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0.1 Autonomous nonlinear systems

A time-invariant autonomous system (I’ll make liberal use of the word system to mean the model
of a physical system) in state-space form is a [system of] first order differential equation[s]:

ẋ(t) = f̄(x(t)), (1)

where x(t) ∈ Rn (state vector) and f̄ : Rn 7→ Rn. Here “autonomous” means that the system
has no input. In the sequel, t0 will denote an “initial time”, and x(t0) = x0 will be an “ini-
tial condition” (or “initial state”); as is customary in system theory, later we will let t0 = 0.
The differential equation together with the initial condition forms a so-called Cauchy prob-
lem; without further mention, we assume that conditions for the existence and uniqueness of
a solution to (1), at least in a neighborhood of t0 but wishfully for all t ≥ t0, are satisfied.
A point x̄ is called an equilibrium point of (1) if f̄(x̄) = 0; if x0 = x(t0) = x̄, then the unique
solution is the constant function x(t) = x̄ for all t (the system remains in the same state forever).

The equilibrium point x̄ is stable if for all ε > 0 there exists a δ > 0 such that, if ‖x(t0)− x̄‖ ≤ δ,
‖x(t)− x̄‖ ≤ ε for all t ≥ 0. In words, if the initial state is close enough to the equilibrium point,
the state remains close to the equilibrium point forever.

Example: pendulum without friction

[
ϑ̇(t)
ω̇(t)

]
=

[
ω(t)

−g/l · sin(ϑ(t))

]
.

It can be shown that x̄ =

[
ϑ̄
ω̄

]
=

[
0
0

]
is a stable equilibrium point.

Another example: LC oscillator with no resistance (and hence no energy dissipation); take as
state variables the charge in the capacitor and the current throughout the inductor (the equi-
librium point is the origin: no charge, no current. This system happens to be linear).

The equilibrium point x̄ is asymptotically stable if it is stable and, moreover, there exists a δ > 0
such that, for all initial states such that ‖x(t0)− x̄‖ ≤ δ, it holds limt→+∞ x(t) = x̄. In words, if
the initial state is close enough to the equilibrium point, the state remains close and eventually
converges to it. Examples: pendulum with friction, RLC oscillator; same equilibrium points as
before. If an equilibrium point is not stable it is called (guess what?) unstable.

0.2 Nonlinear systems with input

A single-input, single-output time-invariant system in state-space form is a system of equations:{
ẋ(t) = f(x(t), u(t)),

y(t) = h(x(t)),
(2)

where u(t) ∈ R is an input signal, y(t) ∈ R is an output signal, f : Rn×R→ Rn is the evolution
map, and h : Rn → R is a state-to-output map. With respect to a reference constant input
u(t) ≡ ū, a state x̄ is called an equilibrium point if f(x̄, ū) = 0. To justify this definition,
let f̄(x(t)) := f(x(t), ū) and compare with the definition for (1). With the same setting, x̄ is
called respectively stable, asymptotically stable, or unstable (with respect to the nominal input
ū) depending on what happens to the solution of the autonomous system ẋ(t) = f̄(x(t)).
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0.3 Linear systems

A time-invariant autonomous linear system in state-space form is a first order linear differential
equation with constant matrix:

ẋ(t) = Ax(t), (3)

where x(t) ∈ Rn and A ∈ Rn×n.

The definitions of equilibrium point (stable, asymptotically stable, unstable) are exactly as in
the general case (Section 0.1). Some facts follow:

• The equilibrium points of a linear system form a subspace of Rn. Indeed if x̄ is an equilib-
rium point (Ax̄ = 0) and α ∈ R, then also A(αx̄) = α(Ax̄) = 0, so that αx̄ is an equilibrium
point; and if x̄1, x̄2 are equilibrium points, then A(x̄1+x̄2) = Ax̄1+Ax̄2 = 0, so that x̄1+x̄2

is an equilibrium point. Trivial example: if A = 0, every x̄ ∈ Rn is an equilibrium point;
more generally, the equilibrium subspace is the subspace null A = {x ∈ Rn : Ax = 0}.

• If an equilibrium point is stable, then any other equilibrium point is stable.
Indeed, suppose that x̄1 is a stable equilibrium point. This means that Ax̄1 = 0 and for any ε > 0
there exists a δ > 0 such that, if ‖x(0) − x̄1‖ ≤ δ, then ‖x(t) − x̄1‖ ≤ ε for all t ≥ 0. Now let
x̄2 be another equilibrium point (Ax̄2 = 0), and define x2(t) = x(t) − x̄1 + x̄2; by linearity of the
system, x2(t) is the solution of (3) corresponding to the initial condition x(0) − x̄1 + x̄2: indeed
x2(0) = x(0)− x̄1 + x̄2 by definition, and

ẋ2(t) = ẋ(t) = Ax(t) = Ax(t)−Ax̄1 +Ax̄2 = A(x(t)− x̄1 + x̄2) = Ax2(t).

Then the stability statement above reads: for all ε > 0 there exists a δ > 0 such that, if ‖x(0)−x̄1‖ =

‖x2(0)− x̄2‖ ≤ δ, then ‖x(t)− x̄1‖ = ‖x2(t)− x̄2‖ ≤ ε for all t ≥ 0: hence x̄2 is also stable.

• Only the origin can be an asymptotically stable equilibrium point, and in this case the
origin is also the only equilibrium point of the system.
Indeed, let 0 be asymptotically stable: then for all ε > 0 there exists δ > 0 such that, if ‖x(0)‖ ≤ δ,
then ‖x(t)‖ ≤ ε for all t ≥ 0, and moreover limt→+∞ x(t) = 0. If there existed another equilibrium

point x̄, then λx̄ would also be an equilibrium point (A(λx̄) = λAx̄ = 0) for all λ ∈ R; but for small

enough λ, it would hold ‖λx̄‖ ≤ δ: hence pretending that x̄ is an equilibrium point (if x(0) = x̄,

then x(t) = x̄ for all t) would contradict the convergence to the origin.

When the origin is an asymptotically stable equilibrium point, it is customary to say that
the system is asymptotically stable.

A single-input, single-output time-invariant linear system in state-space form is a pair:{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(4)

where u(t) ∈ R, y(t) ∈ R, B ∈ Rn×1 (a column), and C ∈ R1×n (a row).

0.4 Where do linear systems come from?

Linear system may be models of physical systems that are indeed linear (for instance passive
electrical networks; an input is, for example, a voltage source connected to some node of the
network, and an output signal can be the voltage at some other node). But in many cases they
come up as the linearization of a non-linear system like (2) around an equilibrium point x̄ and
of a nominal constant input ū.
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Indeed, let u(t) = ū + ∆u(t), x(t) = x̄ + ∆x(t), and y(t) = h(x̄) + ∆y(t). Approximating (2)
with a first-degree Taylor polynomial,

ẋ(t) ' f(x̄, ū) +

[
∂f

∂x

]
x=x̄
u=ū

∆x(t) +

[
∂f

∂u

]
x=x̄
u=ū

∆u(t)

d

dt
∆x(t) ' 0 +

[
∂f

∂x

]
x=x̄
u=ū

∆x(t) +

[
∂f

∂u

]
x=x̄
u=ū

∆u(t) := A ∆x(t) +B ∆u(t)

y(t) ' h(x̄) +

[
∂h

∂x

]
x=x̄

∆x(t)

∆y(t) '
[
∂h

∂x

]
x=x̄

∆x(t) := C ∆x(t)

Re-labeling the signals (e.g. x instead of ∆x) the system linearized around x̄, ū reads exactly as
(4). Here is an amazing fact about the linearized system:

• if the system linearized around x̄ turns out to be asymptotically stable, then the equilib-
rium point x̄ is asymptotically stable for the original nonlinear system.

(But nothing can be said, in general, if the linearized system is just stable.) This fact follows
from the so-called Lyapunov stability theory, and is a very powerful tool, because as we shall
see checking the asymptotic stability of the linearized system is far easier than it is to check the
stability of x̄ with respect to the nonlinear one.

0.5 The exponential matrix

Recall the definition of the exponential function (z ∈ C):

ez = exp(z) :=
+∞∑
k=0

zk

k!
= 1 + z +

z2

2
+
z3

3!
+ . . .

Here z is a complex number. But a very similar definition of “exponential” can be applied to
operators, and in our case to square matrices, that can be interpreted as “generalizations of
numbers”. Let A ∈ Rn×n. We define:

eA = exp(A) :=

+∞∑
k=0

Ak

k!
= I +A+

A2

2
+
A3

3!
+ . . . ,

where I is the identity matrix (the generalization of the number 1). This definition is well posed
for all A ∈ Rn×n. Some facts follow:

• If 0 is the zero matrix, e0 = I.

• If A,B ∈ Rn×n and A,B commute (AB = BA), then eA+B = eA · eB = eB · eA.

• For all A ∈ Rn×n, eA is invertible and its inverse is e−A. (It follows immediately from the
previous points.)

• If A ∈ Rn×n and t ∈ R, d
dte

At = A · eAt.

Example. Suppose that A is diagonalizable: there exists an invertible matrix T (change of basis)
such that T−1AT = D (hence A = TDT−1), where D is a diagonal matrix:

D =

 λ1

λ2

λ3

 .
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Then,

eAt = I +At+
A2t2

2
+
A3t3

3!
+ . . . = TT−1 + TDT−1t+

TD2T−1t2

2
+
TD3T−1t3

3!
+ . . .

= T

(
I +Dt+

D2t2

2
+
D3t3

3!
+ . . .

)
T−1

= T


 1

1
1

+

 λ1t
λ2t

λ3t

+


λ21t

2

2
λ22t

2

2
λ23t

2

2

+


λ31t

3

3!
λ32t

3

3!
λ33t

3

3!

+ . . .

T−1

= T

 eλ1t

eλ2t

eλ3t

T−1
(
= T eDt T−1

)
.

Facts:

• If we know how to diagonalize A, we know how to compute the exponential eAt.

• λ1, λ2, and λ3 are the eigenvalues of A (and the columns of T form a linearly independent
set of corresponding eigenvectors). Thus, the “intrinsic” behaviour of eAt is essentially
determined by the eigenvalues of A.

The general case (matrices that cannot be diagonalized) requires the so-called canonical Jordan
form, but is otherwise quite straightforward, because a Jordan form can be thought of as the sum
of two commuting matrices, of which one is diagonal and the other is such that its exponential
amounts to a finite sum.

0.6 Solution of the linear system

The general solution of the autonomous system (3) is

x(t) = eA(t−t0) x0. (5)

Indeed the above x(t) satisfies (3), including the initial condition:

ẋ(t) =
d

dt
eA(t−t0)x0 = AeA(t−t0)x0 = Ax(t);

x(t0) = eA(t0−t0)x0 = e0x0 = x0.

Now, checking the asymptotic stability of the linear system (3) is just a matter of checking the
behaviour of (5). Introduce a change of basis in the state space, letting x(t) = Tξ(t), where T
is the matrix that diagonalizes A:

x(t) = eA(t−t0) x0;

Tξ(t) = eA(t−t0) Tξ0;

ξ(t) = T−1 eA(t−t0) Tξ0 = T−1 TeD(t−t0) T−1Tξ0 =

 eλ1(t−t0)

eλ2(t−t0)

eλ3(t−t0)

 ξ0.

The functions eλi(t−t0) appearing in the above expression are called “modes” of the system.
Since A is real, its eigenvalues λi are either real, or they come in conjugate pairs λ12 = a±jω. If
an eigenvalue is real and negative, say λ3 = −α < 0, the corresponding mode is an exponential
decay, e−α(t−t0); if two conjugate eigenvalues have negative real part, say λ12 = −α ± jω the
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corresponding modes are complex-valued functions, but two suitable combinations of them yield
damped oscillatory modes: e−α(t−t0) sin(ω(t− t0)), e−α(t−t0) cos(ω(t− t0)).

Thus, if all the eigenvalues λi have negative real part, then ξ(t) → 0 as t → ∞, and so does
x(t) = Tξ(t), irrespective of the initial state x0. Indeed, (3) is asymptotically stable if and only
if A has all its eigenvalues in the open half-plane {<z < 0}. Vice versa, if at least one of the
eigenvalues has positive real part then at least one component of ξ(t) diverges exponentially as
t→∞, so does at least one component of x(t), and the system is unstable. The case where one
or more eigenvalues lie on the imaginary axis is somewhat subtler, and we shall not deal with it.

The general solution of the differential equation in system (4) is

x(t) = eA(t−t0) x0 +

∫ t

t0

eA(t−τ)Bu(τ) dτ. (6)

Indeed the above x(t) satisfies (4), including the initial condition:

ẋ(t) =
d

dt
eA(t−t0)x0 +

d

dt

∫ t

t0

eA(t−τ)Bu(τ)dτ

= AeA(t−t0)x0 +

∫ t

t0

d

dt
eA(t−τ)Bu(τ)dτ + eA(t−t)Bu(t)

= AeA(t−t0)x0 +

∫ t

t0

AeA(t−τ)Bu(τ)dτ + eA(t−t)Bu(t)

= A

(
eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ

)
+Bu(t) = Ax(t) +Bu(t);

x(t0) = eA(t0−t0)x0 +

∫ t0

t0

eA(t−τ)Bu(τ)dτ = e0x0 + 0 = x0.

Once the evolution state is known, that of the output is trivial:

y(t) = Cx(t) = CeA(t−t0) x0 +

∫ t

t0

CeA(t−τ)Bu(τ) dτ (7)

You can see from (7) that y(t) is the sum of two contributions: the first one CeA(t−t0) x0 is due
only to the initial state, and is called free evolution; the second one

∫ t
t0
CeA(t−τ)Bu(τ) dτ is due

only to the input from t0 to t, and is called forced response. The function

h(t) := CeAtB (8)

is the so-called impulse response of the system, because it is the forced response corresponding
to a “Dirac’s delta” δ(t) fed as the input; indeed, letting x0 = 0, (7) reads

y(t) =

∫ t

t0

CeA(t−τ)Bδ(τ) dτ = CeAtB = h(t).

Summing up, the forced response is a convolution of the input with the impulse response:∫ t
t0
h(t− τ)u(τ) dτ .

0.7 Meanwhile, in the Laplace domain...

Even neglecting any sort of mathematical rigor, we should recall at least three fundamental facts
about the “unilateral” Laplace transform of a function x(t):
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• Its definition: X(s) = L [x] (s) :=
∫∞

0 x(t)e−st dt.

• The rule for the transform of a derivative (of a well-behaved function such that x(t)e−st → 0
as t→∞ at least for one s ∈ C): integrating by parts,∫ ∞

0
ẋ(t)e−st dt =

[
x(t)e−st

]∞
0
−
∫ ∞

0
x(t)(−s)e−st dt = −x(0) + s

∫ ∞
0

x(t)e−st dt

= −x(0) + sX(s)

Take-home message: except for the “initial condition” x(0), the Laplace variable s plays
in the Laplace domain the role that in the time domain pertains to the operator d

dt .

• The rule for the transform of a convolution: if y(t) =
∫ t

0 h(t− τ)u(τ) dτ , then

Y (s) = H(s) · U(s).

Take-home message: convolutions in the time domain become products in the Laplace
domain.

Now consider again our linear system (4),{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

and for the sake of simplicity let t0 = 0. The corresponding solution (7) reads

y(t) = CeAt x0 +

∫ t

0
CeA(t−τ)Bu(τ) dτ (9)

Let’s do some sporting club mathematics. Take, side by side, the transform of the differential
equation in (4):

L [ẋ] (s) = L [Ax] (s) + L [Bu] (s);

−x(0) + sX(s) = AX(s) +BU(s);

(sI −A)X(s) = x0 +BU(s);

X(s) = (sI −A)−1 x0 + (sI −A)−1BU(s).

(We’re playing with vector- and matrix-valued functions here, not with scalar functions—don’t
worry, it works anyway.) Now turn to the transform of the output equation:

Y (s) = L [y] (s) = L [Cx] (s)

= C (sI −A)−1 x0 + C (sI −A)−1B · U(s).
(10)

• Fact: the matrix-valued complex function (sI −A)−1 is the Laplace transform of the
matrix exponential eAt, in pretty much the same way as the scalar function 1

s−a is the
transform of eat.

• Fact: the scalar function H(s) = C (sI −A)−1B is the Laplace transform of the impulse
response h(t) = CeAtB. It is called the transfer function of the linear system.

It remains to notice that the rightmost term in (10) is a product H(s)·U(s), so it is the transform
of a convolution. Now enjoy recognizing in (10) the Laplace transform of (9).
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0.8 What about the transfer function, then?

Remember: H(s) = C (sI −A)−1B is a scalar function, since C is a row and B is a column.
Understanding its structure boils down to recalling what it is to compute the inverse of a matrix.
(A matrix of numbers? a matrix of functions? it doesn’t matter.)

A−1 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

−1

=
1

det A

 c11 c12 c13

c21 c22 c23

c31 c32 c33

 ,
where cij are the so-called co-factors: ± determinants of minors of order 2 = n− 1. Then

(sI −A)−1 =

 s− a11 −a12 −a13

−a21 s− a22 −a23

−a31 −a32 s− a33

−1

=

 c11(s) c12(s) c13(s)
c21(s) c22(s) c23(s)
c31(s) c32(s) c33(s)


det (sI −A)

=
N(s)

det (sI −A)

where now the cofactors cij(s) in the matrix N(s) are functions of s: actually, since they are
determinants of minors of order n − 1, all of them are polynomials of degree at most n − 1.
Finally,

H(s) = C(sI −A)−1B =
CN(s)B

det (sI −A)
=
b(s)

a(s)
.

The numerator b(s) = CN(s)B is a polynomial of degree at most n − 1. The denominator
a(s) = det (sI−A) is a monic polynomial of order n that you should recognize from basic linear
algebra: it is called the characteristic polynomial of A, and its roots are the eigenvalues of A.
Summing up, H(s) is a strictly proper rational transfer function:

H(s) =
bn−1s

n−1 + bn−2s
n−2 + . . .+ b1s+ b0

sn + an−1sn−1 + . . .+ a1s+ a0

= bn−1
(s− z1)(s− z2) . . . (s− zn−1)

(s− p1)(s− p2) . . . (s− pn)

The “poles” p1, p2, . . . , pn coincide, one by one and counting their multiplicity, with the eigen-
values of A, unless there is some zero-pole cancellation. In the latter case, we can only say that
each pole is also an eigenvalue of A, but the set of poles (counting multiplicity) does not exhaust
the set of eigenvalues (counting multiplicity). Zero-pole cancellations happen when the system is
“not completely reachable” or “not completely observable”, and indeed the poles coincide with
the eigenvalues of the “reachable and observable subsystem”; but this is a subject for another
day.

0.9 From continuous time to discrete time

Suppose that for k ∈ Z the input u(t) is constant over intervals of the form [k∆, (k + 1)∆), i.e.
u(t) ≡ uk over [k∆, (k + 1)∆). Then the link between input, state, and output enforced by (4)
is well represented by a discrete-time counterpart where all the signals involved are sequences of
numbers or vectors uk, xk, and yk (k ∈ Z), representing sampled versions of u(t), x(t), and y(t)
respectively, with sampling time ∆. All that it takes to work out such a discretized system is
to exploit the solution (6)-(7) by letting t0 = k∆ and taking into account the constraint on the
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input. Let xk := x(k∆) (in particular x0 := x(0). It holds:

xk+1 = x((k + 1)∆) = eA((k+1)∆−k∆) x(k∆) +

∫ (k+1)∆

k∆
eA((k+1)∆−τ)Bu(τ) dτ (recall u(τ) ≡ uk)

= eA∆ xk +

∫ (k+1)∆

k∆
eA((k+1)∆−τ)B dτ · uk (let σ = (k + 1)∆− τ, dσ = −dτ)

= eA∆ xk +

∫ ∆

0
eAσB dσ · uk

yk = y(k∆) = Cx(k∆) = Cxk
(11)

Defining the new matrices Ā := eA∆, B̄ :=
∫ ∆

0 eAσB dσ, and C̄ := C, we get to the desired
discretization: {

xk+1 = Āxk + B̄uk,

yk = C̄xk.
(12)

This is a single-input, single-output, time-invariant, discrete-time linear system in state-space
form. Despite the pedantic name, it is nothing more than a recursive algorithm that updates
the state from the current state xk and an input sample uk, and maps the current state linearly
to an output sample yk.

Note: I don’t like very much the notation “xk” with the subscript, and anyway I prefer to denote
time always with the letter t. So, since during the course we will deal mostly with discrete-time
systems, if this does not generate confusion I will make liberal use of the following notation:{

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t),
(13)

which is exactly the same scheme with some cosmetics in notation. If you prefer, you can inter-
pret (13) as a sampled version of a continuous-time system (having different matrices instead of
A,B,C, of course) with sampling time ∆ = 1.

The solution of the recursion in (13) is the following sequence:

x(t) = Atx0 +
t−1∑
τ=0

At−1−τBu(τ). (14)

(The corresponding expression for y(t) is obvious.) To prove (14), use mathematical induction:

• x(0) = A0x0 +
∑−1

τ=0A
t−1−τBu(τ) = x0, so the base of the induction is OK;
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• suppose that the formula is true for t: x(t) = Atx0 +
∑t−1

τ=0A
t−1−τBu(τ); then

x(t+ 1) = Ax(t) +Bu(t)

= A

(
Atx0 +

t−1∑
τ=0

At−1−τBu(τ)

)
+ I ·Bu(t)

= At+1x0 +

t−1∑
τ=0

At−τBu(τ) +A(t−t) ·Bu(t)

= At+1x0 +

t∑
τ=0

At−τBu(τ)

= At+1x0 +

(t+1)−1∑
τ=0

A(t+1)−1−τBu(τ),

so the formula is true also for t+ 1, and the inductive step is also OK.

9


