
Tank example

F. A. Ramponi
Revision 0.2, 2019-10-17
Example courtesy of Simone Garatti (PoliMI) and Marco C. Campi (UniBS)

0.1 Model of a tank

Suppose that a tank with constant section is continuously filled with a flow of water u(t), adjustable
by means of a valve. Let x(t) be the level of water in the tank. At the bottom of the tank there is
a pipe that lets water flow out of the system; for the sake of simplicity we ignore energy dissipation,
nonlinear effects etc., and let the flow be proportional to the water level.

Here’s the tank model:
ẋ(t) = −ᾱx(t) + u(t) (1)

where ᾱ > 0 is the pipe’s output flow rate. The differential equation (1) comes naturally as a
continuous-time dynamical system in state space form; since −ᾱ < 0, such system is obviously asymp-
totically stable. Here is the solution of (1), where x(t0) = x0 is the initial condition:

x(t) = e−ᾱ(t−t0)x0 +

∫ t

t0

e−ᾱ(t−τ)u(τ) dτ ; (2)

indeed x(t) in (2) satisfies x(t0) = x0, and

ẋ(t) =
d

dt
e−ᾱ(t−t0)x0 +

d

dt

∫ t

t0

e−ᾱ(t−τ)u(τ) dτ

= −ᾱ
(
e−ᾱ(t−t0)x0

)
+

∫ t

t0

d

dt
e−ᾱ(t−τ)u(τ) dτ + e−ᾱ(t−t)u(t)

= −ᾱ
(
e−ᾱ(t−t0)x0 +

∫ t

t0

e−ᾱ(t−τ)u(τ) dτ

)
+ u(t)

= −ᾱx(t) + u(t).

To obtain a model suitable for adaptive control in discrete-time, we proceed to discretize (1) with
sampling time ∆ = 1. Suppose that u(t) is kept constant over intervals [t, t+ 1); then

x(t+ 1) = e−ᾱ(t+1−t)x(t) +

∫ t+1

t
e−ᾱ(t+1−τ)u(τ) dτ

= e−ᾱx(t) +

(∫ t+1

t
e−ᾱ(t+1−τ)dτ

)
u(t) (let s = t+ 1− τ, ds = −dτ)

= e−ᾱx(t) +

(∫ 0

1
e−ᾱs(−dτ)

)
u(t)

= e−ᾱx(t) +

[
−1

ᾱ
e−ᾱs

]1

0

u(t)

= e−ᾱx(t) +
(1− e−ᾱ)

ᾱ
u(t).

So here’s the discretized model/system:

x(t+ 1) = e−ᾱx(t) +
(1− e−ᾱ)

ᾱ
u(t).

To simplify ideas and computations, we suppose from now on that ᾱ = 1 (but the take-home message
would remain intact with a different ᾱ):

x(t+ 1) =
1

e
x(t) +

e− 1

e
u(t). (3)

1

0.2 Tracking with known parameter

Suppose that we want x(t) to follow a reference signal r(t) (typically a constant water level, r(t) ≡ r̄).
We assume that at least a future sample of the reference is always available (at time t, r(t + 1) is
known). One may think that “knowing future samples” is the trademark of non-causality, and in con-
trol theory with non-causality we feel often uncomfortable; but please note that the reference signal
r(t) here is a goal, and it is perfectly legitimate to assume the knowledge of [some samples of] a future
goal.

This said, substituting in (3) the control law

u(t) =
e

e− 1

(
−1

e
x(t) + r(t+ 1)

)
, (4)

in closed loop we obtain x(t+ 1) = r(t+ 1) for all t ≥ 0, that is, perfect tracking.

0.3 Unknown parameter

The control law (4) in Section 0.2 is linear and very simple, yet it attains a suspiciously good (from
an engineer’s standpoint) performance. This happens for at least two reasons: first, because the
model was oversimplified, for didactic purposes, neglecting all sorts of details that you will indeed
face in your engineering career: assuming linearity for free, ignoring delays in the loop, assuming that
the sampling time ∆ = 1 was good enough, assuming that x(t) is measurable without errors, and so on.

The second reason, which happens to be the starting point of this course, is that we have assumed
perfect knowledge of the system parameters.

Indeed, the system at hand has the form

x(t+ 1) = āx(t) + b̄u(t), (5)

where ā = e−ᾱ = 1
e and b̄ =

(1−e−ᾱ)
ᾱ = e−1

e . The perfect knowledge of ā and b̄ allows to attain, at
least in principle, a perfect performance; this is OK from the mathematical standpoint, but we are en-
gineers: and when on earth did we happen to know exactly the “true” parameters of a physical system?

The control of a DC engine requires the knowledge of the moment of inertia of the rotor: were you
ever able to know with 100% certainty, or compute exactly, or measure without errors, the moment
of inertia of an actual complex object along a given axis? I bet that you did not; the same holds
for the tank parameters and for the parameters of any mathematical model (as opposed to the “true”
parameters of a physical system), and that’s the main point of this course.

In engineering and applied sciences perfect knowledge is never the case. Even if we have a good guess
of a nominal parameter θ = (a, b), we must accept that such nominal parameter can be, and in general
is, different from the actual, “true” parameter θ̄. And therefore, we are forced to deal not with a
single parameter θ̄, but with an entire set Θ = {θ} = {(a, b)} of parameters (imposing at least the
obvious hypothesis that θ̄ ∈ Θ). In other words, we must live not with a single model, but with an
entire model class {x(t+ 1) = ax(t) + bu(t) : (a, b) ∈ Θ}. The goal is now to design a single control
law that will work for all θ ∈ Θ, so that it will work, in particular, also for the “true” θ̄. This is called
robustness with respect to uncertainty in the parameter.

Note that, besides the uncertainty around the one and only “true” parameter θ̄, there could be another
reason why attaining robustness is a good practice: it could happen (read: it normally happens) that
the one and only “true” parameter does not actually exist. The system may be time-varying, so that
the parameter θ̄ may actually be a θ̄t: recall the Jumbo Jet travelling from Frankfurt to New York

2

(fuel consumption → weight change → gain scheduling). That systems will change their behavior
in time is a normal fact of life, even when a control designer believes that they will not: think at
the consumption of mechanical devices, at the deterioration of electrical components, at unforeseen
changes in operating conditions of any kind. The hope (and the confidence) is that changes will be
slow: if θ̄t is not constant, but changes slowly in comparison to the dynamics that it imposes (i.e. the
dynamics of the time-varying system x(t+ 1) = ātx(t) + b̄tu(t)), a robust controller will typically do
a good job in following θ̄t and counteracting the effects of its drift.

Anyway: for sure you have already encountered robustness in your basic control courses. That was
the name of the game when the instructor introduced stability margins: they attained some sort of
robustness with respect to uncertainty in [the parameters of] the transfer function, delays in the closed
loop, etc., and they were quantities readily computable from the nominal transfer function.

0.4 A self-tuning regulator

Here we will follow a different strategy to attain robustness. We will split the controller in two com-
ponents: one (the tuning unit) computing a better and better estimate θ̂t of θ̄ based on the input and
output samples of the plant, and the other (control unit) computing the actual control action, with
the same linear design scheme as in (4), but taking “the numbers” from the estimate θ̂t instead of the
unknown θ̄.

The idea of computing the control action with a standard linear design scheme but employing θ̂t as
if it was the “true” θ̄ is called certainty equivalence principle; the complex of the tuning unit and the
control unit, estimating and acting together, is called a self-tuning regulator; and since in this game
the ideal goal (and often the reasonable hope) is that θ̂t converges to θ̄ and the control unit converges
to the linear controller that would be designed with the exact knowledge of θ̄, it is customary to
say that the tuning unit gradually adapts the control unit to the initially unknown system, so that a
self-tuning regulator is an adaptive controller.

Thus, now we work under the hypothesis that the “true” parameter of (3) is not completely known.
To simplify ideas and computations, assume that uncertainty affects only the dynamic coefficient ā of
equation (5) but the “true” b̄ = e−1

e is actually known to the designer. We let the unknown parameter
be θ = a, and the model class becomes

x(t+ 1) = θ · x(t) +
e− 1

e
u(t). (6)

The new ingredient that we need is a rule to estimate θ: the most classical one adopted by self-tuning
regulators is Recursive Least Squares (RLS). Take for instance θ̂0 = 1

e (nominal parameter, or initial
guess), and for t > 0 update the estimation with the recursion:

θ̂t+1 = θ̂t +
x(t)∑t

τ=0 x(τ)2

(
x(t+ 1)− θ̂t · x(t)− e− 1

e
u(t)

)
. (7)

For now, you can take this recursion as a “magic trick”, whose structure and behavior will become
clear in the second part of the course. Note, however, that if x(t) = 0 for t = 0, 1, 2, . . . (“insufficient
excitation”) (7) asks for repeated divisions by zero and does not actually make any sense. The obvious
remedy is not to update θ̂t in this case; but to avoid unnecessary sophistication we replace (7) with
the following recursion, called regularized RLS:

θ̂t+1 = θ̂t +
x(t)

1 +
∑t

τ=0 x(τ)2

(
x(t+ 1)− θ̂t · x(t)− e− 1

e
u(t)

)
. (8)

Equation (8) is the dynamic equation of the tuning unit. It goes without saying that θ̂t is a state
variable of such dynamic equation, and that x(t+1) is one of its inputs; but it is easy to recognize that

3

any meaningful software implementation of (8) should have also another state variable, namely the
sum St =

∑t
τ=0 x(τ)2 in one form or another. The real RLS algorithm has Pt = (1 +

∑t
τ=0 x(τ)2)−1

as the other state variable: how to update it in a smart way is a subject for future discussion.

Now we can plug the estimate θ̂t in place of the dynamic coefficient 1
e that was known in (4), and

obtain the control action:
u(t) =

e

e− 1

(
−θ̂t · x(t) + r(t+ 1)

)
(9)

Equations (8) and (9) together form a self-tuning regulator.

Exercise: simulate the self-tuning regulator with these parameters for the plant: θ = 1.2
e , θ = 0.8

e .
Note: here is how the update step of the simulation should proceed1:

• at time t,

– the plant is in the state x(t),

– the tuning unit is in the state θ̂t, St =
∑t

τ=0 x(τ)2, and keeps a copy of x(t) as a further
state,

– the control unit has read θ̂t from the tuning unit, x(t) from the plant and r(t + 1) from
outside, and has computed the control action u(t);

• now comes time t+ 1:

– the plant reads u(t) from the control unit and updates its state to x(t+ 1),

– the tuning unit reads x(t + 1) from the plant and updates θ̂t+1, St+1, and the copy of
x(t+ 1),

– the control unit reads θ̂t+1 from the tuning unit, x(t+ 1) from the plant and r(t+ 2) from
outside, and computes the control action u(t+ 1).

At first sight, one may think that the action (9) computed by the control unit is a time-varying
law, since the parameter θ̂t likely changes in time. This is not the case: indeed (9) is a non-linear,
time-invariant map of the form

u = f(θ, x, r) =
e

e− 1
(−θ · x+ r) ,

applied to the three inputs (θ̂t, x(t), r(t+ 1)), coming respectively from the tuning unit, the plant, and
the reference signal. Now both the equations (8) = tuning and (9) = control are thought of as the
controller: then the first input to (9) is a state of the tuning unit, and hence of the controller itself.
But then the term θ̂t · x(t) is a product of a state and a ‘regular’ input, so that the whole controller
(8) + (9), that is the self-tuning regulator, is time-invariant, but nonlinear by construction.

0.5 Convergence analysis

Here we show that the self-tuning regulator (8) + (9) attains asymptotic reference tracking, that is
limt→∞ x(t) − r(t) = 0. We must assume that the reference signal r(t) is bounded, i.e. there exists a
positive constant R <∞ such that |r(t)| ≤ R for all t.

Substitute the dynamics of the tank (6) into (8),

θ̂t+1 = θ̂t +
x(t)

1 +
∑t

τ=0 x(τ)2

(
θ · x(t)− θ̂tx(t)

)
,

1Examine the update step carefully, think about how to implement it in working code, and you’ll soon realize one of
the reasons why control engineers want at least one delay in any real-world closed loop. How would you implement the
self-tuning regulator and the simulation if the dynamics of the system was x(t+ 1) = ax(t) + bu(t+ 1)?

4

and define the estimation error θ̃t := θ̂t − θ; it follows

θ̃t+1 = θ̂t+1 − θ

= θ̂t − θ +
x(t)

1 +
∑t

τ=0 x(τ)2

(
θ · x(t)− θ̂tx(t)

)
= θ̃t −

x(t)

1 +
∑t

τ=0 x(τ)2

(
θ̃t · x(t)

)
.

Now multiply both sides by 1 +
∑t

τ=0 x(τ)2:(
1 +

t∑
τ=0

x(τ)2

)
θ̃t+1 =

(
1 +

t∑
τ=0

x(τ)2

)
θ̃t − θ̃t · x(t)2 =

(
1 +

t−1∑
τ=0

x(τ)2

)
θ̃t.

It follows that, for all t > 0, (
1 +

t−1∑
τ=0

x(τ)2

)
θ̃t = C = constant. (10)

The term within parentheses in (10) is a positive, non-decreasing function of t, and as t→∞ either it
tends to +∞, or it converges to some constant M ≥ 1. In both cases |θ̃t| is a non-increasing sequence
bounded from below, and hence it has a limit. We consider the two cases separately.

1. Suppose that
∑t

τ=0 x(τ)2 → ∞ (x(t) is “persistently exciting” the tuning unit). For how the
self-tuning regulator was conceived this is the most interesting case, because it implies that
θ̃t → 0, i.e. θ̂t converges to the “true” parameter of the system; that is, assuming that the
system is time invariant and a “true” parameter exists. This is called consistency of the RLS
estimator.

Substituting the control action (9) into the dynamics of the system (6) we obtain the dynamics
of the closed-loop system:

x(t+ 1) = θ · x(t) +
e− 1

e
u(t)

= θ · x(t)− θ̂t · x(t) + r(t+ 1)

= −θ̃t · x(t) + r(t+ 1).

The consistency θ̃t → 0 implies that this system is externally (BIBO) stable, and hence, since
{r(t)} is bounded, {r(t)} is also bounded. But then

lim
t→∞

x(t+ 1)− r(t+ 1) = lim
t→∞
−θ̃t · x(t) = 0,

and this proves that asymptotic reference tracking is achieved.

2. If
∑t

τ=0 x(τ)2 does not diverge, i.e. if 1 +
∑+∞

τ=0 x(τ)2 = M < +∞, then (10) implies that θ̃t also
has a limit θ̃∞ = C

M . Yet the convergence of
∑+∞

τ=0 x(τ)2 implies that x(t)→ 0, and hence

lim
t→∞

x(t+ 1)− r(t+ 1) = −θ̃∞ · lim
t→∞

x(t) = 0.

In this case the RLS method is not consistent, i.e. it does not reach asymptotically a correct
estimate of the “true” parameter; but reference tracking is achieved anyway.

5

0.6 What’s the logic behind this so-called adaptive control?

Let L denote the class of linear controllers. Here is a fact that you know from you basic control courses
and that has been reminded in Section 0.2:

• any linear system s̄ can be stabilized and attain reference tracking by means of a linear controller
c̄ ∈ L.

Here is a fact of life that has been reminded in Section 0.3:

• we actually don’t know the linear system, and hence we have to live with an entire class S =
{s(θ) : θ ∈ Θ} of linear systems.

And here is the sad truth:

• no single linear controller c̄linear ∈ L will do the trick for all the systems s(θ) ∈ S.

But there is hope:

• it is still true that for all s(θ) ∈ S there exists a c(θ) ∈ L that will do the trick.

Note that the last two statements, “∃c ∈ L s.t. ∀s ∈ S tracking is achieved” and “∀s ∈ S ∃c ∈
L s.t. tracking is achieved” are very different, the former being way more demanding (and indeed
false), in the same way as the following ones are: ∃n ∈ N s.t. ∀m ∈ N n > m (there exists a maximum
integer); ∀m ∈ N ∃n ∈ N s.t. n > m (we can always find a larger integer).

The point is that we don’t know the “true” θ. Thus, we have to enlarge the class of controllers, and
enter the realm of nonlinearity. Let N be the class of “all nonlinear controllers”.

• Yes, there is a controller c̄nonlinear ∈ N that will do the trick for all the systems s(θ) ∈ S.
Actually, there are infinitely many.

But if we had to search in N with no guideline, the enterprise would be desperate from the very start,
for N is way too complex to manage. So here is a guideline, a particular method to design a nonlinear
controller, called adaptive control:

• Build a controller c̄adaptive ∈ N that, examining the behavior of any s(θ) ∈ S, “goes searching”
for the correct c(θ) ∈ L. When applied to a particular s(θ̄) in closed loop, in the long run c̄a

will behave like c(θ̄).

6

