τ = · · · , t− 2, t− 1, t.

This means that the output y(t) at a certain time t depends on the past
samples of the input signal {u(τ)}, τ = · · · , t − 2, t − 1, t, but not on its
future samples {u(τ)}, τ = t+ 1, t+ 2, · · · .

38BIBO stands for Bounded Input ⇒ Bounded Output.
39The converse is also true, but details are omitted here.
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This definition implies, in particular, that the output corresponding to an
input signal {u(t)} such that u(τ) = 0 tor all τ < t0 also satisfies y(τ) = 0
tor all τ < t0: thus, if the input “starts” at t0, so does the output. In view
of time-invariance, it is customary to let always t0 = 0, and to call causal
also those signals that “start at 0”. Thus, a causal LTI system has a causal
impulse response {w(t)}, because the impulse is causal in the first place
(δ(t) = 0 for all t < 0). The response of a causal system to an arbitrary
input {u(t)} is

y(t) = w ∗ u(t) =
+∞∑

τ=−∞
w(t− τ)u(τ) =

t∑
τ=−∞

w(t− τ)u(τ), (45)

because w(t − τ) = 0 for τ > t. Here y(t) is well defined if and only if the
series converges. If, moreover, the input sequence {u(t)} is also causal, then

y(t) =
t∑

τ=−∞
w(t− τ)u(τ) =

t∑
τ=0

w(t− τ)u(τ), (46)

because u(τ) = 0 for τ < 0. Differently from (43), (44), and (45), the
convolution (46) is always well-defined for all t, because the sum is finite.

C.3 Transforms and transfer functions

The Fourier transform of a signal {u(t)}+∞−∞ is the power series:

Û(ω) = F [{u(t)}] (ω) :=

+∞∑
t=−∞

u(t)e−jωt

= lim
T→∞

T∑
t=−T

u(t)e−jωt,

(47)

where ω ∈ [−π, π]. Such series may very well not converge, and the Fourier
transform may not exist; a sufficient condition for the existence of Û(ω) for
all ω is that the sequence is (absolutely) summable: if

∑+∞
t=−∞ |u(t)| < ∞,

then

+∞∑
t=−∞

|u(t)e−jωt| =
+∞∑
t=−∞

|u(t)| |e−jωt| =
+∞∑
t=−∞

|u(t)|,

and (47) converges at all ω, since it converges also absolutely.

A Fourier transform, even that of a real signal, is in general a complex

function of ω. It can therefore be expressed as Û(ω) = |Û(ω)| ej∠Û(ω).
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However, if {u(t)} is real its transform enjoys the following property,

Û(−ω) =
+∞∑
t=−∞

u(t)ejωt =
+∞∑
t=−∞

u(t) e−jωt

=
+∞∑
t=−∞

u(t)e−jωt = Û(ω),

called Hermitian symmetry. It follows at once that

|Û(−ω)| = |Û(ω)|;
∠Û(−ω) = −∠Û(ω).

(48)

In words, the absolute value of the Fourier transform of a real signal is an
even function, and its phase is an odd one. Also, it is immediate to show
that its real part is even, and its imaginary part is odd.

The so-called Z-transform of a signal {u(t)} is the power series:

U(z) = Z [{u(t)}] (z) :=

+∞∑
t=−∞

u(t)z−t, (49)

where z ∈ C. As happens for the Fourier transform, the Z-transform may
not converge for any z ∈ C (take for example the sequence u(t) = |t|!); if,
however, {u(t)} is (absolutely) summable, then it converges at least on the
unit circle {z ∈ C s.t. |z| = 1} = {ejω | ω ∈ [−π, π]}, and there it coincides
with the Fourier transform, i.e. Û(ω) = U

(
ejω
)
.

The Z-transform of a causal signal {u(t)} is

U(z) = Z [{u(t)}] (z) =
+∞∑
t=0

u(t)z−t. (50)

In this case, if the series converges for a certain z̄ ∈ C, then it converges ab-
solutely for all z ∈ C such that |z| > |z̄|. Indeed, if

∑+∞
t=0 u(t)z̄−t converges,

then the sequence {u(t)z̄−t} must be bounded, that is |u(t)z̄−t| ≤ K for all
t. But then, for all |z| > |z̄|,

+∞∑
t=0

|u(t)z−t| =
+∞∑
t=0

|u(t)z̄−t|
∣∣∣∣z−tz̄−t

∣∣∣∣ ≤ K +∞∑
t=0

∣∣∣ z̄
z

∣∣∣t =
K

1− |z̄/z|
<∞.

Hence, either the series does not converge for any z ∈ C (example: u(t) = t!),
or it converges at least on an open region outside a disc, i.e. on a set of the
form {z ∈ C s.t. |z| > R}. The minimum R for which this happens is called
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convergence radius. If, in particular, R < 1, then (49) converges on the unit
circle and the Fourier transform can be recovered as Û(ω) = U

(
ejω
)
.

The Z-transform of the impulse response of an LTI causal system is called
the transfer function of that system. Its Fourier transform is also called
sometimes the transfer function or, depending on the context, the frequency
response of the system.

Some fundamental facts about Z-transforms follow:

1. The operator Z that maps sequences to transforms is linear: if {u1(t)}
and {u2(t)} are signals, and a1, a2 are real constants, then

Z [{a1u1(t) + a2u2(t)}] (z) =

+∞∑
t=−∞

(a1u1(t) + a2u2(t))z−t

= a1

+∞∑
t=−∞

u1(t)z−t + a2

+∞∑
t=−∞

u2(t)z−t

= a1U1(z) + a2U2(z),

provided that both U1(z) and U2(z) exist for some z ∈ C; the transform
of the linear combination exists at all such z. More generally,

Z

[{
T∑
τ=0

aτuτ (t)

}]
(z) =

T∑
τ=0

aτUτ (z),

for all z ∈ C such that Uτ (z) exists for τ = 0, · · · , T . Even more
generally

Z

[{
+∞∑
τ=0

aτuτ (t)

}]
(z) =

+∞∑
t=−∞

+∞∑
τ=0

aτuτ (t)z−t

=

+∞∑
τ=0

aτUτ (z),

provided that the two limits in the series can be interchanged. We omit
further details; we will use this fact in the following point, without
worrying about convergence issues.

2. The transform of a convolution is the product of the respective trans-
forms. Consider for example the input-output relation of a causal LTI
system with impulse response {w(t)} (so that y(t) = w ∗ u(t), where
{u(t)} is the input signal and {y(t)} the output signal). Ignoring tech-
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nical details about convergence,

y(t) =

+∞∑
τ=0

w(t− τ)u(τ)

Y (z) =

+∞∑
t=0

(
+∞∑
τ=0

w(t− τ)u(τ)

)
z−t

=
+∞∑
τ=0

+∞∑
t=0

w(t− τ)u(τ)z−(t−τ+τ)

=
+∞∑
τ=0

u(τ)z−τ
+∞∑
t=0

w(t− τ)z−(t−τ);

since {w(t)} is causal all the terms in the inner sum for which t−τ < 0
vanish, hence the inner sum starts from τ , and

Y (z) =

+∞∑
τ=0

u(τ)z−τ
+∞∑
t=τ

w(t− τ)z−(t−τ)

=

(
+∞∑
τ=0

u(τ)z−τ

)(
+∞∑
t′=0

w(t′)z−t
′

)
= W (z)U(z).

(51)

3. If U(z) is the transform of a causal signal {u(t)}, then z−1U(z) is the
transform of its delayed version {ū(t)}, defined by ū(t) := u(t− 1) for
all t. Indeed,

Ū(z) =

+∞∑
t=0

ū(t)z−t =
+∞∑
t=0

u(t− 1)z−t = z−1
+∞∑
t=0

u(t− 1)z−(t−1)

= z−1
+∞∑
t′=0

u(t′)z−(t′) = z−1U(z),

where the fourth equality holds because u(−1) = 0. This fact tells us
that, despite being a complex number in the original definition, z−1

can be interpreted as a delay operator acting on Z-transforms. With
a slight abuse of notation, we will write “z−1” to denote a delay also
when dealing with sequences, e.g. ū(t) := z−1u(t). 40

40This is the discrete-time counterpart of the customary interpretation, in continuous-
time models, of the complex variable s of Laplace transforms as a representative of the
derivative operator.
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C.4 The response to harmonic signals

Consider a BIBO-stable system. Its impulse response {w(t)}must be summable
(
∑+∞

t=−∞ |w(t)| < ∞), hence its frequency response Ŵ (ω) = W
(
ejω
)

must
exist for every ω ∈ [−π, π].
A fundamental property of such a systems is that its response to harmonic
signals (i.e. sinusoids, or sums of sinusoids) are also harmonic. To see this,
consider first the response {y(t)}+∞−∞ to a complex input {u(t)}+∞−∞ of the
form u(t) = ejωt:

y(t) = w ∗ u(t) =
+∞∑

τ=−∞
w(t− τ)ejωτ

=

+∞∑
τ=−∞

w(t− τ)e−jω(t−τ)ejωt

= ejωt
+∞∑

τ ′=−∞
w(τ ′)e−jωτ

′
= Ŵ (ω) ejωt.

This property is too important to let it pass without re-stating it in the
proper, magnificent, linear-algebraic language. A BIBO-stable LTI system
is a linear operator ϕ mapping sequences to sequences. For all the sequences
u(t) = ejωt it holds, with loose notation,

ϕ
[
ejωt

]
= Ŵ (ω) ejωt;

and here is the statement:

any harmonic sequence of the form ejωt is an eigenvector
(or “eigenfunction”) of ϕ, having Ŵ (ω) as the corresponding eigenvalue.

Since the property holds for any ω ∈ [−π, π], it also does for −ω; if u(t) =
e−jωt = ej(−ω)t, then:

y(t) = Ŵ (−ω)e−jωt.

Now let {u(t)}+∞−∞ be a sinusoidal signal with frequency ω:

u(t) = A cos(ωt+ ϕ)

= A
ej(ωt+ϕ) + e−j(ωt+ϕ)

2
=
A

2
ejϕejωt +

A

2
e−jϕe−jωt;
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in view of linearity, the corresponding response is

y(t) =
A

2
ejϕ Ŵ (ω) ejωt +

A

2
e−jϕ Ŵ (−ω) e−jωt

= |Ŵ (ω)| A
2

(
ejϕ ej∠Ŵ (ω) ejωt +Ae−jϕ e−j∠Ŵ (ω) e−jωt

)
= |Ŵ (ω)| A ej(ωt+ϕ+∠Ŵ (ω)) + e−j(ωt+ϕ+∠Ŵ (ω))

2

= |Ŵ (ω)| A cos(ωt+ ϕ+ ∠Ŵ (ω)).

Thus, to a sinusoidal signal with frequency ω (non-causal, i.e. infinite in
both directions), a BIBO-stable system responds with the same sinusoidal
signal, amplified by |Ŵ (ω)| and anticipated by ∠Ŵ (ω).

What happens if the system is causal and the sinusoid is causal too, i.e. it
“starts at 0”? Consider now a truncated exponential signal,

u(t) =

{
0, t < 0;

ejωt, t ≥ 0.

It holds

y(t) = w ∗ u(t) =
t∑

τ=0

w(t− τ)ejωτ =
t∑

τ=0

w(t− τ)e−jω(t−τ)ejωt

= ejωt
t∑

τ ′=0

w(τ ′)e−jωτ
′

= ejωt

(
Ŵ (ω)−

+∞∑
τ ′=t+1

w(τ ′)e−jωτ
′

)
;

note that since Ŵ (ω) =
∑+∞

τ ′=0w(τ ′)e−jωτ
′
must exist finite, the infinite sum

within parentheses must tend to 0 as t→∞; hence

y(t) = Ŵ (ω)ejωt + s(t),

where s(t) is a “transient” term, which tends to 0 as t → ∞. The same
reasoning can be done for the truncated version of u(t) = e−jωt, hence the
response to a sinusoidal signal “starting at 0”

u(t) =

{
0, t < 0,

A cos(ωt+ ϕ), t ≥ 0,

is, by similar computations to the above ones,

y(t) =

{
0, t < 0;

|Ŵ (ω)| A cos(ωt+ ϕ+ ∠Ŵ (ω)) + s̄(t), t ≥ 0,

where s̄(t) is another transient term.

In conclusion, now we have four distinct interpretations for the frequency
response of a LTI BIBO-stable system:
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1. Ŵ (ω) is the Fourier transform of the impulse response of the system;
provided that the transfer function W (z) converges in a region of the
complex plane that includes the unit circle, the frequency response is
Ŵ (ω) = W

(
ejω
)
;

2. provided that the Z-transforms of both the input and the output of
the system converge in a region of the complex plane including the unit
circle (this happens if they are summable), in that region the transfer
function is a proportionality factor linking them:

Y (z) = W (z)U(z),

and similarly

Ŷ (ω) = Ŵ (ω)Û(ω);

3. the values Ŵ (ω) are the eigenvalues of the system ϕ, corresponding to
the “eigenfunctions” ejωt;

4. the response of the system to a sinusoid with frequency ω is the same
sinusoid, amplified by the modulus |Ŵ (ω)| of the frequency response
and anticipated by its phase ∠Ŵ (ω); if the system is causal and the
sinusoid is fed at the input only starting from a certain time, the
response “starts” at that time and approaches the amplified and an-
ticipated sinusoid after a transient.

C.5 Difference equations

The causal LTI systems that are used in practice to model filters, sampled
version of continuous-time systems etc., are usually denoted by so-called
difference equations. These are equalities written in one of the following
equivalent forms, depending on which is more convenient for ease of notation:

a0y(t) + a1y(t− 1) + · · ·+ any(t− n) = b0u(t) + b1u(t− 1) + · · ·+ bmu(t−m)

a0y(t)− a1y(t− 1)− · · · − any(t− n) = b0u(t) + b1u(t− 1) + · · ·+ bmu(t−m),

where m ≤ n and a0 6= 0. Without loss of generality, it is also customary
to divide everything by a0, obtaining a model where the first coefficient is
1; this being convenient for our purposes, we will work with the following
model:

y(t)−a1y(t−1)−· · ·−any(t−n) = b0u(t)+b1u(t−1)+· · ·+bmu(t−m). (52)

The linear model (52) “represents” a causal system if the system imposes
that (52) holds at all times t. In particular, given a causal input, the corre-
sponding output can be defined recursively:

y(t) = 0 for all t < 0 by assumption (causality);

y(t) = a1y(t− 1) + · · ·+ any(t− n) + b0u(t) + · · ·+ bmu(t−m), t ≥ 0.
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Here, y(t) is well defined because we assume that the system is causal; hence
y(t) is a function of “past” samples y(t−1), · · · , y(t−n), u(t), · · · , u(t−m),
and not of future ones; but nowhere does an equation like (52) imply that the
represented system is indeed causal. In other words, (52) is not “the system”:
it is a property of the system, and causality is another; the equation per se,
taken alone, could very well represent a non-causal system.
Supposing that the output {y(t)} possesses a Z-transform as well as the
input, {u(t)}, let transform both sides:

Y (z)− a1z
−1Y (z)− · · · − anz−nY (z) = b0U(z) + b1z

−1U(z) + · · ·+ bmz
−mU(z),

(1− a1z
−1 − · · · − anz−n)Y (z) = (b0 + b1z

−1 + · · ·+ bmz
−m)U(z),

Y (z) =
b0 + b1z

−1 + · · ·+ bmz
−m

1− a1z−1 − · · · − anz−n
U(z).

(53)
The function

W̄ (z) =
b0 + b1z

−1 + · · ·+ bmz
−m

1− a1z−1 − · · · − anz−n
=
b0z

n + b1z
n−1 + · · ·+ bmz

n−m

zn − a1zn−1 − · · · − an
(54)

exists in the region where both the transforms U(z) and Y (z) converge (the
open region outside a disc), and comparing with (51), it must coincide there
with the transfer function W (z) of the system. It can be rewritten as follows:

W̄ (z) =
B(z)

A(z)
=
b0(z − z1)(z − z2) · · · (z − zn)

(z − p1)(z − p2) · · · (z − pn)
, (55)

The (complex) roots p1, · · · , pn of the polynomial A(z) = zn − a1z
n−1 −

· · ·−an are called the poles of W̄ (z) = W (z), and the roots z1, · · · , zn of the
polynomial B(z) = b0z

n + b1z
n−1 + · · ·+ bmz

n−m are called its zeros. It so
happens that the region in which W (z) converges is the set {z ∈ C | |z| >
|pi|}, where pi is the pole with maximum modulus; in other words, the
maximum modulus among poles is the convergence radius. Consequently,
the system is BIBO-stable if and only if the poles of W̄ (z) belong to the
open unit disc, that is, if all the poles pi satisfy |pi| < 1.
Again, the expression of W (z) as a function of a complex variable is a prop-
erty of the system, and it is not sufficient to describe it completely unless
causality is assumed apart. Indeed, it is causality that dictates the region
where W̄ (z) is defined (and where W (z) converges)41.

41All of these concepts have their counterpart in the world of causal continuous-time
systems, which you should remember from control courses: the difference equation (52)
corresponds to an ordinary linear differential equation with constant coefficients; the left-
and right-hand sides of the differential equation can be transformed according to Laplace,
and the rational function that one obtains dividing the right-hand polynomial by the left-
hand one happens to be the transfer function of the system. Such transfer function exists
on a right half-plane assuming that the system is causal; and the continuous-time system
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Models like (52) are called finite-dimensional, because they can be realized
with a recursive algorithm using only a finite amount of memory. In view
of the reasoning above, it is obvious that any causal LTI system satisfying
(52) admits a rational transfer function. However,

• it is not at all true that every LTI causal system can be described by
a finite-dimensional model. This is rather intuitive, because the true
representative of an LTI system is its impulse response, an infinite
sequence which cannot, in general, be reconstructed by an algorithm
with a finite amount of memory. Stated another way, the impulse
response may very well have a non-rational Z-transform. Anyway,
finite-dimensional models are of paramount importance in engineering,
because they are far handier than other models for computation, esti-
mation, prediction, identification, and closed-loop control. Moreover,
the transfer function of any BIBO-stable system can be approximated
by a rational one with arbitrary accuracy.

• to any finite-dimensional model there corresponds a unique rational
transfer function, but the converse is false. Consider indeed W̄ (z)
written in the form (55): zero/pole cancellations may happen, and
they correspond to a “hidden” dynamics of the system that either is
not affected by the input, or is not visible at the output, or both. The
proper way to understand such dynamics is through state-space system
theory; however, the point here is that adding, so to say, “a zero and
a pole at the same arbitrary position”, two at a time, one leaves the
transfer function unchanged, but obtaining larger and larger models
(52): hence, to the same transfer function there correspond infinitely
many models42.

C.6 A simple example

Consider a causal LTI system satisfying to the following first-order difference
equation:

y(t) = ay(t− 1) + u(t) (56)

is BIBO stable if and only if the poles of its transfer function lie in the open left-hand
plane having the imaginary axis as its boundary. Indeed the unit circle plays for discrete-
time systems the role that the imaginary axis plays for continuous-time ones, i.e. a sort
of frontier between stable systems and unstable ones.

42Common sense tells that the smaller the model, the more useful it is for applications.
There is, indeed, a model with minimum order n, called a “minimal realization”, corre-
sponding to any rational transfer function W (z); namely, it is obtained from the rational
function reduced to the lowest terms, all possible cancellations carried out; without loss
of generality one can also assume that a0 = 1: then the model is also unique. Such model
has no “hidden” dynamics.
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The impulse response of the system is

w(t) =

{
0, t < 0,

at, t ≥ 0.

This claim can be shown by induction. w(t) = 0 for t < 0 is by definition,
since the system is causal. The base of the induction is y(0) = y(−1)+δ(0) =
1 = a0, because y(−1) = 0, the system being causal, and this is correct.
Suppose now that y(t) = at for a certain t ≥ 0; then y(t+1) = a·at+δ(t+1) =
at+1, and this concludes the proof.
The transfer function the system is

W (z) := Z[w](z) =

∞∑
t=0

atz−t =

∞∑
t=0

(az−1)t = lim
t→∞

1− (az−1)t

1− az−1
;

for |z| > |a| this series converges absolutely:

W (z) =
1

1− az−1
=

z

z − a
, |z| > |a|. (57)

W (z) is a rational transfer function; its only pole is a. If, in particular,
|a| < 1, then the impulse response {at}∞t=0 is summable, the system is BIBO-
stable, and the convergence region of W includes the unit circle. In this case,
the Fourier transform of {w(t)}, i.e. the frequency response, can be recovered
as Ŵ (ω) = W

(
ejω
)
. Note that the expression of the transfer function (but

not its convergence region) can be read promptly from (56), interpreting z−1

as a delay operator and rewriting the difference equation in symbolic form:

y(t) = ay(t− 1) + u(t) = az−1y(t) + u(t);

y(t)(1− az−1) = u(t);

y(t) =
1

1− az−1
u(t) = W (z)u(t).

To demonstrate that a difference equation per se cannot tell anything about
causality, suppose that a 6= 0 and let us “flip” equation (56),

y(t− 1) =
1

a
y(t)− 1

a
u(t)

or

y(t) =
1

a
y(t+ 1)− 1

a
u(t+ 1),

(58)

and re-interpret it as an anti-causal, i.e. backward system: it is formally
the same equation as (56), but now the present value of the output y(t) is
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expressed as a function of the future values of the input u(t + 1) and the
output y(t+ 1) respectively. Its impulse response is

w(t) =

{
0, t > −1,

−at, t ≤ −1.

This can also be proven by (backward) induction. w(t) = 0 for t > −1 is
by definition, since the system is anti-causal. The base of the induction is
w(−1) = 1

aw(0)− 1
aδ(0) = − 1

a = −a−1, which is correct. Now suppose that
the expression is correct for a certain t ≤ −1; then w(t−1) = 1

aw(t)− 1
aδ(t) =

−at

a = −at−1, and this concludes the proof.
The transfer function of the system is

W (z) :=
∞∑

t=−∞
w(t)z−t =

−1∑
t=−∞

−atz−t = −
−1∑

t=−∞
(a−1z)−t

= −
∞∑
t=1

(a−1z)t = 1−
∞∑
t=0

(a−1z)t = 1− lim
t→∞

1− (a−1z)t

1− z/a

For |z| < |a| the series converges absolutely, and

W (z) = 1− 1

1− z/a
=
−z/a

1− z/a
=

z

z − a
, |z| < |a|.

As you can see, the expression of W (z) is exactly the same as in (57), but its
convergence region is complementary. In particular, the convergence region
now includes the unit circle, and the Fourier transform of w(t) exists, only
if |a| > 1.
This example shows that neither a difference equation nor the expression of
a transfer function determines the behavior of an LTI system; what truly
characterizes the system is indeed only its impulse response. More com-
plex examples would show that to the same rational transfer function can
correspond many systems, many impulse responses, and many convergence
regions; in general, a convergence region may be the complement of a disc
(in this case it corresponds to a causal system, having a causal impulse
response), or to a disc centered at the origin (anti-causal system/impulse
response), or to a ring of the form {z ∈ C | |a| < |z| < |b|}, like in a
so-called Laurent series expansion; the boundaries of such regions are de-
termined by the positions of the poles (e.g. a and b). If many convergence
regions are possible, and one of them includes the unit circle, that region
is the only one corresponding to a summable impulse response, i.e. to a
BIBO-stable system.
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D Brief reminder of probability theory

This appendix is a collection of definitions and facts in no particular order; it
is only meant as a refresher, and most of the material covered should already
belong to the background of any student in information engineering. There
is absolutely no pretension of mathematical rigor here.
References on probability theory: [26] (basic to intermediate), [15] (interme-
diate to advanced), [8] and [9] (intermediate to advanced, and a true classic).

References on statistics: [21] (basic), [11] (basic to intermediate).

D.1 Probability

D.1.1 Notation

Let Ω be a set. For any subset S ⊆ Ω, we denote Sc the complement of S
with respect to Ω:

Sc := Ω \ S = {ω ∈ Ω | ω /∈ S}.

For any subset S ⊆ Ω, the indicator function of S is the function 1S : Ω→
{0, 1} defined as follows:

1S(ω) :=

{
1, ω ∈ S;

0, otherwise.

D.1.2 Probability spaces

Definition D.1.1 Let Ω be a set. A family F of subsets of Ω is called a
σ-algebra if it satisfies the following properties:

• ∅ ∈ F ;

• if S ∈ F , then Sc ∈ F . In words, F must be closed with respect to
complements;

• if S1, S2, · · · ∈ F , then ∪∞i=1Si ∈ F . In words, F must be closed with
respect to countable unions.

It follows from these axioms that a σ-algebra F is closed also with respect
to countable intersections (∩∞i=1Si ∈ F). Also, taking Si = ∅ for all i > n,
it follows that F is closed with respect to finite unions and intersections
(∪ni=1Si ∈ F , ∩ni=1Si ∈ F). The set equipped with a σ-algebra, that is the
pair (Ω,F), is called a measurable space.
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Definition D.1.2 Let (Ω,F) be a measurable space. A function µ : F →
[0,∞) is called a measure if, for any sequence of pairwise disjoint sets
S1, S2, · · · ∈ F , it holds

µ

[ ∞⋃
i=1

Si

]
=
∞∑
i=1

µ[Si].

This property is called σ-additivity.

Think of a measure as a generalization of the concept of “area” in the plane
(or “volume” in the 3-dimensional space). The defining property tells us
that the “area” of the union of disjoint subsets (i.e. “figures”, even infinitely
many) is the sum of the respective areas. Indeed, an “area” could be defined
as a very particular measure µ on (Ω,F), where Ω = R2 (the plane) and F is
an adequately large class of subsets (for example B2 defined in Section D.2),
such that µ(A) remains the same if the set A ∈ F is translated, rotated, or
reflected through any axis.

Proposition D.1.1 Let µ be a measure on (Ω,F). For any sequence of
sets S1, S2, · · · ∈ F (not necessarily disjoint), it holds

µ

[ ∞⋃
i=1

Si

]
≤
∞∑
i=1

µ[Si].

This property is called sub-additivity.

Definition D.1.3 A measure P : F → [0, 1] such that P[Ω] = 1 is called a
probability. A measurable space equipped with a probability, denoted (Ω,F ,P),
is called a probability space. The set Ω is called the sample space, the sub-
sets of Ω in F are called events, and if S ∈ F , P[S] is called the probability
of the event S.

In a probability space (Ω,F ,P), for any sequence of events S1, S2, · · · ∈ F
sub-additivity reads

P

[ ∞⋃
i=1

Si

]
≤
∞∑
i=1

P [Si].

Proposition D.1.2 Let (Ω,F ,P) be a probability space.

• If S1 ⊆ S2 ⊆ · · · is an increasing sequence of events in F , then

lim
i→∞

P[Si] = P

[ ∞⋃
i=1

Si

]
;
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• If S1 ⊇ S2 ⊇ · · · is a decreasing sequence of events in F , then

lim
i→∞

P[Si] = P

[ ∞⋂
i=1

Si

]
.

Definition D.1.4 If a certain property holds in a set S such that P[S] = 1
(i.e. P[Ω \ S] = 0), we say that the property holds almost surely in Ω.

D.2 Random variables and vectors

D.2.1 Measurable functions

Proposition D.2.1 Let Ω = R. There exists a smallest σ-algebra B, called
the Borel σ-algebra, that contains all the open subsets of R (including R
itself). Here, “smallest” means that B is a subset of every other σ-algebra
containing the open sets. Finite sets, closed sets, countable unions of inter-
vals of any kind, and much more complicated sets, all belong to B. Thus,
(R,B) is a measurable space.

Let (Ω,F ,P) be a probability space, and let X : Ω→ R be a function. For
a certain subset A of R, we denote X−1(A) the inverse image of A under X,
i.e. the set

X−1(A) := {ω ∈ Ω | X(ω) ∈ A} .
In particular, X−1(∅) = ∅ and X−1(R) = Ω.

Proposition D.2.2 Inverse images preserve complements, countable unions,
and countable intersections. If A1, A2, · · · ∈ B,

X−1 (Aci ) = X−1 (Ai)
c

X−1

( ∞⋃
i=1

Ai

)
=
∞⋃
i=1

X−1 (Ai)

X−1

( ∞⋂
i=1

Ai

)
=

∞⋂
i=1

X−1 (Ai)

Therefore, the inverse images of all the sets belonging to B form a σ-algebra
in Ω (verify!). A very important case is when the latter is contained in F .

Definition D.2.1 Let (Ω,F ,P) be a probability space. If X : Ω → R is
such that

X−1(A) ∈ F
for all A ∈ B, then X is said to be a measurable function or, in the language
of probability, a random variable. The probability P[X−1(A)] will be denoted,
for short, P[X ∈ A]. If we define for all A ∈ B

PX [A] := P[X ∈ A],
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then (R,B,PX) becomes a probability space.

Indeed, what truly “matters” about random variables is not the set Ω on
which they are defined, but the sets S in the σ-algebra F and their prob-
abilities P[S]. A random variable X “translates” the probabilities of the
relevant events from F to B, effectively turning R into a probability space
standing by its own. For example, in the random experiment of tossing a
coin, we let Ω = {head, tail}, F = {∅, {head}, {tail},Ω}, and then P[∅] = 0,
P[{head}] = P[{tail}] = 1

2 , and P[Ω] = 1. But then we may define the func-
tion X : Ω→ R such that X(head) = 0, X(tail) = 1. X is measurable, that
is, a random variable: indeed for any A ∈ B

X−1(A) =


∅, if 0 /∈ A and 1 /∈ A
{head}, if 0 ∈ A and 1 /∈ A
{tail}, if 0 /∈ A and 1 ∈ A
{head, tail} = Ω, if 0, 1 ∈ A.

so that X−1(A) ∈ F for all A ∈ B. It follows that, for any A ∈ B, PX is
well defined, as follows:

PX [A] =


0, if 0 /∈ A and 1 /∈ A
1
2 , if 0 ∈ A and 1 /∈ A
1
2 , if 0 /∈ A and 1 ∈ A
1, if 0, 1 ∈ A.

This definition makes (R,B,PX) a probability space, which contains enough
information about the coin-tossing experiment irrespective of what was the
initial space Ω of heads and tails, which can indeed be “forgotten” for all
practical purposes. (Please study this example and check the details until
you get the idea.)

Proposition D.2.3 Let X and Y be random variables on (Ω,F ,P), and
a ∈ R. Define point-wise the functions X + Y and aX as follows, for all
ω ∈ Ω:

[X + Y ](ω) := X(ω) + Y (ω);

[aX](ω) := aX(ω).

Then X + Y and aX are also random variables. Thus, the set of all the
random variables on (Ω,F ,P), endowed with the above operations, is a vector
space.

Proposition D.2.4 A necessary and sufficient condition for X to be a ran-
dom variable is that X−1(A) ∈ F for all the subsets A ⊂ R of the form
(−∞, x].
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This happens because all the open sets in R, and therefore all the Borel sets,
can be obtained by means of finite or countable unions and intersections, or
complements, of sets of the form (−∞, x].

Definition D.2.2 Let X be a random variable on the probability space
(Ω,F ,P). The function FX : R→ [0, 1] defined as follows:

FX(x) := P[X−1((−∞, x])] = P[X ∈ (−∞, x]] = P[X ≤ x] (for short)

is called the distribution of the random variable X.

Proposition D.2.5 For any random variable X,

• FX is nondecreasing;

• FX is continuous from the right;

• limx→−∞ FX(x) = 0;

• limx→+∞ FX(x) = 1.

Exercise: find the distribution of X in the coin-tossing experiment.

Definition D.2.3 If there exists a function fX : R→ [0,∞) such that

FX(x) = P[X ≤ x] =

∫ x

−∞
fX(ξ) dξ,

then X is called a continuous random variable43, and fX is called its density.

This happens, in particular, if FX is differentiable at each x ∈ R; in this
case, of course, fX is its derivative. For example Gaussian variables, with
which you are surely familiar, are continuous variables with an everywhere
differentiable distribution, and with a density of the form

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (59)

43This usage of the word “continuous” is different from the one commonly adopted in
mathematical analysis. Even if X is a continuous random variable, in no way this means
that X is continuous as a function Ω → R. Specifically, it does not mean anything like
“limω→ω̄X(ω) = X(ω̄)”, above all because Ω is any set without further (topological)
structure, hence “ω → ω̄” means nothing. Instead, that X is continuous means that its
distribution function enjoys a strong form of continuity (called absolute continuity) as a
function R→ [0, 1].
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D.2.2 Random vectors

Proposition D.2.6 In Rk, there exists a smallest σ-algebra Bk, called again
the Borel σ-algebra, that contains all the open subsets of Rk. Thus, (Rk,Bk)
is a measurable space.

Let (Ω,F ,P) be a probability space, and let X : Ω → Rk be a function
(it can be understood as a k-tuple of real functions (X1, · · · , Xk), where
Xi : Ω→ R for all i = 1 · · · k).

Definition D.2.4 If X : Ω→ Rk is such that X−1(A) ∈ F for all A ∈ Bk,
then X is said to be a random vector. The probability P[X−1(A)] will be
denoted, as before, P[X ∈ A].

Proposition D.2.7 A necessary and sufficient condition for X to be a ran-
dom vector is that X−1(A) ∈ F for all the subsets A ⊂ R of the form
(−∞, x1]× · · · × (−∞, xk] ⊂ Rk.

Definition D.2.5 Let X = (X1, · · · , Xk) be a random vector on (Ω,F ,P).
The function FX : Rk → [0, 1] defined as follows:

FX(x1, · · · , xk) := P[X ∈ (−∞, x1]×· · ·×(−∞, xk]] = P[X1 ≤ x1, · · · , Xk ≤ xk]

is called the distribution of X, or the joint distribution of X1, · · · , Xk. The
function

Fi(x) := lim
xj→∞, j=1···i−1,i+1···k

F (x1, · · · , xi−1, x, xi+1, · · · , xk)

is the distribution of the random variable Xi, also called, in this context, the
marginal distribution of Xi.

Definition D.2.6 If there exists a function fX : Rk → [0,∞) such that

FX(x1, · · · , xk) = P[X1 ≤ x1, · · · , Xk ≤ xk]

=

∫ x1

−∞
· · ·
∫ xk

−∞
fX(ξ1, · · · , ξk) dξ1 · · · dξk,

then X is called a continuous random vector, and fX is called its density.

In what follows, whenever we say something like “let X and Y be random
variables defined on the same probability space” we implicitly assume that
they have a joint distribution, i.e. that (X,Y ) is a random vector.

Definition D.2.7 As we know, (Rk,Bk) and (Rm,Bm) are measurable spaces
for any k,m ≥ 1. A function g : Rk → Rm is said to be measurable (more
precisely, Borel-measurable, if g−1(B) ∈ Bk for all B ∈ Bm.
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The measurability of g : Rk → Rm is exactly the same concept as the
measurability of a random vector X : Ω → Rk, except that there is still no
measure attached to (Rk,Bk).

Proposition D.2.8 If g : Rk → Rm is a continuous function, then it is
Borel-measurable.

Proposition D.2.9 If X : Ω → Rk is a random vector in (Ω,F ,P) and
g : Rk → Rm, then the composition g(X) is a random vector (taking values
in Rm).

In words, the composition of measurable functions is measurable. In partic-
ular (k = m = 1), if X is a random variable and g : R → R is continuous,
then g(X) is a random variable. So, for example, |X|, X2, (X − 3)2, etc.,
are all random variables.

D.3 Expectation

D.3.1 Definition

Definition D.3.1 Let X be a random variable on the probability space
(Ω,F ,P). The expectation of X, denoted E[X], is defined as the “abstract
integral”

E[X] :=

∫
Ω
X(ω) dP(ω).

Do not worry if you do not know what an “abstract integral” is44, i.e. if you
have not had any class on modern (Lebesgue) integration, because in many

44It is not a big deal, after all. Let the sets S1, · · · , Sn ∈ F . Any finite sum of
weighted indicator functions s(ω) =

∑n
i=1 ai1Si(ω), where a1, · · · , an ∈ R, is called a

simple function. The abstract integral of a simple function with respect to the measure P
is defined as

∫
Ω
s(ω) dP(ω) :=

∑n
i=1 aiP[Si]. If X : Ω → R is a nonnegative measurable

function (X(ω) ≥ 0 almost surely), then its integral is defined as
∫

Ω
X(ω) dP(ω) :=

sups
∫

Ω
s(ω) dP(ω), where the supremum is taken over all the simple functions s such

that s(ω) ≤ X(ω) almost surely. For an arbitrary measurable function X : Ω → R
we define X+(ω) = max{X(ω), 0} and X−(ω) = −min{X(ω), 0} (both X+ and X− are
nonnegative measurable functions). Then, if both the integrals I+ =

∫
Ω
X+(ω) dP(ω) and

I− =
∫

Ω
X−(ω) dP(ω) are finite, the integral of X is defined as E[X] =

∫
Ω
X(ω) dP(ω) :=

I+ − I−, and X is called an integrable function. Usually one allows the integral of X to
be ±∞, if one and only one among I+ and I− is infinite; on the other hand, if both I+

and I− are infinite,
∫

Ω
X(ω) dP(ω) is not defined. For any set S ∈ F , the integral over S

is defined as
∫
S
X(ω) dP(ω) :=

∫
Ω
1S(ω)X(ω) dP(ω). The definition of abstract integral

is the same for arbitrary measures (i.e. not such that µ(Ω) = 1); in particular, on (R,B)
there exists a “translation-invariant” measure µ : B → [0,∞) such that for all continuous

functions f it holds
∫

[a,b]
f(x) dµ(x) =

∫ b
a
f(x) dx, where the integral on the right-hand

side is the Riemann integral taught in calculus courses. µ is called the Lebesgue measure.
In other terms, any function which has integral in the Riemann sense has also an integral
in the Lebesgue sense. The converse is definitely false; the “abstract” integral is indeed a
far-reaching generalization of the Riemann integral.

205



standard cases the situation is simpler: for example if X is continuous, a
“change of variable” (made possible by the fact that X “translates” events
and probabilities from Ω to R) guarantees that the expectation is

E[X] =

∫
Ω
X(ω) dP(ω) (abstract integral)

=

∫
R
x dPX(x) (another abstract integral)

=

∫ +∞

−∞
x fX(x) dx.

In many applications the last one is a Riemann integral, i.e. the familiar
integral taught in calculus courses. For example, if X is Gaussian with
density (59), then

E[X] =

∫ +∞

−∞
x

1√
2πσ2

e−
(x−µ)2

2σ2 dx

make the substitution u =
x− µ
σ

=
1√

2πσ2

∫ +∞

−∞
(σu+ µ) e−

u2

2 σ du

= σ · 1√
2π

∫ +∞

−∞
u e−

u2

2 du+ µ · 1√
2π

∫ +∞

−∞
e−

u2

2 du

= σ · 0 + µ · 1 = µ.

Note that the expectation may not even exist. For example, in the case of
continuous variables, if the integrals

∫ 0
−∞ x fX(x) dx and

∫ +∞
0 x fX(x) dx

both diverge, then E[X] is not defined.
The terms mean and average are synonyms for expectation.

D.3.2 Properties

Proposition D.3.1 Let X and Y be random variables on the same proba-
bility space (Ω,F ,P).

• If X = Y almost surely, and if the expectations of X and Y exist, then
E[X] = E[Y ]. If X = c almost surely, where c ∈ R is a constant, then
E[X] = c. (For instance, E[17] = 17.)

• If the expectations of X and Y exist, then for any a, b ∈ R

E[aX + bY ] = aE[X] + bE[Y ].

In words, the expectation E[·] is a linear operator.
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• If the expectations of X and Y exist, and if X ≤ Y almost surely, then

E[X] ≤ E[Y ].

• If the expectation of X exists, then the expectation of |X| also exists,
and

|E[X]| ≤ E [|X|]

If, in particular, E [|X|] = 0, then X = 0 almost surely.

• For all S ∈ F , the indicator function 1S : Ω → {0, 1} is a random
variable, and

E[1S ] = P[S].

For all A ∈ B, the indicator function 1A(X(·)) : Ω → {0, 1} is a
random variable, and

E[1A(X)] = E[1{ω∈Ω | X(ω)∈A}] = P[X ∈ A].

Do not get confused by the two different notations regarding indicator func-
tions, 1A(X) and 1S , one with parentheses and the other without. In both
cases the indicator is a function, but in the first it is applied to X, and in the
second to ω. If we were to make everything explicit, the first indicator would
read 1A(X(·)), and the second 1S(·), and for a fixed ω they would take the
values 1A(X(ω)) and 1S(ω) respectively; however, since the sample space Ω
does not really matter, as we have mentioned above, in probability theory
the dependence on ω is almost always left implicit (hence we denote random
variables X, not X(·), despite the fact that all of them are functions; and
1S is indeed a random variable).

Recall that if X is a random variable (or vector) and g : R → R is a
measurable function, then g(X) is also a random variable (or vector).

Proposition D.3.2 If X is a continuous random variable/vector, g : R→
R is a measurable function, and E[g(X)] exists, then

E[g(X)] =

∫ +∞

−∞
g(x) fX(x) dx.

For our purposes, the most interesting functions are g(X) = X2 and g(X) =
(X−E[X])2 (or, if X is a vector, g(X) = XX> and g(X) = (X−E[X])(X−
E[X])> respectively). Since E[X] is a constant, it does not pose any problem
if it appears inside E[·] as the parameter of a function.

Definition D.3.2
If X is a random variable, then
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• E
[
X2
]
, if it exists, is called the second-order moment of X; by Propo-

sition D.3.1, it always holds E
[
X2
]
≥ 0. If, in particular, E

[
X2
]

= 0,
then X = 0 almost surely.

• E
[
(X − E[X])2

]
, that is the second-order moment of X−E[X], is called

the variance of X. It is usually denoted σ2 or σ2
X or Var [X], and used

as a measure of dispersion of X around its mean µ = E[X].

• The square root of E
[
(X − E[X])2

]
, denoted σ or σX , is called the

standard deviation of X, and also used as a measure of dispersion.

If X and Y are random variables defined on the same probability space, then

• E [(X − E[X])(Y − E[Y ])] is called the covariance of X and Y , and it is
usually denoted σXY or Cov [X,Y ]. By the so-called Cauchy-Schwarz
inequality, it holds |σXY | ≤ σXσY . If, in particular, Cov [X,Y ] = 0,
then X and Y are said to be uncorrelated.

• The quantity ρ := σXY
σXσY

is called the correlation coefficient of X and
Y . It is used as a statistical measure of how much the behavior of one
of the variables influences the behavior of the other. By the Cauchy-
Schwarz inequality, it holds −1 ≤ ρ ≤ 1. If ρ = 0, then X and Y are
uncorrelated.

If X is a random vector, then

• E
[
(X − E[X])(X − E[X])>

]
is called the covariance matrix of X (usu-

ally denoted Σ). It is always a symmetric matrix. Moreover, it is al-
ways at least positive-semidefinite because, for all constant vectors v,
v>(X − E[X]) is a random variable, hence

v>Σv = v>E
[
(X − E[X])(X − E[X])>

]
v = E

[
v>(X − E[X])(X − E[X])>v

]
= E

[
(v>(X − E[X]))2

]
≥ 0.

For example, if X =
[
Y Z

]>
,

E

[([
Y
Z

]
− E

[[
Y
Z

]]) ([
Y Z

]
− E

[[
Y Z

]])]
=

[
E
[
(Y − E[Y ])2

]
E [(Y − E[Y ])(Z − E[Z])]

E [(Z − E[Z])(Y − E[Y ])] E
[
(Z − E[Z])2

] ]
=

[
σ2
Y σY Z

σY Z σ2
Z

]
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Proposition D.3.3
If X and Y are random variables and a ∈ R is a constant, then

• Var [aX] = a2 Var [X]. Indeed,

Var [aX] = E
[
(aX − E[aX])2

]
= E

[
(aX − aE[X])2

]
= E

[
a2 (X − E[X])2

]
= a2 E

[
(X − E[X])2

]
.

• Var [X + Y ] = Var [X] + Var [Y ] + 2Cov [X,Y ]. Indeed

Var [X + Y ] = E
[
(X + Y − E[X + Y ])2

]
= E

[
(X − E[X] + Y − E[Y ])2

]
= E

[
(X − E[X])2

]
+ E

[
(Y − E[Y ])2

]
+ E [(X − E[X]) (Y − E[Y ])] + E [(Y − E[Y ]) (X − E[X])].

• If X and Y are uncorrelated, Var [X + Y ] = Var [X] + Var [Y ]. This
follows immediately from the preceding point.

• In general, if X1, X2, · · · , XN are pairwise uncorrelated, then

Var

[
N∑
i=1

Xi

]
=

N∑
i=1

Var [Xi].

Example. Suppose that X1, X2, · · · , XN are pairwise uncorrelated variables
with the same mean E [Xi] = µ and the same variance Var [Xi] = σ2. Then

E

[
1

N

N∑
i=1

Xi

]
=

1

N

N∑
i=1

E [Xi] =
1

N

N∑
i=1

µ = µ;

Var

[
1

N

N∑
i=1

Xi

]
=

1

N2
Var

[
N∑
i=1

Xi

]
=

1

N2

N∑
i=1

Var [Xi] =
1

N2
Nσ2 =

σ2

N
.

�

D.3.3 The space of square-summable random variables

Definition D.3.3 We denote L2(Ω,F ,P) the set of all those random vari-
ables X defined on (Ω,F ,P) such that E[X2] < ∞. All such variables are
called square summable45. Further, in L2(Ω,F ,P) we identify all those vari-
ables which are equal almost surely (X = Y almost surely) as if they were
“the same” variable (X(ω) = Y (ω) for all ω).

45Because the “abstract integral” of the square of the function, which is E[X2], is finite.
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Lemma D.3.1 L2(Ω,F ,P) is a vector space.

Proof. That the set of all the random variables on (Ω,F ,P) is a vector space
is the statement of Proposition D.2.3. Thus, all we need to check is that
L2(Ω,F ,P) is a well-defined subspace of the space of all random variables.
More explicitly, we must check that if X,Y ∈ L2(Ω,F ,P) (E

[
X2
]
< ∞,

and analogously for Y ) and a ∈ R, then aX and X + Y also belong to
L2(Ω,F ,P). Indeed

E
[
(aX)2

]
= E

[
a2X2

]
= a2E

[
X2
]
<∞,

and since

0 ≤ (X − Y )2 = X2 − 2XY + Y 2,

2XY ≤ X2 + Y 2,

(X + Y )2 = X2 + 2XY + Y 2 ≤ 2X2 + 2Y 2,

then

E
[
(X + Y )2

]
≤ 2E

[
X2
]

+ 2E
[
Y 2
]
<∞.

�
We will denote L2

0(Ω,F ,P) the set of all those random variables X ∈
L2(Ω,F ,P) such that E[X] = 0. Of course, X − E[X] ∈ L2

0(Ω,F ,P) for
all X ∈ L2(Ω,F ,P). Also in L2

0(Ω,F ,P) we identify all those variables
which are equal almost surely as if they were “the same” variable.
Exercise: show that L2

0(Ω,F ,P) is a subspace of L2(Ω,F ,P).

Now comes the nice point of this section: in L2
0(Ω,F ,P) we define

〈X,Y 〉 := E [XY ] = Cov [X,Y ],

where the second equality stems from the fact that X and Y have mean zero.
In words, the covariance of X and Y can be interpreted as a scalar product
between X and Y . The only subtle point in showing that this is actually
a well-defined scalar product is the fact that it should hold 〈X,X〉 = 0 if,
and only if, X = 0. This property relies crucially on the (rather vague)
statement “we identify all those variables which are equal almost surely as
if they were the same variable”, which could indeed be made precise46.

If a scalar product is available, then a norm is available as well:

‖X‖2 :=
√
〈X,X〉 =

√
E [X2] =

√
Var [X] = σ

46The property of the scalar product here becomes: “〈X,X〉 = 0 if and only if X = 0
almost surely”.
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The standard deviation of a variable is its length!

And if we have a notion of scalar product, we have the corresponding notion
of orthogonality:

X ⊥ Y if 〈X,Y 〉 = Cov [X,Y ] = 0.

Uncorrelated variables are orthogonal!

And the “angle between X and Y ”? It is the arc cosine of the correlation
coefficient ρ. Indeed ρ = 〈X,Y 〉

‖X‖2‖Y ‖2 , that is 〈X,Y 〉 = ρ ‖X‖2‖Y ‖2, and
−1 ≤ ρ ≤ 1; hence, recalling what you know about the correspondence be-
tween angles and scalar products in geometry, you see that ρ resembles very
much the cosine of an angle.

And we could go on translating a good lot of mathematical statistics into
linear algebra and geometry. For instance, the orthogonal projection of a
random variable Y on the subspace generated by other random variables
X1, · · · , Xn, would turn out to be the “best linear statistical estimate” of
Y based on the sole knowledge of X1, · · · , Xn, where “best” means that the
variance of the error is the minimum possible. This nice construction of
Euclidean geometry into the world of random variables is essentially due to
Kolmogorov47.

D.4 Probability inequalities

Lemma D.4.1 (Markov’s inequality). Let X be a nonnegative random vari-
able (that is, X ≥ 0 almost surely). Then for all ε > 0

P [X ≥ ε] ≤ E [X]

ε
.

Proof. Consider the function 1[ε,∞)(x) that takes the values 1 when x ≥
ε, and 0 otherwise. Then, for all x ≥ 0, 1[ε,∞)(x) ≤ x/ε (verify this!).
Consequently,

P [X ≥ ε] = E [1X≥ε] = E
[
1[ε,∞)(X)

]
≤ E [X/ε] =

E [X]

ε
.

�
47Of course this section is far from rigorous, and relies only on your intuition. This is

more than enough for the purposes of these lecture notes, but be aware that there is a
frontier where your intuition on orthogonality should refrain: it is not true that, if V is a

subspace of L2
0(Ω,F ,P), then

(
V ⊥
)⊥

= V , because L2
0(Ω,F ,P) is not finite-dimensional as

Rp. Therefore, in this context propositions like A.3.1 must be rephrased a bit taking into
account the topological properties of infinite-dimensional spaces; the resulting geometry
is the theory of so-called Hilbert spaces. Start from [18] for more information on this
subject.
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Lemma D.4.2 (Čebyšev’s inequality). Let X be any real random variable
with mean µ and variance σ2. Then

P [|X − µ| ≥ ε] ≤ σ2

ε2
.

Proof. Let us apply the Markov inequality to the nonnegative random vari-
able (X − µ)2:

P [|X − µ| ≥ ε] = P
[
(X − µ)2 ≥ ε2

]
≤

E
[
(X − µ)2

]
ε2

=
σ2

ε2
.

�

Lemma D.4.3 (Chernoff’s bound). Let X be any real random variable.
Then for any s > 0

P [X ≥ ε] ≤
E
[
esX
]

esε
.

Proof. We have, by Markov’s inequality,

P [X ≥ ε] = P
[
esX ≥ esε

]
≤

E
[
esX
]

esε
.

�
Note that, since the Chernoff bound holds for all s > 0, the inequality must
hold for the infimum over all s > 0 as well:

P [X ≥ ε] ≤ inf
s>0

E
[
esX
]

esε
.

D.5 Independence

What we have seen so far, regarding properties of the probability, expecta-
tions, inequalities and so on, falls naturally in the modern theory of measure
and abstract integration. Even the “distinctive trait” of probability, that is
P [Ω] = 1, may appear as nothing more than a convenient rescaling; other
additive scalar quantities, for example charge or mass, enjoy similar prop-
erties. For example, consider a linear mass distribution summing up to a
finite mass. The center of mass of the distribution is nothing more than
what we have called the expectation, and the moment of inertia computed
with respect to the center of mass is a rescaled version of the variance.
What truly sets probability theory apart from the theory of integration,
making it a branch of mathematics standing by its own, is the concept of
independence.
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Definition D.5.1 Let (Ω,F ,P) be a probability space. The events S1, S2, · · · , Sn ∈
F are called independent if, for any sub-family {i1, i2, · · · , ik} ⊆ {1, 2, · · · , n}
it holds

P

 k⋂
j=1

Sij

 =
k∏
j=1

P
[
Sij
]
. (60)

In words, Equation (60) says that, for any choice of events extracted from
S1, S2, · · · , Sn, the probability that they happen simultaneously is the prod-
uct of the respective probabilities.
In particular, two events S1, S2 ∈ F are independent if P [S1 ∩ S2] = P [S1]P [S2],
and if any two events Si, Sj chosen from S1, S2, · · · , Sn ∈ F are independent,
we say that S1, · · · , Sn are pairwise independent. Now, if S1, · · · , Sn are in-
dependent, of course they are also pairwise independent, but in general the
converse is false.

Example. Let Ω = {[A], [B], [C], [ABC]} be a set of cards containing the let-
ters A, B, C, or all the three letters; let F be the family of all possible subsets
of Ω, and for each S ∈ F let P [S] = the number of cards in S

4 (this amounts to
say that every card has the same probability 1

4 of being extracted). Now
consider the random experiment of extracting a card, and define

SA = {the card contains the letter A} = {[A], [ABC]};
SB = {the card contains the letter B} = {[B], [ABC]};
SC = {the card contains the letter C} = {[C], [ABC]}.

These events are pairwise independent, because

P [SA ∩ SB] = P [{[ABC]}] =
1

4
=

1

2
· 1

2
= P [SA]P [SB],

and in the same way

P [SB ∩ SC ] = P [SB]P [SC ],

P [SA ∩ SC ] = P [SA]P [SC ];

on the other hand SA, SB, and SC are not independent, because

P [SA ∩ SB ∩ SC ] = P [{[ABC]}] =
1

4
6= 1

8
=

1

2
· 1

2
· 1

2
= P [SA]P [SB]P [SC ].

This classic counterexample is due to the Russian mathematician S. Bern-
stein. �

Definition D.5.2 Let X1, X2, · · · , Xn be random variables defined on the
same probability space (Ω,F ,P). X1, · · · , Xn are called independent if, for
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any choice of {i1, i2, · · · , ik} ⊆ {1, 2, · · · , n}, and for any choice of Borel
sets Bi1 , Bi2 , · · · , Bik ∈ B, it holds

P

 k⋂
j=1

Xij ∈ Bij

 =

k∏
j=1

P
[
Xij ∈ Bij

]
. (61)

In particular, two random variablesX,Y are independent if P [X ∈ A, Y ∈ B] =
P [X ∈ A]P [Y ∈ B].
An immediate corollary of the definition is the following

Lemma D.5.1 If Z =
[
X Y

]>
is a random vector on (Ω,F ,P), and if

X,Y are independent, then

FZ

([
x
y

])
= FX(x)FY (y).

In words, the (joint) distribution function of independent variables factor-
izes into the product of the respective distribution functions. The lemma
generalizes in an obvious way to k-dimensional random vectors.

If the random vector is continuous, then its density factorizes as well:

Lemma D.5.2 If Z =
[
X Y

]>
is a continuous random vector on (Ω,F ,P)

with density fZ , and if X,Y are independent, then they are also continuous,
and

fZ

([
x
y

])
= fX(x)fY (y).

The most important consequence of Lemma D.5.1 is that expectations fac-
torize as well:

Lemma D.5.3 Suppose that X,Y are independent; then

E [XY ] = E [X]E [Y ],

provided that the above expectations exist.

Corollary D.5.1 Independent variables are uncorrelated.

(The converse is, in general, false.)
Proof. Let E [X] = µX ,E [Y ] = µY . Then

Cov [X,Y ] = E [(X − µX)(Y − µY )]

= E [XY ]− µXE [Y ]− E [X]µY + µXµY

= E [X]E [Y ]− µXµY − µXµY + µXµY = 0.

�
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D.6 Stochastic processes

A broad discussion arises, and the deep results in probability theory start to
show up, when we consider, instead of a single random variable or a k-tuple
of random variables, an infinite sequence of random variables on the same
probability space.

Definition D.6.1 If {Xi}+∞i=1 = {X1, X2, · · · , Xi, · · · } is a sequence of ran-
dom variables on (Ω,F ,P), so that any finite sub-sequence (Xi1 , · · · , Xin)
(for any n) is a random vector on (Ω,F ,P), such sequence is called a
stochastic process.

We will not delve into the subtleties implicit in such definition. But note
that, in the same way as the value X(ω) that a random variable takes for
fixed ω is a real number, and the value (X1(ω), · · · , Xk(ω)) that a ran-
dom vector takes for fixed ω is a k-tuple of real numbers, the “value”
X1(ω), X2(ω), · · · that a stochastic process takes for fixed ω is an infinite
sequence of real numbers.
Thus, in the same way as random variables “translate” events and proba-
bilities from (Ω,F ,P) to (R,B), and random vectors “translate” events and
probabilities from (Ω,F ,P) to (Rk,Bk), one expects a stochastic process to
“translate” events and probabilities from (Ω,F ,P) to the set of all infinite
sequences of real numbers (let us denote it RN), equipped with a certain
σ-algebra FN, in such a way that(

RN,FN,PN
)

becomes a probability space with a certain probability PN. For the whole
thing to make any sense, such probability has to be compatible with the
variables X1, X2, · · · in the sense that, for example,

PN [X2 ≤ 5, whatever the values of X1, X3, X4, · · · ] = P[X2 ≤ 5].

That such FN and PN actually exist is a remarkable result due to Kol-
mogorov, and we shall stop our discussion here. However, you should be
aware that, besides events regarding the first n variables of the process,
which fall within the theory of random vectors, other kinds of events, like

{ω ∈ Ω | Xi(ω) = 0 for infinitely many i} in the prob. space (Ω,F ,P){
(X1, X2, · · · ) ∈ RN | Xi = 0 for infinitely many i

}
in the prob. space (RN,FN,PN),

or {
ω ∈ Ω | lim

i→∞
Xi(ω) = 0

}
in the prob. space (Ω,F ,P){

(X1, X2, · · · ) ∈ RN | lim
i→∞

Xi = 0

}
in the prob. space (RN,FN,PN),
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can, and will, be considered. These fall inevitably within the theory of
stochastic processes, and have a more natural interpretation in the “trans-
lated” probability space

(
RN,FN,PN).

Definition D.6.2 The stochastic process {Xi}+∞i=1 is said to form an inde-
pendent sequence if, for any finite choice of indices {i1, i2, · · · , ik} ⊂ N,
the corresponding variables Xi1 , Xi2 , · · · , Xik are independent. If, moreover,
every random variable of the process shares the same distribution function
F = FX1 = FX2 = · · · , the variables are called independent and identically
distributed (i.i.d. for short).

D.7 Convergence of random variables

D.7.1 Many notions of convergence

Let {Xi}∞i=1 be a stochastic process, where Xi is distributed according to
the distribution function Fi(x) = P [Xi ≤ x], and let X be another random
variable distributed according to F (x).

Definition D.7.1 Xi is said to converge to X in distribution48 if

lim
i→∞

Fi(x) = F (x)

at all those points x at which F is continuous.

The classical result on convergence in distribution is also the most important
and elegant theorem in the theory of probability, and the very reason why
the Gaussian distribution shows up everywhere. There are different versions
of this result, but the most standard one goes as follows:

Theorem D.7.1 (Central limit theorem). Let {Xi}∞i=1 be independent and
identically distributed random variables, each with mean µ and variance σ2.
Then the variable

1
N

∑N
i=1Xi − µ
σ/
√
N

(which is the sample average, centered on its own expectation µ, and nor-
malized by its own standard deviation σ/

√
N) converges in distribution, as

N → ∞, to a Gaussian variable with mean 0 and variance 1. In other
terms, for all x ∈ R it holds

lim
N→∞

P

[
1
N

∑N
i=1Xi − µ
σ/
√
N

≤ x

]
=

1√
2π

∫ x

−∞
e−t

2/2 dt.

48With respect to random variables, the terms “convergence in distribution”, “conver-
gence in law” and “weak convergence”, usually found in the literature, have exactly the
same meaning.
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In words, the central limit theorem says that any sum of many independent
and identically distributed random variables is approximately Gaussian.

Definition D.7.2 Xi is said to converge to X in probability if for all ε > 0

lim
i→∞

P [|Xi −X| ≥ ε] = 0.

Definition D.7.3 Xi is said to converge to X almost surely if the event{
ω ∈ Ω | lim

i→∞
Xi(ω) = X(ω)

}
in the prob. space (Ω,F ,P){

lim
i→∞

Xi = X

}
in the prob. space (RN,FN,PN)

has probability 1. In other terms, the set of trajectories X1(ω), X2(ω), X3(ω), · · ·
which do not converge to X has probability 0.

Among these, almost sure convergence is the strongest form of convergence,
and the most desirable; convergence in probability is an intermediate prop-
erty, and convergence in distribution is the weakest one. Here, “strong”
and “weak” are meant in the sense that the stronger property implies the
weaker:

Xi converges almost surely to X

⇓
Xi converges in probability to X

⇓
Xi converges in distribution to X

Definition D.7.4 Xi is said to converge to X in the mean-square if

lim
i→∞

E
[
|Xi −X|2

]
= 0.

If {Xi} and X belong to the space L2(Ω,F ,P) defined in Section D.3.3,
mean-square convergence is none other than convergence with respect to
the Euclidean distance:

lim
i→∞
‖Xi −X‖2 = 0.

Mean-square convergence is also a kind-of-strong form of convergence, in the
sense that

Xi converges in mean-square to X

⇓
Xi converges in probability to X

⇓
Xi converges in distribution to X
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However, no implication exists between almost sure convergence and con-
vergence in the mean-square.

D.7.2 Convergence theorems

Let {Xi}∞i=1 be a sequence of random variables having the same mean
E [Xi] = µ. A theorem is called a “law of large numbers” if it has the
form

[Some more hypotheses] ⇒ 1

N

N∑
i=1

Xi → µ,

where the arrow→ means some kind of probabilistic convergence happening
as N →∞, and by µ on the right-hand side is meant the “pseudo-random”
variable that takes the value µ ∈ R with probability 1. Here is a “weak”
form of the theorem (we do not actually need it in the notes, but it is an
instructive application of Čebyšev’s inequality):

Lemma D.7.1 (Weak law of large numbers, Čebyšev). Let {Xi}∞i=1 be a
sequence of uncorrelated random variables such that for all i

E [Xi] = µ;

Var [Xi] = E
[
(Xi − µ)2

]
= σ2;

then

1

N

N∑
i=1

Xi → µ in probability.

Proof. We already know that, since X1, X2, · · · are uncorrelated,

E

[
1

N

N∑
i=1

Xi

]
= µ, Var

[
1

N

N∑
i=1

Xi

]
=
σ2

N
.

Therefore for all ε > 0, by Čebyšev’s inequality,

P

[∣∣∣∣∣ 1

N

N∑
i=1

Xi − µ

∣∣∣∣∣ ≥ ε
]
≤ σ2/N

ε2
→ 0

as N →∞. �

Here are, instead, two “strong” laws, in the sense that they both establish
almost sure convergence. You can find the proofs in [9].
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Theorem D.7.2 (Strong law of large numbers, Kolmogorov). Let {Xi}∞i=1

be independent and identically distributed random variables with mean E [Xi] =
µ. Then

1

N

N∑
i=1

Xi → µ almost surely.

Theorem D.7.3 (Strong law of large numbers, also by Kolmogorov). Let
{Xi}∞i=1 be independent random variables with arbitrary distributions but
having the same mean E [Xi] = µ. If

∞∑
i=1

1

i2
E
[
X2
i

]
<∞,

then

1

N

N∑
i=1

Xi → µ almost surely.

In the notes, unless otherwise stated, by “strong law of large numbers” we
mean Theorem D.7.2.

D.8 Estimators

Let {Xi}∞i=1 be a sequence of independent and identically distributed random
variables, distributed according to a distribution F (x; θ) which depends on a
parameter θ. In mathematical statistics a finite “chunk” X1, X2, · · · , XN of
the infinite sequence of variables is usually called a random sample extracted
from the distribution F (x; θ), and a function (or better, a family of functions
depending on the number N)

f : (X1, X2, · · · , XN ) 7→ θ̂

used to extract information on the parameter θ from the random sample, is
called a point estimator, or simply an estimator, of θ. Note that since the
{Xi} are random quantities, f(X1, · · · , XN ) is also a random quantity, until
a “realization” of X1, X2, · · · , XN has been drawn. Some “good” properties
are usually required of an estimator. Among the most popular are the
following ones:

Definition D.8.1 f(X1, · · · , XN ) is called an unbiased estimator of θ if

E [f(X1, · · · , XN )] = θ.

If, on the other hand, E [f(X1, · · · , XN )] = θ+ β, with β 6= 0, the estimator
is called biased, and the number β is called its bias.
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Definition D.8.2 f(X1, · · · , XN ) is called a consistent estimator of θ if

lim
N→∞

f(X1, · · · , XN ) = θ almost surely.

Example. The sample average X̄ = M [X] = 1
N

∑N
i=1Xi is a good estimator

of the mean µ = E [Xi], being

• unbiased: indeed

E
[
X̄
]

= E

[
1

N

N∑
i=1

Xi

]
=

1

N

N∑
i=1

E [Xi] =
1

N

N∑
i=1

µ = µ;

• consistent: this is precisely the statement of the strong law of large
numbers (Theorem D.7.2).

�

Example. The sample variance s2 = 1
N

∑N
i=1(Xi − X̄)2 is a “kind-of-good”

estimator of the variance σ2 = E
[
(Xi − µ)2

]
:

• it is biased, indeed

N∑
i=1

(Xi − X̄)2 =

N∑
i=1

(Xi − µ+ µ− X̄)2

=
N∑
i=1

(Xi − µ)2 +
N∑
i=1

(µ− X̄)2 + 2
N∑
i=1

(Xi − µ)(µ− X̄)

=
N∑
i=1

(Xi − µ)2 +N(X̄ − µ)2 − 2(X̄ − µ)
N∑
i=1

(Xi − µ)

=

N∑
i=1

(Xi − µ)2 +N(X̄ − µ)2 − 2(X̄ − µ)N(X̄ − µ)

=
N∑
i=1

(Xi − µ)2 −N(X̄ − µ)2;

hence

E
[
s2
]

= E

[
1

N

N∑
i=1

(Xi − X̄)2

]
= E

[
1

N

N∑
i=1

(Xi − µ)2

]
− E

[
(X̄ − µ)2

]
=

1

N

N∑
i=1

Var [Xi]− Var
[
X̄
]

= σ2 − σ2

N
=
N − 1

N
σ2.

For big N , the bias is not much relevant; for small N , instead, usually
the unbiased estimator s̄2 = N

N−1s
2 = 1

N−1

∑N
i=1(Xi−X̄)2 is preferred.
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• it is, however, consistent. Indeed

s2 =
1

N

N∑
i=1

(Xi − µ)2 − (X̄ − µ)2;

by the strong law of large numbers, the first term on the right-hand
side converges to σ2, and the second to 0 almost surely.

�

We mention on the fly other two popular “good” properties that an estimator
of θ may or may not have:

• that of being, among all the unbiased estimators of θ, the one with the
minimum possible variance: this property is called efficiency;

• very loosely speaking, that of exploiting all the possible information
about θ that can be extracted from the data. If the estimator has this
property, it is called a sufficient statistic for θ.

Example. Suppose that X1, · · · , XN , · · · are independent and identically dis-
tributed Gaussian variables, with E [Xi] = µ and Var [Xi] = σ2. One could
prove that the sample average X̄ = 1

N

∑N
i=1Xi is the minimum variance

unbiased estimator of the mean E [Xi] = µ, since Var
[
X̄
]

= σ2

N is actually
the minimum possible, and also that it is a sufficient statistic for µ.
On the other hand, suppose that N = 2k (even), and consider the following
estimator:

X̃ =
X2 +X4 +X6 + · · ·+X2k

k
=

1

k

k∑
i=1

X2i.

Now, X̃ is both unbiased and consistent, by the same reasons for which X̄

is so; nevertheless, it is neither an efficient estimator, since Var
[
X̃
]

= σ2

k >

σ2

2k = σ2

N (X̄ is better), nor a sufficient statistic for µ, for it deliberately
discards all the information about µ contained in the samples with odd
indexes X1, X3, · · · . �

D.9 Three continuous distributions used in inferential statis-
tics

Definition D.9.1 A random variable X is said to be normal, or Gaussian,
with parameters µ and σ2 (this is denoted X ∼ N (µ, σ2)), if it has the
density:

fX(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

.

You can easily verify that E [X] = µ,Var [X] = σ2.
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Lemma D.9.1 Let X ∼ N (µ, σ2). Then

Z :=
X − µ
σ

∼ N (0, 1).

Definition D.9.2 A nonnegative random variable X is said to be distributed
according to a chi-square distribution with N degrees of freedom (denoted
X ∼ χ2(N)), if it has the density:

fX(x) =
1

Γ(N/2)2N/2
xN/2−1e−x/2, x ≥ 0,

where Γ is Euler’s Gamma function.

(The constant 1
Γ(N/2)2N/2

is not relevant to our discussion; it is just a nor-

malizing factor such that
∫∞
−∞ fX(x) dx = 1.)

Lemma D.9.2 Let X1, · · · , XN ∼ N (0, 1) be independent random vari-
ables. Then

N∑
i=1

X2
i ∼ χ2(N).

Let X1, · · · , XN be independent random variables with mean µ and vari-
ance σ2. Recall that the sample average 1

N

∑N
i=1Xi is an unbiased es-

timator of µ with variance Var
[
X̄
]

= σ2

N , and that the sample variance

s2 := 1
N

∑N
i=1

(
Xi − X̄

)2
is a biased estimator of σ2, so that the unbiased

estimator s̄2 = N
N−1s

2 = 1
N−1

∑N
i=1

(
Xi − X̄

)2
is usually preferred.

If the variables are Gaussian, we have the following

Theorem D.9.1 Let X1, · · · , XN ∼ N (µ, σ) be independent random vari-
ables. Then

• X̄ ∼ N (µ, σ
2

N );

• (N − 1) s̄
2

σ2 = N s2

σ2 ∼ χ2(N − 1);

• X̄ and s̄2 are independent.

Definition D.9.3 A random variable T is said to be distributed according
to a Student distribution with n degrees of freedom (denoted T ∼ t(n)), if
it has the density

fT (x) =
Γ((n+ 1)/2)

Γ(n/2)
√
πn

1

(1 + x2/n)(n+1)/2
.

Theorem D.9.2 Let W ∼ N (0, 1), V ∼ χ2(n) be independent. Then

T =
W√
V/n

∼ t(n).
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Theorem D.9.3 Let X1, · · · , XN ∼ N (µ, σ2) be independent. Then

T :=
X̄ − µ
s̄/
√
N
∼ t(N − 1).

Proof.

X̄ − µ
s̄/
√
N

=

X̄−µ
σ/
√
N

√
N−1s̄
σ /

√
N − 1

=
W√

V/(N − 1)
,

where W is N (0, 1) and independent of V/
√
N − 1, which is the square root

of a χ2(N − 1) variable divided by the number of its degrees of freedom.
The result follows from Theorem D.9.2. �

Theorem D.9.3 is a powerful tool in inferential statistics: it says that the
distribution of the statistic T , depending on a normal sample {X1, · · · , XN}
(recall that the Xi’s are supposed to be i.i.d.) and containing as much in-
formation about θo as the sample itself, has a distribution t(N − 1) that
depends only on the size N of the sample. Since the cumulative distribution
of a t(N − 1) variable, and its inverse, are tabulated in books and available
in every statistical software, one can use T to make inferences about E [Xi].

For example, suppose that the Xi’s are independent measures of a quantity
involved in a phenomenon that we, as experimenters, are studying, and that
some remarkable conclusion about the phenomenon could be drawn if E [Xi]
was different from a certain number µ̂ ∈ R. We want to test whether or not
this holds, hence we make the statistical hypothesis E [Xi] = µ̂; under this
hypothesis, the statistic T reads

T =
X̄ − µ̂
s̄/
√
N
.

We find, on books or through software, the percentile t95 such that∫ t95

−t95

f(x) dx = 0.95,

where f(x) is the density of a t(N − 1) random variable. Before the sample
{X1, · · · , XN} is drawn, {|T | > t95} is an unlikely event, with probability
0.05 = 5%. When the sample has been drawn, we can actually compute T ,
and if it happens that |T | > t95 it is customary to hold that there is enough
evidence to reject the hypothesis E [Xi] = µ̂ and to support the conclusion.
This is called a test of hypothesis with significance level 5%.
The idea behind this method is that if we run a lot of experiments, make
a hypothesis for each experiment, and reject the hypothesis all the times
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that an event happens, being “5%-unlikely” under the hypothesis, we will
be wrong in only 5% of the cases. Hence, the conclusion of any “test with
significance 5%” is plausible and reliable in the following sense: exactly the
5% of all the “tests with significance 5%”, that is, only a small fraction of
them, yields wrong conclusions.
Note that if, in the above setting, it happens instead that |T | ≤ t95, we
are not supposed to accept the hypothesis “the mean is equal to µ̂” and
claim that the conclusion is false: a test of hypothesis is designed to reject
a hypothesis under an unlikely event, not to accept it under a likely one.

Suppose, on the other hand, that we do not make hypotheses on µ = E [Xi].
Since, anyway, P [|T | ≤ t95] = 0.95, with probability 0.95 it still holds

−t95 ≤
X̄ − µ
s̄/
√
N
≤ t95

X̄ − t95
s̄√
N
≤ µ ≤ X̄ + t95

s̄√
N

In other terms, the random interval

[a, b] =

[
X̄ − t95

s̄√
N
, X̄ + t95

s̄√
N

]
contains µ with probability 0.95. Note that after the sample {X1, · · · , XN}
has been drawn, the interval can be computed exactly and is not random
anymore, hence we cannot still use the word probability: we say instead that
[a, b] is a confidence interval for the mean, with confidence 95%. This means
that, if we re-sampled and computed the interval a lot of times under the
same assumptions, the interval would contain the mean about 95% of the
times.
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E Matlab/Octave code for Chapter 3

E.1 Identification of an ARX process

% Model: y(t) = a y(t-1) + b u(t-1) + e(t)

% n(t) is a white noise; u(t) and y(t) are measured without errors

nruns = 100; % Number of identification experiments

a_estimates = zeros(1, nruns);

b_estimates = zeros(1, nruns);

for run=1:nruns,

% Construction of the process

N = 1000; % Time horizon

a = 0.8; % Parameter

b = 0.2; % Parameter

u = randn(N,1); % Some input signal with persistent excitation

e = 0.3*randn(N+1,1); % Process noise

y = zeros(N+1, 1);

y(1) = 4; % Initial condition

for t=2:N+1,

y(t) = a*y(t-1) + b*u(t-1) + e(t);

end

% Data for least squares

ypast = y(1:N);

ypresent = y(2:N+1);

Phi = [ypast, u]; % Regressors

% Least squares estimation

theta_LS = pinv(Phi)*ypresent; % Pseudoinverse. Same as: inv(Phi’*Phi)*Phi’*ypresent

a_estimates(run) = theta_LS(1);

b_estimates(run) = theta_LS(2);

end

disp(sprintf(’LS estimate of a over %d runs: average %7.5f, variance %7.5f’,

nruns, mean(a_estimates), var(a_estimates)));

disp(sprintf(’LS estimate of b over %d runs: average %7.5f, variance %7.5f’,

nruns, mean(b_estimates), var(b_estimates)));

The following was the output:

LS estimate of a over 100 runs: average 0.80272, variance 0.00020

LS estimate of b over 100 runs: average 0.20072, variance 0.00008
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E.2 Identification with regressors correlated to noise

% Model: y(t) = a y(t-1) + b u(t-1)

% u(t) is measured without errors

% y(t) is measured with an error, ym(t) = y(t) + e(t)

nruns = 100; % Number of identification experiments

a_estimates = zeros(1, nruns);

b_estimates = zeros(1, nruns);

for run=1:nruns,

% Construction of the process

N = 1000; % Time horizon

a = 0.8; % Parameter

b = 0.2; % Parameter

u = randn(N,1); % Some input signal with persistent excitation

e = 0.3*randn(N+1,1); % Some random noise

y = zeros(N+1, 1);

y(1) = 4; % Initial condition

for t=2:N+1,

y(t) = a*y(t-1) + b*u(t-1);

end

ym = y + e; % Measured output

% Data for least squares

ypast = ym(1:N);

ypresent = ym(2:N+1);

Phi = [ypast, u]; % Regressors

% Least squares estimation

theta_LS = pinv(Phi)*ypresent;

a_estimates(run) = theta_LS(1);

b_estimates(run) = theta_LS(2);

end

disp(sprintf(’LS estimate of a over %d runs: average %7.5f, variance %7.5f’,

nruns, mean(a_estimates), var(a_estimates)));

disp(sprintf(’LS estimate of b over %d runs: average %7.5f, variance %7.5f’,

nruns, mean(b_estimates), var(b_estimates)));

The following was the output:

LS estimate of a over 100 runs: average 0.50657, variance 0.00051

LS estimate of b over 100 runs: average 0.20026, variance 0.00010

The estimate of b is just fine, but the estimate of a is completely wrong.
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E.3 Instrumental variable

% Model: y(t) = a y(t-1) + b u(t-1)

% u(t) is measured without errors

% y(t) is measured with an error, ym(t) = y(t) + e(t)

% This time we apply an instrumental variable

nruns = 100; % Number of identification experiments

a_estimates = zeros(1, nruns);

b_estimates = zeros(1, nruns);

for run=1:nruns,

% Construction of the process

N = 1000; % Time horizon

a = 0.8; % Parameter

b = 0.2; % Parameter

u = randn(N+1,1); % Some input signal

e = 0.3*randn(N+2,1); % Some random noise

y = zeros(N+2, 1);

y(1) = 4; % Initial condition

for t=2:N+1,

y(t) = a*y(t-1) + b*u(t-1);

end

ym = y + e; % Measured output

% Data for least squares

upast = u(2:N+1);

upastpast = u(1:N);

ypast = ym(2:N+1);

ypresent = ym(3:N+2);

Phi = [ypast, upast]; % Regressors

Psi = [upast, upastpast]; % Instrumental variables

% Least squares estimation

theta_LS = inv(Psi’*Phi)*Psi’*ypresent;

a_estimates(run) = theta_LS(1);

b_estimates(run) = theta_LS(2);

end

disp(sprintf(’LS estimate of a over %d runs: average %7.5f, variance %7.5f’,

nruns, mean(a_estimates), var(a_estimates)));

disp(sprintf(’LS estimate of b over %d runs: average %7.5f, variance %7.5f’,

nruns, mean(b_estimates), var(b_estimates)));

The following was the output:

LS estimate of a over 100 runs: average 0.80565, variance 0.00364

LS estimate of b over 100 runs: average 0.19820, variance 0.00013
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E.4 Wolf’s sunspot numbers

% Octave/Matlab code:

% Autoregressive fit of Wolf’s sunspot numbers

% Comparison of the power spectral densities estimates obtained from DFT and AR fit

%-------------------------------------------------------------------

% Load data

sunspot_data = load(’sunspots.txt’);

N = size(sunspot_data,1);

yrs = sunspot_data(:, 1); % Years

ss = sunspot_data(:, 2); % Wolf’s sunspot numbers

ssd = ss - mean(ss); % Detrend the time series

%-------------------------------------------------------------------

% Plot sunspot numbers

figure(1);

clf();

plot(yrs, ss, ’r’);

axis([1749, 1927, 0, 160]);

xlabel(’year’);

ylabel(’Wolf’’s number’);

%print -color -depslatexstandalone wolf.eps

%-------------------------------------------------------------------

% Estimate the power spectrum by PEM (ordinary least squares)

% Model: y(t) = a y(t-1) + b y(t-2) + e(t)

Y = ssd(3:N);

Phi = [ssd(2:N-1), ssd(1:N-2)]; % Build the ’data matrix’

theta = pinv(Phi)*Y; % Estimate the parameters of the model

resid_var = var(Y - Phi*theta); % Variance of the residuals

a = theta(1);

b = theta(2);

disp(sprintf(’LS estimate of model parameters: a = %5.2f, b = %7.2f’, a, b));

disp(sprintf(’Variance of the residuals: %5.2f’, resid_var));

%-------------------------------------------------------------------

% Estimate the power spectrum with the periodogram

dft = fft(ssd); % Discrete Fourier transform of the signal

dft = [ dft((N/2+1):N); dft(1:N/2); ]; % Interpret second chunk of the DFT as negative frequencies

dft_spectrum = abs(dft).^2./N; % Periodogram

%-------------------------------------------------------------------

% Plot the spectrum estimates for comparison

frequencies = linspace(-pi, pi, N); % Frequency scale for plotting

ar_spectrum = resid_var./( 1 + a^2 + b^2 + 2*a*(b-1)*cos(frequencies) - 2*b*cos(2*frequencies) );

figure(2);

clf();

plot(frequencies, dft_spectrum, ’r’);

hold on;

plot(frequencies, ar_spectrum, ’k’);

legend(’Spectrum estimated with DFT’, ’Spectrum estimated with AR fitting’);

axis([-pi, pi]);

xlabel(’Frequency’);

ylabel(’Power spectral density’);

hold off;

%print -color -depslatexstandalone wolfspec.eps

%-------------------------------------------------------------------

% Compute the peak frequency and the phase of the (conjugate) poles of W(z),
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% and the corresponding periods in years

freq_peak = acos(a*(b-1)/(4*b));

r = roots([1, -a, -b]);

freq_root = atan2( imag(r(1)), real(r(1)) );

disp(sprintf(’Peak frequency: %5.2f’, freq_peak));

disp(sprintf(’Corresponding period (in years): %5.1f’, 2*pi/freq_peak));

disp(sprintf(’Phase of the poles: %5.2f’, freq_root));

disp(sprintf(’Corresponding period (in years): %5.1f’, 2*pi/freq_root));

The following was the output:

LS estimate of model parameters: a = 1.34, b = -0.65

Variance of the residuals: 239.31

Peak frequency: 0.56

Corresponding period (in years): 11.2

Phase of the poles: 0.59

Corresponding period (in years): 10.6
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F Proofs

F.1 Almost sure convergence of the empirical distribution,
proof with Hoeffding’s inequality

For arbitrary ε and N , the probability of the region Bε
N of the sample

space where F̂N (x) does not belong to [F (x)− ε, F (x) + ε] is, by Hoeffding’s
inequality, at most

P [Bε
N ] = P

[
|F̂N (x)− F (x)| ≥ ε

]
≤ 2e−2Nε2

In general, the probability of the region Bε
N+k where F̂N+k(x) does not

belong to [F (x)− ε, F (x) + ε] is at most

P
[
Bε
N+k

]
= P

[
|F̂N+k(x)− F (x)| ≥ ε

]
≤ 2e−2(N+k)ε2

Now the probability of the region Bε,N where F̂n(x) falls outside [F (x) −
ε, F (x) + ε] for at least one n ≥ N is

P
[
Bε,N

]
= P

[ ∞⋃
k=0

Bε
N+k

]

≤
∞∑
k=0

P
[
Bε
N+k

]
(by the sub-additivity of P)

≤
∞∑
k=0

2e−2(N+k)ε2 (by Hoeffding’s inequality)

= 2e−2Nε2
∞∑
k=0

e−2ε2k =
2e−2Nε2

1− e−2ε2

which tends to 0 as N → ∞. Note that Bε,N+1 ⊂ Bε,N for all N . Then,
the region Bε of the sample space in which F̂n(x) is not always in [F (x) −
ε, F (x) + ε] after a certain N has probability

P [Bε] = P

[ ∞⋂
N=1

Bε,N

]
= lim

N→∞
P
[
Bε,N

]
= 0

Note, now, that Bε1 ⊂ Bε2 whenever ε2 < ε1. Finally, the region B where
there exists ε > 0 such that F̂n(x) is not always in [F (x)− ε, F (x) + ε] after
a certain N has probability

P [B] = P

[⋃
ε>0

Bε

]
= lim

ε→0
P [Bε] = 0
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The realizations of the sequence {F̂n(x)} that belong to B are precisely
those that do not converge to F (x), and they form a set with probability 0.
Hence, F̂n(x) converges to F (x) almost surely. �

Note that the crucial fact of this proof is that the sum
∑∞

k=0 2e−2(N+k)ε2

converges, and the sum tends to zero as N → ∞. This fact is due to the
exponential bound; it would not follow from, say, Čebyšev’s inequality.
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G Solutions to exercises

G.1 Solutions to exercises for Chapter 1

Solution 1 (price of train tickets).
The model reads

pi = a+ bdi + εi,

where pi is the price of the ticket in e(the “explained” variable), a the fixed
price in e, b the proportionality coefficient in e/km, di is the distance in
km (the “explanatory” variable), and εi is a quantization error (in e). The
regressors are ϕ1(d) = 1 and ϕ2(d) = d, and a, b are the parameters to be
estimated. To pose the problem in compact form, we let

Y =

 p1
...
p4

 , Φ =

 1 d1
...

...
1 d4

 , θ =

[
a
b

]
,

the normal equations read

Φ>Φ θ = Φ>Y,

and the least squares solution is

θ̂LS =

[
â

b̂

]
= arg min

θ
‖Φθ − Y ‖2 =

(
Φ>Φ

)−1
Φ>Y.

Once â and b̂ are known, the estimated price of a ticket from Milan to
Vicenza is p̂ = â+ b̂ · (199.138 km). The Matlab code

% Example: estimation of ticket prices

Y = [ 7.00 ; 11.55 ; 15.65 ; 18.35 ];

Phi = [ 1, 82.842 ;

1, 147.480 ;

1, 229.408 ;

1, 266.341 ];

thetaLS = pinv(Phi)*Y

priceToVicenza = thetaLS(1) + thetaLS(2)*199.138

yields the estimates â = 2.254566 e, b̂ = 0.059955 e/km, and p̂ ' 14.20 e.
For comparison, the actual price of a ticket to Vicenza was 14.30 e49.

Solution 2 (amplitude and phase of a sinusoid).
For brevity, let ω = 2πF . The measurement model is then

yi = A sin(ωti + φ) + εi.

49Retrieved from http://www.trenitalia.com on February 25, 2013.
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Since sin(x+ y) = sin(x) cos(y) + cos(x) sin(y), we have

yi = A cos(φ) sin(ωti) +A sin(φ) cos(ωti) + εi

Letting a = A cos(φ) and b = A sin(φ), this becomes a linear model:

yi =
[

sin(ωti) cos(ωti)
] [ a

b

]
+ εi,

where of course the explanatory data are the ti, and the regressors are
ϕ1(t) = sin(ωt), ϕ2(t) = cos(ωt). To pose the problem in compact form, we
let

Y =

 y1
...
y10

 , Φ =

 sin(ωt1) cos(ωt1)
...

...
sin(ωt10) cos(ωt10)

 , θ =

[
a
b

]
,

and the least squares solution is, as usual,

θ̂LS =

[
â

b̂

]
= arg min

θ
‖Φθ − Y ‖2 =

(
Φ>Φ

)−1
Φ>Y.

Note that √
a2 + b2 = A

√
cos2(φ) + sin2(φ) = A;

b

a
=
A sin(φ)

A cos(φ)
= tan(φ).

Therefore, once â and b̂ are known, we can recover an estimate of A and φ
as follows:

Â =

√
â2 + b̂2

φ̂ = arctan(b̂/â)

(or φ̂ = arctan(b̂/â) + π, depending on the signs of â and b̂). The Matlab
code

% Example: amplitude and phase of a sinusoid

F = 2;

omega = 2*pi*F;

T = [ 2.188; 3.043; 4.207; 4.937; 5.675; 6.104; 6.260; 7.150; 8.600; 9.655 ];

Y = [ -1.112; 2.358; -1.807; 1.202; -0.814; 1.298; -2.520; -0.132; 1.421; -0.302 ];

Phi = [sin(omega*T), cos(omega*T)];

thetaLS = pinv(Phi)*Y;

Ahat = sqrt(thetaLS(1)^2 + thetaLS(2)^2)

phihat = atan2(thetaLS(2), thetaLS(1))

234



yields the estimates Â = 2.5036 and φ̂ = 1.2938. For comparison, the true
values were A = 2.5 and φ = 1.3 radians, and εi were Gaussian with mean
0 and variance 0.01 (i.e. standard deviation 0.1).

Solution 3 (weighted least squares).

1. To find arg min
θ∈Rp

∑N
i=1 wi (yi−ϕ>i θ)2, we set equal to zero the deriva-

tive with respect to θ in the very same way as we do for ordinary least
squares:

∂

∂θ

N∑
i=1

wi (yi − ϕ>i θ)2 =
N∑
i=1

wi 2(yi − ϕ>i θ)(−ϕ>i )

=

N∑
i=1

2 wi (yi − θ>ϕi)(−ϕ>i ) = 0,

After grouping terms and transposing, we find(
N∑
i=1

wi ϕiϕ
>
i

)
θ =

N∑
i=1

wi ϕiyi. (62)

This is the weighted version of the normal equations. Another way,
but nicer, to get to the same result, is to bring the weights inside the
squares before minimizing:

N∑
i=1

wi (yi − ϕ>i θ)2 =
N∑
i=1

(
√
wiyi −

√
wiϕ

>
i θ)

2;

defining ȳi =
√
wiyi and ϕ̄i =

√
wiϕi, the problem becomes

arg min
θ∈Rp

N∑
i=1

(ȳi − ϕ̄>i θ)2, (63)

which is a least squares problem in standard form. The corresponding
normal equations are (

N∑
i=1

ϕ̄iϕ̄
>
i

)
θ =

N∑
i=1

ϕ̄iȳi,

which of course are the same as (62), once the coefficients
√
wi are

extracted back from ȳi and ϕ̄i.
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2. In the same spirit as in (63), we define

Ȳ =


√
w1y1
...√

wNyN

 =


√
w1

. . .
√
wN


 y1

...
yN

 = W 1/2Y,

Φ̄ =


√
w1ϕ

>
1

...√
w1ϕ

>
N

 =


√
w1

. . .
√
wN


 ϕ>1

...
ϕ>N

 = W 1/2Φ,

where W = diag(w1, · · · , wN ) ∈ RN×N , and W 1/2 denotes its square
root. The problem then reads

arg min
θ∈Rp

∥∥Φ̄θ − Ȳ
∥∥2

2
,

the corresponding normal equations are

Φ̄>Φ̄θ = Φ̄>Ȳ ;

Φ>
(
W 1/2

)>
W 1/2Φθ = Φ>

(
W 1/2

)>
W 1/2Y ;

Φ>WΦθ = Φ>WY,

and finally

θ̂WLS =
(

Φ>WΦ
)−1

Φ>WY.

Solution 4 (ranges).
Suppose that v ∈ null Φ. This means Φv = 0, hence also Φ>Φv = 0 and
v ∈ null Φ>Φ. Suppose, on the other hand, that v ∈ null Φ>Φ. Then
Φ>Φv = 0, hence also ‖Φv‖22 = (Φv)>Φv = v>Φ>Φv = 0. This implies that
Φv = 0 and v ∈ null Φ. Hence null Φ>Φ = null Φ.
Now, since all the spaces in consideration are subspaces of finite-dimensional
vector spaces,

range Φ>Φ =

(
null

(
Φ>Φ

)>)⊥
=
(

null Φ>Φ
)⊥

= (null Φ)⊥ = range Φ>,

and consequently

rank Φ>Φ = dim range Φ>Φ = dim range Φ> = rank Φ>.
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Solution 5 (systematic errors).
Since εi are Gaussian with mean µ and variance σ2, we can write εi = ε̄i+µ,
where ε̄i are Gaussian with mean zero. The variables ε̄i are still independent
of each other and independent of ϕi.
Consider the normal equations, with the substitution yi = ϕ>i θ

o + εi and
divided by N :(

1

N

N∑
i=1

ϕiϕ
>
i

)
θ̂LS =

(
1

N

N∑
i=1

ϕiϕ
>
i

)
θo +

1

N

N∑
i=1

ϕiεi

By a strong law of large numbers, 1
N

∑N
i=1 ϕiϕ

>
i → Σ almost surely, hence

for big N the matrix 1
N

∑N
i=1 ϕiϕ

>
i is invertible, and

θ̂LS = θo +

(
1

N

N∑
i=1

ϕiϕ
>
i

)−1
1

N

N∑
i=1

ϕiεi

= θo +

(
1

N

N∑
i=1

ϕiϕ
>
i

)−1
1

N

N∑
i=1

ϕiε̄i +

(
1

N

N∑
i=1

ϕiϕ
>
i

)−1
1

N

N∑
i=1

ϕiµ

Now, since ε̄i and ϕi are independent, and E[ε̄i] = 0, the second term con-
verges to zero almost surely by a strong law of large numbers. And since µ is
a constant (we can bring it outside the sum), the third term also converges
almost surely, namely to Σ−1ϕ̄µ. Hence,

θ̂LS → θo + Σ−1ϕ̄µ almost surely.

The take-home message is that, in general, you cannot pretend the least
squares method to be consistent in the presence of a systematic error (µ).

G.2 Solutions to exercises for Chapter 2

Solution 1 (SVD and pseudo-inverse).

1. We check that U and V are orthogonal; indeed[
1 0
0 1

]
=

[
1/
√

5 −2/
√

5

2/
√

5 1/
√

5

] [
1/
√

5 2/
√

5

−2/
√

5 1/
√

5

]
=

[
1/
√

5 2/
√

5

−2/
√

5 1/
√

5

] [
1/
√

5 −2/
√

5

2/
√

5 1/
√

5

]
;[

1 0
0 1

]
=

[
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

] [
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
=

[
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

] [
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

]
.

237



Moreover, it holds[
1 1
2 2

]
=

[
1/
√

5 −2/
√

5

2/
√

5 1/
√

5

] [ √
10 0
0 0

] [
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
.

Thus, A = UΣV > as required. Note that the eigenvalues of both AA>

and A>A are 10 and 0.

2. From the previous point, we have

A+ = V Σ+U> =

[
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

] [
1/
√

10 0
0 0

] [
1/
√

5 2/
√

5

−2/
√

5 1/
√

5

]
=

[
1/10 1/5
1/10 1/5

]
.

Solution 2 (orthogonal projector).
Any v ∈ Rm can be decomposed in a unique way as

v = vc + v⊥,

where vc ∈ span {columns of A} = range A (vc is the requested orthogo-
nal projection) and v⊥ ∈ span {columns of A}⊥ = (range A)⊥ = null A>.
Specifically,

vc = Ax for some x ∈ Rn;

A>v⊥ = 0.

Therefore, recalling the defining properties of the pseudo-inverse,

ΠAv = AA+(vc + v⊥)

=
(
AA+A

)
x+

(
AA+

)
v⊥

= Ax+
(
AA+

)>
v⊥

= vc +
(
A+
)>
A>v⊥

= vc.

G.3 Solutions to exercises for Chapter 5

Solution 1 (complaint telephone calls).
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Let r ∈ R = {Piedmont,Lombardy, · · · ,Sicily} denote regions. We estimate
the probability p(r) = P[ri = r] of a call from r with the “empirical mass
distribution” (i.e. frequency)

p̂(r) =
1

N

N∑
i=1

1{ri=r} =
number of calls received from r

total calls

Of course, since E[1{ri=r}] = P[ri = r] = p(r),

E[p̂(r)] = p(r),

hence, using Hoeffding’s inequality, the probability that |p̂(r)− p(r)| > ε at
any of the 20 regions is

P

[⋃
r∈R
{|p̂(r)− p(r)| > ε}

]
≤
∑
r∈R

P [|p̂(r)− p(r)| > ε]

≤
∑
r∈R

2e−2Nε2

= 40e−2Nε2 .

The problem asks precisely to find N such that 40e−2Nε2 ≤ 10−4. Solving
for N ,

e−2N( 1
100)

2

≤ 25 · 10−7;

−2N
1

1002
≤ log(25)− 7 log(10) ' −12.9;

N ≥ 5000 · 12.9 = 64500.

Thus, any N ≥ 64500 will do.

Solution 2 (finitely many classifiers).
First, we prove that almost surely, ĴN → J̄ uniformly. Remembering the
proof of Glivenko/Cantelli’s theorem, this is quite easy; indeed by the strong
law of large numbers, at all points c ∈ C it holds ĴN (c)→ J̄(c) almost surely.
Hence, almost surely for all ε > 0 there exists Nc such that |ĴN (c)−J̄(c)| ≤ ε
for all N ≥ Nc. Since the c are finitely many, it is well defined the index
N̄ := maxc∈C Nc, such that for all N ≥ N̄ the inequalities

|ĴN (c)− J̄(c)| ≤ ε, c ∈ C

hold simultaneously; this is enough to establish uniform convergence.
Now we can invoke the lemma on uniform convergence, exploiting all the
hypotheses, because
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• any finite subset C ⊂ Rp is automatically compact (because it is closed
and bounded — recall the Heine/Borel theorem);

• any function defined on a finite set C ⊂ Rp is automatically continuous;

• c̄ is unique by assumption.

(If you are not at ease with the second claim, see the remarks after Definition
4.5 in [28]; alternatively, you may develop an ad-hoc version of the lemma
on uniform convergence.)
It follows that ĉN → c̄ almost surely.
Finally, recalling the definitions of ĴN and J̄ , and exploiting Hoeffding’s
inequality,

P

[
max
c∈C
|ĴN (c)− J̄(c)| ≥ ε

]
= P

[⋃
c∈C

{
|ĴN (c)− J̄(c)| ≥ ε

}]
≤
∑
c∈C

P
[
|ĴN (c)− J̄(c)| ≥ ε

]
≤
∑
c∈C

2e−2Nε2

= 2Ke−2Nε2 .

G.4 Solutions to exercises for Chapter 6

Problem 1 (discrete distribution, wrong confidence).
The LSCR method works by considering 3 partial-average functions:

g1(θ) =
y1 + y2

2
− θ = (θo − θ) +

ε1 + ε2

2
;

g2(θ) =
y1 + y3

2
− θ = (θo − θ) +

ε1 + ε3

2
;

g3(θ) =
y2 + y3

2
− θ = (θo − θ) +

ε2 + ε3

2
.

Their respective intersections with the θ-axis are

θ1 =
y1 + y2

2
,

θ2 =
y1 + y3

2
,

θ3 =
y2 + y3

2
,

and they split it in 4 intervals (the outermost two being semi-infinite),
where θo falls with equal probability. Thus, a reasonable choice is to choose
[θ̄1, θ̄3] as a 50%-confidence interval, where θ̄1 = min(θ1, θ2, θ3) and θ̄3 =
max(θ1, θ2, θ3).
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Let us tabulate yi and θi for each possible value of ε1, ε2, and ε3:

ε1 ε2 ε3 y1 y2 y3 θ1 θ2 θ3 interval contains θo?
1 1 1 2 2 2 2 2 2 [2, 2] no
1 1 −1 2 2 0 2 1 1 [1, 2] yes
1 −1 1 2 0 2 1 2 1 [1, 2] yes
1 −1 −1 2 0 0 1 1 0 [0, 1] yes
−1 1 1 0 2 2 1 1 2 [1, 2] yes
−1 1 −1 0 2 0 1 0 1 [0, 1] yes
−1 −1 1 0 0 2 0 1 1 [0, 1] yes
−1 −1 −1 0 0 0 0 0 0 [0, 0] no

(Of course, an “interval” like [2, 2] means the set {2}.) As you can see, in
6 cases out of 8 the interval [θ̄1, θ̄3] computed in the last-but-one column
contains θo; the confidence of the interval [θ̄1, θ̄3] is 75%, not 50% (thus, in
this case the conclusions of the LSCR theory are conservative).

Problem 2 (discrete distribution, correct confidence).
The LSCR method works by considering 3 partial-average functions:

g1(θ) =
y1 + y2

2
− θ = (θo − θ) +

ε1 + ε2

2
;

g2(θ) =
y1 + y3

2
− θ = (θo − θ) +

ε1 + ε3

2
;

g3(θ) =
y2 + y3

2
− θ = (θo − θ) +

ε2 + ε3

2
.

Their respective intersections with the θ-axis are

θ1 =
y1 + y2

2
,

θ2 =
y1 + y3

2
,

θ3 =
y2 + y3

2
,

and they split it in 4 intervals (the outermost two being semi-infinite),
where θo falls with equal probability. Thus, a reasonable choice is to choose
[θ̄1, θ̄3] as a 50%-confidence interval, where θ̄1 = min(θ1, θ2, θ3) and θ̄3 =
max(θ1, θ2, θ3).
We tabulate yi and θi for each possible value of ε1, ε2, and ε3 (all the θi are
written as multiples of 1

4 for ease of reading):
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ε1 ε2 ε3 y1 y2 y3 θ1 θ2 θ3 interval contains θo?
1 1/2 2 2 3/2 3 7/4 10/4 9/4 [7/4, 10/4] no
1 1/2 −2 2 3/2 −1 7/4 2/4 1/4 [1/4, 7/4] yes
1 −1/2 2 2 1/2 3 5/4 10/4 7/4 [5/4, 10/4] no
1 −1/2 −2 2 1/2 −1 5/4 2/4 −1/4 [−1/4, 5/4] yes
−1 1/2 2 0 3/2 3 3/4 6/4 9/4 [3/4, 9/4] yes
−1 1/2 −2 0 3/2 −1 3/4 −2/4 1/4 [−2/4, 3/4] no
−1 −1/2 2 0 1/2 3 1/4 6/4 7/4 [1/4, 7/4] yes
−1 −1/2 −2 0 1/2 −1 1/4 −2/4 −1/4 [−2/4, 1/4] no

As you can see, in 4 cases out of 8 the interval [θ̄1, θ̄3] computed in the
last-but-one column contains θo; thus, [θ̄1, θ̄3] is indeed a 50%-confidence
interval for θo. In this case, the result is exactly what the LSCR theory
claims, despite the fact that the distributions are discrete (in this particular
example, no two intersections θi coincide, whatever the values of ε1, ε2, ε3).
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