
Polynomial approach to closed-loop control

F. A. Ramponi
Rev. 0.0.6, 2019-11-06

0.1 Simple closed loop controller

Our goals in polynomial closed-loop control (as opposed, say, to the standard state-space approach, decoupled
state feedback and Luenberger observer) are manifold: first, to stabilize the plant (and the closed loop); second,
to attain reference tracking; and third, to reject disturbances. Here is a complete control scheme:

C(z) = q(z)
p(z) W (z) = b(z)

a(z)

r(t) e(t) u(t)

da(t) d(t)

y(t)

−dm(t)

−

In the diagram,

• W (z) is the transfer function of the plant; we assume that it is rational and, as is usual in control design,
also strictly proper, so that there is at least a delay in the closed loop:

W (z) =
b(z)

a(z)
, a, b polynomials, deg(b) < deg(a);

• C(z) is the transfer function of the controller (i.e. of what is going to become the control unit of the
self-tuning regulator); we assume that it is rational and proper, but not necessarily in the strict sense;

C(z) =
q(z)

p(z)
, p, q polynomials, deg(q) ≤ deg(p);

• r(t) is the reference signal;

• u(t) is the control input;

• y(t) is the output of the plant;

• da(t) is a disturbance acting on the control actuator;

• d(t) is a disturbance acting on the output (e.g. a load);

• dm(t) is a measurement error, corrupting the comparison between y(t) and r(t) that is the controller’s
main focus; note that the term −dm(t) is added with a minus sign only for ease of notation, so that the
two ‘−’ cancel out and the disturbance actually enters the loop with a positive sign;

• e(t) is the tracking error.

Later in the section, for simplicity, we will ignore the role of da(t) and dm(t) and get to a simpler scheme
containing only the disturbance d(t); but it must be clear from the beginning that all the disturbances are
always present in real-world control loops. And hence, to prevent disturbances from de-stabilizing the closed-
loop system, we must impose the BIBO stability not just of the “standard” closed-loop transfer function, but

1

of four distinct transfer functions:

Wcl(z) = Wr→y(z) =
C(z)W (z)

1 + C(z)W (z)
=

b(z)
a(z)

q(z)
p(z)

1 + b(z)
a(z)

q(z)
p(z)

=
b(z)q(z)

a(z)p(z) + b(z)q(z)
(closed-loop transfer function);

S(z) = Wd→y(z) =
1

1 + C(z)W (z)
=

1

1 + b(z)
a(z)

q(z)
p(z)

=
a(z)p(z)

a(z)p(z) + b(z)q(z)
(sensitivity function);

Sm(z) = Wr→u(z) =
C(z)

1 + C(z)W (z)
=

q(z)
p(z)

1 + b(z)
a(z)

q(z)
p(z)

=
a(z)q(z)

a(z)p(z) + b(z)q(z)
(“measurement sensitivity”);

Sa(z) = Wu→y(z) =
W (z)

1 + C(z)W (z)
=

b(z)
a(z)

1 + b(z)
a(z)

q(z)
p(z)

=
b(z)p(z)

a(z)p(z) + b(z)q(z)
(“actuation sensitivity”);

Note that Wcl(z) and S(z) satisfy the constraint Wcl(z) + S(z) = 1.

I have given Sm(z) and Sa(z) the silly names “measurement sensitivity” and “actuation sensitivity” because

Sm(z) = Wr→u(z) ≡Wdm→u(z) and

Sa(z) = Wu→y(z) ≡Wda→y(z),

as you are invited to check. The name “sensitivity function” is instead classical, and has a technical reason
related to the first studies about robustness. Suppose that the transfer function W of the plant is “perturbed”
with a small variation ∆W ; then ∆W/W is its relative perturbation. How does this variation affect the
closed-loop transfer function? Let ∆Wcl be the variation in Wcl corresponding to ∆W . Treating Wcl and W
symbolically (or considering them at a fixed complex frequency) we get:

∆Wcl/Wcl

∆W/W
=

∆Wcl

∆W
· W
Wcl
' dWcl

dW
· W
Wcl

=

(
d

dW

CW

1 + CW

)
·
(
W (1 + CW)

CW

)
=

C

(1 + CW)2
· (1 + CW)

C
=

1

(1 + CW)
= S;

∆Wcl

Wcl
' S · ∆W

W
,

i.e. the sensitivity is a proportionality factor between a small relative perturbation in the plant’s transfer func-
tion and the corresponding relative variation of the closed-loop transfer function. If you are interested in the
subtleties of this kind of robustness, you can refer to the classical textbook Doyle, Francis, and Tannenbaum,
Feedback Control Theory.

The closed loop is called internally stable if all the four transfer functions Wcl(z), S(z), Sm(z), and Sa(z) are
BIBO-stable. Note the subtlety: external stability of the closed-loop would mean just the BIBO-stability of
Wcl(z), and this is not equivalent to internal stability, because a bad choice of either q(z) or p(z) could make
Wcl(z) stable but one of the other three functions unstable.

Example. Let W (z) = 1/4
(z−1)(z−2) and C(z) = z−2

z . Then

Wcl(z) =
C(z)W (z)

1 + C(z)W (z)
=

z−2
z

1/4
(z−1)(z−2)

1 + z−2
z

1/4
(z−1)(z−2)

=
1/4

z(z − 1) + 1/4
=

1/4

(z − 1/2)2

is clearly BIBO-stable, and so are also S(z) and Sm(z); however,

Sa(z) =
W (z)

1 + C(z)W (z)
=

1/4
(z−1)(z−2)

1 + z−2
z

1/4
(z−1)(z−2)

=

z/4
(z−2)

z(z − 1) + 1/4
=

z/4

(z − 1/2)2(z − 2)

is not BIBO-stable because of the pole at 2. Thus C(z) attains external stability but not internal stability:
canceling unstable poles in the naive way is not a good idea.

2

Luckily enough, internal stability actually calls for a unique requirement, because the denominator of all the
four transfer functions is the same polynomial a(z)p(z) + b(z)q(z), and this requirement is easy to satisfy by
suitably designing the controller q(z)/p(z). If we ensure that a(z)p(z)+b(z)q(z) has roots in the open unit circle,
and possibly well-damped, that is “well inside” the open unit circle {|z| < 1}, then the impact of disturbance is
reduced, and in particular no disturbance can de-stabilize the closed loop. This said, to support intuition we
consider a simplified scheme comprising only the reference signal and the load disturbance (keep in mind that
the other disturbances are still there):

C(z) = q(z)
p(z) W (z) = b(z)

a(z)

r(t) e(t) u(t)

d(t)

y(t)

−

0.2 Stabilization

It goes without saying that internal stabilization calls for a Diophantine equation. Let acl(z) be the desired
common denominator of the four transfer functions to stabilize. Then

a(z)p(z) + b(z)q(z) = acl(z) (1)

is a standard Diophantine equation. We assume that gcd(a, b) = 1, i.e. that a and b are coprime: this corre-
sponds to assuming that W (z) is the transfer function of a reachable and observable system.

Since gcd(a, b) = 1 we know that (1) has a solution p, q for arbitrary acl(z); the solution is, however, not
unique. The name of the game is now to put a bound on the degrees of p and q, more precisely to ensure
that C(z) = q(z)/p(z) is proper, so that it is the transfer function of a causal system that can be realized and
implemented as a forward recursion.

The standard scheme goes as follows: let deg a = n, deg b ≤ n− 1, and impose the degrees of p, q to be at most
n−1. If now we impose also deg acl = 2n−1, then the only possibility is that deg acl = deg(ap) = deg a+deg p,
so that p has degree exactly n − 1, and C(z) is proper. The polynomials p and q have n unknown coefficients
each, and if deg acl = 2n− 1, then equating each of its 2n coefficients with the coefficient of the corresponding
power of z in the left-hand side of (1) we obtain a linear equation. Thus, (1) yields a linear system of 2n
equations in 2n unknowns, that can wisely recast as Sylvester equation: and of course you remember that
the Sylvester matrix is non-singular because gcd(a, b) = 1, so that the solution is unique. Finally, the solution
has also a nice look if we let, without loss of generality, a and acl be monic, because this forces p to be monic too.

The correspondence between degrees, number of unknowns and number of equations is resumed in the following
table:

a(z) · p(z) + b(z) · q(z) = acl(z)
degree n n− 1 ≤ n− 1 ≤ n− 1 2n− 1
unknowns n n
equations 2n

There is a particular choice for closed-loop poles allowing us to attain a goal that is not possible in continuous-
time control. If all the poles (counting multiplicity) of the closed loop are at the origin, that is if acl(z) = z2n−1,
then the steady state corresponding to constant inputs is reached in finite time.

This is better understood in terms of a state-space realization: the poles of the transfer function (of the closed-
loop system) correspond to the eigenvalues of some dynamic matrix Acl ∈ RN×N . A suitable change of basis
brings Acl in an upper-triangular form Ācl with zeros on the diagonal (for example the canonical Jordan form);
it follows that ĀNcl = 0. Thus, in this basis, for all t > N the state evolution corresponding to a constant

3

reference r(t) ≡ r̄ reads

ξ(t) = Ātclξ0 +

t−1∑
τ=0

Āt−1−τ
cl Br(τ) =

(
t−1∑

τ=t−N
Āt−1−τ

cl B

)
r̄ =

(
N−1∑
τ=0

ĀτclB

)
r̄ = constant.

A discrete-time control scheme that allocates all the poles (or the eigenvalues) at the origin is called a dead-beat
controller.

Example. Suppose that W (z) = 3z
z2−4 . We design a controller C(z) = q(z)

p(z) such that all the poles of the

closed-loop transfer function[s] lie at the origin. Here a(z) = z2 − 4, so deg a = n = 2; we choose deg p = n− 1,
deg q ≤ n− 1, and acl(z) = z2n−1 = z3. The Diophantine equation reads:

acl(z) = a(z)p(z) + b(z)q(z);

z3 = (z2 − 4)(p1z + p0) + 3z(q1z + q0);

z3 = (p1)z3 + (p0 + 3q1)z2 + (−4p1 + 3q0)z + (−4p0);

equating coefficients we immediately find p1 = 1 and p0 = 0; then by substitution we recover q1 = 0 and q0 = 4
3 ;

the same solution is obtained solving the following Sylvester equation:
1 0 0 0
0 1 3 0
−4 0 0 3
0 −4 0 0

p1

p0

q1

q0

 =

α2

α1 α2 β1

α0 α1 β0 β1

α0 β0

p1

p0

q1

q0

 =

c3
c2
c1
c0

 =

1
0
0
0

 .
Thus, the dead-beat controller reads C(z) = 4/3

z .

0.3 Reference tracking and disturbance rejection

Reference tracking is the fact that

lim
t→+∞

r(t)− y(t) = lim
t→+∞

e(t) = 0. (2)

The typical requirement is that (2) holds at least for constant references, i.e. for all references of the kind
r(t) = k1(t).

The easiest way to put it down, according to me, is to recall that e(t) = S(z)r(t). This is written in symbolical
form (where S(z) is meant as an operator between sequences), but a more orthodox way to write the same
thing would be in terms of Z-transforms: E(z) = S(z)R(z). A constant reference has the transform R(z) =
Z [k1(t)] = kz

z−1 , hence, by the final value theorem,

lim
t→+∞

e(t) = lim
z→1

(z − 1)E(z) = lim
z→1

(z − 1)S(z)
kz

z − 1
= k · lim

z→1
S(z).

If we manage to obtain that limz→1 S(z) = 0, which is the case if S(1) = 0, then (2) is attained for all constant
references. (Note that, since S(z) + Wcl(z) = 1, the requirement S(1) = 0 is equivalent to Wcl(1) = 1.) Now

S(z) = a(z)p(z)
a(z)p(z)+b(z)q(z) : if properly designed, the denominator plays no role, and a(z) is fixed. If, by a lucky

coincidence, a(z) = (z − 1)a′(z) for some polynomial a′(z), reference tracking is already enforced by a(z) and
then the stabilizing controller designed in the previous section is sufficient to satisfy the requirement; otherwise
we must play with p(z) and impose that it contains the factor (z − 1).

Here is how: we let p(z) = (z − 1)p̄(z) and ā(z) = a(z)(z − 1); the Diophantine equation becomes

a(z)p(z) + b(z)q(z) = a(z)(z − 1)p̄(z) + b(z)q(z) =

ā(z)p̄(z) + b(z)q(z) = acl(z).
(3)

This is more or less the same game as in (1), except that now ā(z) contains the factor (z − 1) by design, and
deg ā = deg a+ 1. Equation (4) can be solved increasing deg q = n− 1 + 1 = n and deg acl = 2n− 1 + 1 = 2n;

4

one may think that deg p̄ = n is also required, but this is not the case, because the final controller will still be

C(z) = q(z)
p(z) = q(z)

(z−1)p̄(z) , i.e. it will remain proper also if we keep deg p̄ = n− 1. The situation is resumed in the

following table:

a(z) · (z − 1) · p̄(z) + b(z) · q(z) = acl(z)
degree n 1 n− 1 ≤ n− 1 ≤ n 2n
unknowns n n+ 1
equations 2n+ 1

The final sensitivity function is

S(z) = Wr→e(z) =
a(z)p(z)

a(z)p(z) + b(z)q(z)
=

(z − 1)a(z)p̄(z)

a(z)p(z) + b(z)q(z)

and since S(1) = 0, it attains reference tracking for any constant reference.

The requirement that (z− 1) be present among the factors of p(z) is often called forcing integration in the loop.
Indeed by forcing a term (z − 1) in p(z) we have de facto forced a term 1

z−1 in the open-loop transfer function:

C(z)W (z) =
q(z)

p(z)
W (z) =

1

(z − 1)

q(z)

p̄(z)
W (z).

Now 1
z−1 is the transfer function of a “discrete-time integrator”, that is an adder:

y(t) =
1

z − 1
u(t)

(z − 1)y(t) = u(t)

y(t+ 1) = y(t) + u(t), and starting e.g. from y(0) = 0

y(t) =

t−1∑
τ=0

u(τ).

At this point you should recall from your basic control courses that to attain asymptotic reference tracking of
constant references in continuous time one has to impose the presence of an integrator

∫
, that is of a factor 1

s ,
in the open-loop transfer function. This is precisely the same technique.

It shouldn’t come as a shock that the closed loop with the controller obtained from (4) attains also load
disturbance rejection, that is: in the long run a constant disturbance d(t) = h1(t) has no effect on the output.
On one hand this is fairly intuitive, because any constant disturbance must be rejected, if constant reference
tracking has to be attained. On the other hand one may notice that

S(z) = Wr→e(z) =
1

1 + C(z)W (z)
≡Wd→y(z),

so that the response yd(t) = Wd→y(z)d(t) to any constant load disturbance satisfies

lim
t→+∞

yd(t) = lim
z→1

(z − 1)Wd→y(z)D(z) = lim
z→1

(z − 1)S(z)
hz

z − 1
= hS(1) = 0.

Example. Suppose again that W (z) = 3z
z2−4 . We design a controller C(z) = q(z)

p(z) such that all the poles of

the closed-loop transfer function[s] lie at the origin, and moreover we require integral action. The Diophantine
equation to solve reads

acl(z) =

ā(z)︷ ︸︸ ︷
a(z)(z − 1) p̄(z) + b(z)q(z);

Here ā(z) = (z2 − 4)(z − 1) = z3 − z2 − 4z + 4 so that deg ā = deg a + 1 = n + 1 = 3, deg q = deg ā − 1 = 2,
deg p̄ = deg p− 1 = 1, and acl(z) = z2n = z4. We proceed equating coefficients:

z4 = (z3 − z2 − 4z + 4)(p̄1z + p̄0) + 3z(q2z
2 + q1z + q0);

z4 = (p̄1)z4 + (−p̄1 + p̄0 + 3q2)z3 + (−4p̄1 − p̄0 + 3q1)z2 + (4p̄1 − 4p̄0 + 3q0)z + (4p̄0);

5

equating coefficients we immediately find p̄1 = 1 and p̄0 = 0; the remaining equations lead to q2 = 1
3 , q1 = 4

3
and q0 = − 4

3 . The same solution is obtained by solving the following Sylvester equation:
1 0 0 0 0
−1 1 3 0 0
−4 −1 0 3 0
4 −4 0 0 3
0 4 0 0 0

p̄1

p̄0

q2

q1

q0

 =

ᾱ3

ᾱ2 ᾱ3 β1

ᾱ1 ᾱ2 β0 β1

ᾱ0 ᾱ1 β0 β1

ᾱ0 β0

p̄1

p̄0

q2

q1

q0

 =

c4
c3
c2
c1
c0

 =

1
0
0
0
0

 .
Thus p̄(z) = p̄1z + p̄0 = z, and the dead-beat controller attaining integral action reads

C(z) =
q(z)

p̄(z)(z − 1)︸ ︷︷ ︸
p(z)

=
1
3z

2 + 4
3z −

4
3

z(z − 1)
.

0.4 Reference tracking for more complex reference signals

To write...

Goal: attain limt→+∞ e(t) = 0 for more complex references r(t).

E(z) = S(z)R(z).

Look at the denominator in the transform R(z)

signal transform convergence region

1(t) z
z−1 |z| > 1

1(t) · t z
(z−1)2 |z| > 1

1(t) · t2 z(z−1)
(z−1)3 |z| > 1

1(t) · cos(ωt) z(z−cosω)
z2−2z cosω+1 |z| > 1

1(t) · sin(ωt) z sinω
z2−2z cosω+1 |z| > 1

Denominator = k(z), deg k = nk. Force the factor k(z) in p(z) so that they cancel out and:

lim
t→+∞

e(t) = lim
z→1

(z − 1)S(z)
n(z)

k(z)

= lim
z→1

(z − 1)
a(z)

p(z)︷ ︸︸ ︷
k(z)p̄(z)

a(z)p(z) + b(z)q(z)

n(z)

k(z)

= lim
z→1

(z − 1)
a(z)p̄(z)

a(z)p(z) + b(z)q(z)
n(z)

= 0.

Let p(z) = k(z)p̄(z) and ā(z) = a(z)k(z); the Diophantine equation becomes

a(z)p(z) + b(z)q(z) = a(z)k(z)p̄(z) + b(z)q(z) =

ā(z)p̄(z) + b(z)q(z) = acl(z).
(4)

Degrees ’n stuff:

a(z) · k(z) · p̄(z) + b(z) · q(z) = acl(z)
degree n nk n− 1 ≤ n− 1 ≤ n− 1 + nk 2n− 1 + nk
unknowns n n+ nk
equations 2n+ nk

6

Tracking ramps and so on: the power of (z − 1)m in k(z) (or anyway in the open-loop t.f.) is called the
type of the loop. Same story as in Fondamenti di Automatica.

Exercise: W (z) = z−1/3
(z−1/2)(z+2) . Unstable.

Write code: Solve Diophantine equation to stabilize.
Solve Diophantine equation to track constant references.
Solve Diophantine equation to track sinusoids r(t) = sin(ωt+ φ), where ω ∈ [−π, π], e.g. ω = 1/10.
Note: sin(ωt + φ) = sin(ωt) cos(φ) + cos(ωt) sin(φ) = a sin(ωt) + b cos(ωt). Don’t mind about the phase, the
transforms of sin and cos have the same denominator, so the regulator will track any linear combination.
Simulate.

0.5 Forcing zero cancellations

Recall that the zeros of the plant, i.e. the roots of b(z), are zeros also of the closed-loop transfer function

Wcl(z) = b(z)q(z)
a(z)p(z)+b(z)q(z) . Sometimes it is desirable to design the controller in such a way that some, or all, of

such zeros are canceled. For example, let b(z) = bc(z)bu(z), where the roots of bc(z) are those that we want to
get rid of. The goal is attained if we impose

acl(z) = bc(z)a
′
cl(z),

because the closed loop becomes Wcl(z) = bc(z)bu(z)q(z)
bc(z)a′cl(z)

= bu(z)q(z)
a′cl(z)

. It is immediate to check that, in order to

ensure that the Diophantine equation

a(z)p(z) + bc(z)bu(z)q(z) = bc(z)a
′
cl(z) (5)

is solvable, this requirement imposes in turn that bc(z) divides p(z), i.e. that p(z) = bc(z)p
′(z) for some

polynomial p(z) = bc(z)p
′(z). With this requirement, (5) becomes

a(z)p′(z) + bu(z)q(z) = a′cl(z), (6)

which is a standard Diophantine equation, whose solution we can restrict and solve with the techniques of the

previous sections. The final controller, attaining the zero cancellation, is C(z) = q(z)
p(z) = q(z)

bc(z)p′(z) .

But there is a big caveat here: any effect of the zeros in bc(z) gets canceled from Wcl(z), S(z), and Sa(z), that
become respectively

Wcl(z) =
bu(z)q(z)

a′cl(z)
, S(z) =

a(z)p′(z)

a′cl(z)
, Sa(z) =

bu(z)p(z)

a′cl(z)
.

But all the zeros in bc(z) become poles of

Sm(z) =
a(z)q(z)

a(z)p(z) + b(z)q(z)
=
a(z)q(z)

acl(z)
=

a(z)q(z)

bc(z)a′cl(z)
.

As a consequence, you cannot cancel unstable zeros, or the closed-loop system will become internally unstable.
Indeed, the common practice is to cancel only stable and well-damped zeros (i.e. roots of b(z) close enough to
the origin).

0.6 A controller with two degrees of freedom

The controller with which we have been dealing so far has the structure u(t) = C(z)e(t) = q(z)
p(z)e(t), that is

p(z)u(t) = q(z)e(t) = q(z)(r(t)− y(t))

= q(z)r(t)− q(z)y(t).
(7)

As we have seen, it attains both asymptotic reference tracking and disturbance rejection, of the same class of
signals. This is called a controller with one degree of freedom.

7

A “more realistic” design, as Åström and Wittenmark put it, is to decouple the two problems: for example we
could want to attain reference tracking for some class of signals (e.g. constants) and reject load disturbances
of another class (e.g. sinusoids of a given frequency), while keeping under control the degrees of the involved
polynomials and maintaining the design simple enough. This can be attained with a two-degrees-of-freedom
controller:

p(z)u(t) = s(z)r(t)− q(z)y(t). (8)

Equation (8), which is of course a generalization of (7), is represented in the following diagram:

p(z)u(t) = s(z)r(t)− q(z)y(t) W (z) = b(z)
a(z)

r(t) u(t)

d(t)

y(t)

Since in operator notation (8) can be rewritten as u(t) = s(z)
p(z)r(t) −

q(z)
p(z)y(t), the following is an equivalent

diagram:

s(z)
p(z)

q(z)
p(z) W (z) = b(z)

a(z)

r(t)

−
u(t)

d(t)

y(t)

We obtain, as we had in the previous sections,

S(z) = Wd→y(z) =
1

1 + b(z)
a(z)

q(z)
p(z)

=
a(z)p(z)

a(z)p(z) + b(z)q(z)
,

therefore we will use a suitable Diophantine equation to stabilize the closed loop and attain disturbance rejection
(the roots of p(z) must cancel the poles of the transform of the disturbances to reject): this is the “first degree
of freedom”. On the other hand, we have

Wcl(z) = Wr→y(z) =

b(z)
a(z)

s(z)
p(z)

1 + b(z)
a(z)

q(z)
p(z)

=
b(z)s(z)

a(z)p(z) + b(z)q(z)
;

while the denominator is always the same, the numerator is different from before: we can play with s(z) in
order to impose, to some extent, the zero structure of the closed-loop transfer function; this is the “second
degree of freedom”. It should be clear that the bare minimum is to attain Wcl(1) = 1 (constant reference track-

ing): this becomes immediately available by choosing s(z) = the constant a(1)p(1)+b(1)q(1)
b(1) ; but more can be done.

An ideal goal would be to impose the closed-loop transfer function altogether, i.e. to attain

Wcl(z) =
b(z)s(z)

acl(z)
:=

bm(z)

am(z)

for some prescribed polynomials bm(z), am(z). In other words, to impose both the pole-structure and the
zero-structure of the closed-loop system. As was the case in Section 0.5, this is in general impossible, because
it would mean to cancel all the zeros of the plant (the roots of b(z)), and exactly as before this would cause
the closed loop to be internally unstable. Therefore the zero-structure can be changed only to some extent; in
particular all the unstable zeros must remain.

8

Here follows the design procedure (the remainder of this section is just to provide some insight and is not ex-
haustive at all; if you are interested in all the tricky details you can refer to Åström and Wittenmark, Adaptive
Control).

First, we factor b(z) = bc(z)bu(z), where the zeros bc(z) are going to be canceled and the (unstable or poorly
damped) zeros in bu(z) are going to remain. As we did in Section 0.5, we factor acl(z) = bc(z)a

′
cl(z) accordingly:

Wcl(z) =
b(z)s(z)

acl(z)
=
bc(z)bu(z)s(z)

bc(z)a′cl(z)
=
bu(z)s(z)

a′cl(z)
.

That the zeros in bu(z) are going to remain means that bu(z) must divide the desired numerator bm(z), i.e. that
bm(z) = bu(z)b′m(z) for some polynomial b′m(z). Now a′cl(z) must be the product of the desired denominator
am(z) and some other polynomial, say ao(z), of high enough degree such that the forthcoming Diophantine
equation is solvable:

Wcl(z) =
bu(z)s(z)

ao(z)am(z)
;

if now we choose s(z) := ao(z)b
′
m(z) we obtain, as desired,

Wcl(z) =
bu(z)

s(z)︷ ︸︸ ︷
ao(z)b

′
m(z)

ao(z)am(z)︸ ︷︷ ︸
a′cl(z)

=
bu(z)b′m(z)

am(z)
=
bm(z)

am(z)
.

It remains to setup the Diophantine equation. Check the correspondences:

a(z)p(z) + b(z)q(z) = acl(z),

a(z)p(z) + bc(z)bu(z)q(z) = bc(z)a
′
cl(z), (zero cancellation: p(z) = bc(z)p

′(z) for some p′(z))

a(z)p′(z) + bu(z)q(z) = a′cl(z) = ao(z)am(z),

which is equation (6) where bu(z) contains just the unstable/poorly damped zeros and a′cl(z) has been properly
factorized in order to pursuit model matching. Disturbance rejection can now be attained imposing that
p′(z) = p̄(z)k(z) for a suitable k(z) canceling the disturbances, and proceeding as in Sections 0.3, 0.4.

0.7 The final control unit

Here is how the prototypical control unit of a self-tuning regulator works.

In the first stage of the design of the self-tuning regulator, a parametric model class has been chosen by the
designer as a family of models that likely fits the plant and wishfully contains the “true” parameter θ̄. To
fix ideas, let the model class be ARX(2,2): “AutoRegressive process with eXhogenous input, 2 delays in the
autoregressive part and 2 delays in the input part”. This means the class of models with the following structure:

y(t) = a1y(t− 1) + a2y(t− 2)︸ ︷︷ ︸
autoregressive part

+ b1u(t− 1) + b2u(t− 2)︸ ︷︷ ︸
input part

[+ noise(t)].
(9)

The noise term is typical of the models used in system identification; it means an i.i.d. sequence of random
variables, adding information to the process {y(t)}. Feel free to ignore it for now.

The job of the tuning unit is to provide, robustly with respect to the possible presence of noise, an estimate
θ̂ = (â1, â2, b̂1, b̂2) of the “true” parameter: such estimate typically improves in time, so it depends on time, and

is actually a θ̂t. Let θ̂ = θ̂t be the current estimate: the control unit receives θ̂ from the tuning unit.

The control unit is designed to compute a control action depending on some past samples y(t−1), y(t−2), u(t−
1), u(t − 2), etc.; so it stores them in some way and behaves like a recursive algorithm. The model class for
which it can compute a control action is

y(t) = a1y(t− 1) + a2y(t− 2) + b1u(t− 1) + b2u(t− 2),

9

where θ = (a1, a2, b1, b2) is the unknown parameter: for every θ ∈ R4, the control unit is supposed to provide a
recursive control algorithm.

At each time step, or every T time steps (this is a designer’s choice), it substitutes the unknown parameters
with the current estimate received by the tuning unit:

y(t) = â1y(t− 1) + â2y(t− 2) + b̂1u(t− 1) + b̂2u(t− 2). (10)

(Recall: the idea of employing the estimate θ̂ = θ̂t as if it was the “true” parameter θ̄ is called the certainty
equivalence principle.) Now, with a bit of manipulations, from (10) we obtain

y(t) = â1z
−1y(t) + â2z

−2y(t) + b̂1z
−1u(t) + b̂2z

−2u(t);

(1− â1z
−1 − â2z

−2)y(t) = (b̂1z
−1 + b̂2z

−2)u(t);

y(t) =
b̂1z
−1 + b̂2z

−2

1− â1z−1 − â2z−2
u(t) =

b̂1z + b̂2
z2 − â1z − â2

u(t)

:=
β1z + β0

z2 + α1z + α0
u(t) =

b(z)

a(z)
u(t) = Ŵ (z)u(t) (note that a(z) is monic).

Ŵ (z) is the current model of the plant used by the control unit. It comes as a strictly proper rational transfer
function having deg a = n = 2. We assume that a and b are, at every update of the parameter estimate, always
coprime: otherwise the update should be rejected, but if it happens by construction, or too often, it probably
means that the model class was over-parameterized (deg a and deg b are too high), and the whole design should
be reconsidered.

Each time the model is updated according to θ̂ = θ̂t, the control unit resets its control scheme (say with the
method of Section 0.3, enforcing integral action, solving a Diophantine equation etc.):

C(z) =
q(z)

p(z)
=
q2z

2 + q1z + q0

(z − 1)(z − p̄0)
=
q2z

2 + q1z + q0

z2 + p1z + p0
(choose acl(z) s.t. p(z) is also monic)

=
q2 + q1z

−1 + q0z
−2

1 + p1z−1 + p0z−2
;

(1 + p1z
−1 + p0z

−2)u(t) = (q2 + q1z
−1 + q0z

−2)e(t)

u(t) = −p1z
−1u(t)− p0z

−2u(t) + q2e(t) + q1z
−1e(t) + q0z

−2e(t)

= −p1u(t− 1)− p0u(t− 2) + q2e(t) + q1e(t− 1) + q0e(t− 2).

To compute the control action, the control unit must have stored two past samples e(t− 1) = r(t− 1)− y(t− 1)

and e(t− 2) = r(t− 2)− y(t− 2). Contextually with the update of θ̂ = θ̂t, also the samples r(t) and y(t) come,
hence e(t) = r(t)− y(t) becomes available and the control unit can finally output u(t).

The timing and the update sequence of the whole closed loop are resumed in the following table:

10

at time the plant the tuning unit the control unit

t has memory (as a state) of:

u(t− 1), u(t− 2), . . .

y(t− 1), y(t− 2), . . .

has evolved:

the current output is y(t)

has memory (state) of:

u(t− 1), u(t− 2), . . .

y(t− 1), y(t− 2), . . .

θ̂t−1, [. . .]

measures y(t) from plant;

updates estimate: θ̂t

has memory (state) of:

u(t− 1), u(t− 2), . . .

e(t− 1), e(t− 2), . . .

θ̂t−1, corresponding control law C(z)

receives θ̂t from the tuning unit,

updates the control law C(z),

receives r(t) from the operator,

measures y(t) from the plant,

computes e(t) and actuates u(t)

t receives u(t) from control

unit; can evolve:

next output will be y(t+ 1)

reads u(t) from control unit

t+ 1 has memory of:

u(t), u(t− 1), . . .

y(t), y(t− 1), . . .

has evolved:

the current output is y(t+1)

has memory of:

u(t), u(t− 1), . . .

y(t), y(t− 1), . . ., θ̂t, [. . .]

measures y(t+ 1);

updates estimate: θ̂t+1

has memory of:

u(t), u(t− 1), . . ., e(t), e(t− 1), . . .

θ̂t, corresponding control law C(z)

receives θ̂t+1 and updates control law,

receives r(t+1), y(t+1); actuates u(t+1)

t+ 1 receives u(t+1), can evolve:

next output will be y(t+ 2)

reads u(t+ 1)

t+ 2 and so on... and so on... and so on...

//

This concludes our discussion about linear control design.
We can now pass to the subject of parameter estimation, that is to the tuning unit.

11

