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0.1 Discrete-time signals and systems

0.1.1 Signals

A discrete-time signal is a function u : Z → C (complex-valued) or u : Z → R (real-valued),
depending on the context. Sometimes we deal with vector-valued signals, e.g. u : Z→ Cn, but in
what follows the substance doesn’t change, for a vector-valued signal can always be interpreted
also as a n-tuple of scalar signals (viz. a “column of scalar signals”). For the sake of clarity, we
may denote a signal u more explicitly as u(·); but the reader is invited to think at the function
u as a sequence of numbers infinite in both directions, . . . , u(−2), u(−1), u(0), u(1), u(2), . . .;
hence, with sloppy notation, we may denote it also {u(t)}, it being understood that the variable
t takes values in Z.

The set S(Z) (or S for short) of all discrete-time signals, i.e. sequences of numbers, equipped
with the component-wise sum and the component-wise multiplication by a scalar α

(u1 + u2)(t) = u1(t) + u2(t)

(αu2)(t) = αu(t),

is of course a vector space.

The signal {u(t)} is called bounded if there exists a constant Ku ∈ R such that

|u(t)| ≤ Ku for all t ∈ Z. (1)

and this fact is denoted u ∈ `∞(Z), or u ∈ `∞ for short. Indeed `∞ is defined as the set of all the
bounded sequences in Z; endowed with the component-wise sum and multiplication by a scalar,
it becomes a vector space, or more precisely a subspace of S: indeed it is straightforward to
show that if two sequences u1 and u2 are bounded then the sequence αu1 +βu2 is also bounded
for any two scalars α, β. More than that, `∞(Z) is a normed vector space, where the norm of a
sequence u is ‖u‖∞ = the minimum number Ku ∈ R such that (1) is true1.

The signal {u(t)} is called summable if

+∞∑
t=−∞

|u(t)| = lim
t→+∞

T∑
t=−T

|u(t)| = M < +∞; (2)

this fact is denoted u ∈ `1(Z), or u ∈ `1 for short. Indeed `1 is defined as the set of all the
summable sequences in Z; endowed with the component-wise sum and multiplication by a scalar
it becomes a vector space; and it becomes a normed vector space if we define the norm of a
sequence u to be the number ‖u‖1 := M appearing in (2).2

Any summable signal is also bounded. In other terms,

`1(Z) ⊂ `∞(Z) ⊂ S;

1Even more: it is a complete normed vector space, or a so-called Banach space.
2The vector space `1(Z) is also a Banach space.
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and in fact `1(Z) is a proper subspace of `∞(Z), which in turn is a proper subspace of S(Z).

The summable (and of course bounded) signal

δ(t) =

{
1, if t = 0,

0, otherwise,

is called the impulse, or the “discrete-time delta”.

The convolution of two signals {u(t)}, {v(t)} is the signal {u ∗ v(t)} defined as follows:

u ∗ v(t) :=

+∞∑
τ=−∞

u(t− τ)v(τ) = lim
T→∞

T∑
τ=−T

u(t− τ)v(τ); (3)

the above expression is well-defined only if the series converges. The convolution ‘∗’ is an
operation between sequences: it maps a pair of sequences into another sequence; as an operation,
it has both the associative property ((u ∗ v) ∗ w = u ∗ (v ∗ w)) and the commutative property
(u ∗ v = v ∗ u). Moreover, it possesses an identity element, which is precisely the impulse:

δ ∗ u(t) = u ∗ δ(t) =
+∞∑

τ=−∞
u(t− τ)δ(τ) =

∑
τ=0

u(t− τ) = u(t) for all t,

so that δ ∗ u = u ∗ δ = u.

0.1.2 Systems

In full generality, a discrete-time system is a map ϕ from a vector space U of discrete-time
signals, called the input set, to another vector space Y of discrete-time signals, called the output
set; to fix ideas, let U = Y = S and ϕ : S → S. To any sequence {u(t)} ∈ S, ϕ associates
another sequence {y(t)} ∈ S:

ϕ : {· · · , u(−1), u(0), u(1), · · · } 7→ {· · · , y(−1), y(0), y(1), · · · }

The definition of some systems impose that the output sample y(t) is a function of the sole input
sample u(t), and possibly of the time t, for all t:

y(t) = f(t, u(t)).

These systems are called instantaneous transformations. Despite the fact that they are useful
models for a lot of phenomena considered in control engineering and telecommunications (e.g.
quantizers, saturations, “dead zones”, etc.), they are not much interesting from our point of
view.

0.1.3 Linearity and time invariance

In the cases that we are going to consider, the output sample y(t) is instead a function of the
whole input signal {u(t)}, or of part of it, and possibly of the time t; for instance, with loose
notation,

y(t) = f(t, {· · · , u(t− 1), u(t), u(t+ 1), · · · }) (“time-varying, non-causal system”),

y(t) = f({· · · , u(t− 1), u(t)}) (“time-invariant causal system”).
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These are called dynamical systems (from the Greek word dynamis, force), because they are
suitable models of physical systems subject to forces, accelerations and so on.

Among these, linear dynamical systems are of paramount importance in practically every branch
of science and engineering. Recall that linearity means that the superposition principle holds: if

ϕ : {u1(t)} 7→ {y1(t)} and ϕ : {u2(t)} 7→ {y2(t)},

then for any constants a and b,

ϕ : {au1(t) + bu2(t)} 7→ {ay1(t) + by2(t)}

(“to the sum of the causes corresponds the sum of the effects”). The system is called time-
invariant if to the translation in time of an input corresponds the translation in time of the
output, with the same time lag τ ∈ Z: that is, if

ϕ : {u(t)} 7→ {y(t)}

then for any τ ∈ Z

ϕ : {u(t+ τ)} 7→ {y(t+ τ)}

A time-invariant system has the following property: the output {y(t)} corresponding to a cer-
tain input {u(t)} is the convolution between {u(t)} and the output {w(t)} = ϕ [{δ(t)}] that
corresponds to the impulse {δ(t)}. Indeed, with loose notation,

y(t) = ϕ [{u(t)}] = ϕ [{δ ∗ u(t)}] = ϕ

[{
+∞∑

τ=−∞
δ(t− τ)u(τ)

}]

=

+∞∑
τ=−∞

ϕ [{δ(t− τ)}]u(τ) =

+∞∑
τ=−∞

w(t− τ)u(τ) = w ∗ u(t),

(4)

where the fourth equality is an application of linearity that deliberately ignores convergence
details (the sum is infinite!), and the fifth one is due to time-invariance. The sequence {w(t)} is
called the impulse response of the system. In what follows we will always refer to discrete-time
systems that are both linear and time-invariant, and we will call them LTI systems for short.

0.1.4 Stability

An LTI system is called externally stable, or BIBO-stable, if any bounded input signal is mapped
to an output signal which is also bounded3. More precisely, ϕ is BIBO-stable if ϕ[u] ∈ `∞ for
all u ∈ `∞. It is easy to show that if the impulse response is summable (w ∈ `1), then the
system is BIBO-stable4. Indeed, suppose that {w(t)} is such that

∑+∞
t=−∞ |w(t)| = M < ∞,

that |u(t)| ≤ Ku for all t, and that {y(t)} = ϕ[{u(t)}]; then

|y(t)| =

∣∣∣∣∣
+∞∑

τ=−∞
u(τ)w(t− τ)

∣∣∣∣∣ ≤
+∞∑

τ=−∞
|u(τ)| |w(t− τ)|

≤ Ku

+∞∑
τ=−∞

|w(t− τ)| = KuM := Ky

for all t, so that {y(t)} is a bounded signal as well.

3BIBO stands for Bounded Input ⇒ Bounded Output.
4The converse is also true, but details are omitted here.
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0.1.5 Causality

An LTI system is called causal if whenever two input signals satisfy

u1(τ) = u2(τ), τ = · · · , t− 2, t− 1, t;

the corresponding output signals satisfy

y1(τ) = y2(τ), τ = · · · , t− 2, t− 1, t.

This means that the output y(t) at a given time t depends on the past samples of the input
signal {u(τ)}, τ = · · · , t− 2, t− 1, t, but not on its future samples {u(τ)}, τ = t+ 1, t+ 2, · · · .

This definition implies, in particular, that the output corresponding to an input signal {u(t)}
such that u(τ) = 0 tor all τ < t0 also satisfies y(τ) = 0 for all τ < t0. Indeed if u(τ) = 0 for
τ < t0 then also u(τ) = −u(τ) for τ < t0; then, by causality and linearity, y(τ) = −y(τ) for
τ < t0, i.e. y(τ) = 0 for τ < t0.

Thus, if the input “starts” at t0, so does the output. In view of time-invariance, it is common
practice to let t0 = 0, and to call causal also those signals that “start at 0”. Thus, a causal LTI
system has a causal impulse response {w(t)}, because the impulse is causal in the first place
(δ(t) = 0 for all t < 0). The response of a causal system to an arbitrary input {u(t)} is

y(t) = w ∗ u(t) =
+∞∑

τ=−∞
w(t− τ)u(τ) =

t∑
τ=−∞

w(t− τ)u(τ), (5)

because w(t− τ) = 0 for τ > t. Here y(t) is still well defined if and only if the series converges.
But if, moreover, the input signal {u(t)} is also causal, which is typically the case for signals
and systems considered in deterministic control theory, then

y(t) =
t∑

τ=−∞
w(t− τ)u(τ) =

t∑
τ=0

w(t− τ)u(τ), (6)

because u(τ) = 0 for τ < 0. Differently from (3), (4), and (5), the convolution (6) is always
well-defined for all t, because the sum is finite. It goes without saying that y(t) = 0 for all t < 0,
so that the output signal is also causal.

0.2 Transforms and transfer functions

0.2.1 Fourier transforms

The Fourier transform of a signal {u(t)}+∞−∞ is the power series:

Û(ω) = F [{u(t)}] (ω) :=

+∞∑
t=−∞

u(t)e−jωt

= lim
T→∞

T∑
t=−T

u(t)e−jωt,

(7)

where ω ∈ [−π, π]. Such series may very well not converge, and the Fourier transform may not
exist; a sufficient condition for the existence of Û(ω) for all ω is that {u(t)} is summable: if∑+∞

t=−∞ |u(t)| <∞, then

+∞∑
t=−∞

|u(t)e−jωt| =
+∞∑
t=−∞

|u(t)| |e−jωt| =
+∞∑
t=−∞

|u(t)|,
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and (7) converges at all ω, since it converges also absolutely.

A Fourier transform, even that of a real signal, is in general a complex function of ω. It can

therefore be expressed as Û(ω) = |Û(ω)| ej∠Û(ω). However, if {u(t)} is real its transform enjoys
the following property,

Û(−ω) =
+∞∑
t=−∞

u(t)ejωt =
+∞∑
t=−∞

u(t) e−jωt

=

+∞∑
t=−∞

u(t)e−jωt = Û(ω),

called Hermitian symmetry. It follows at once that

|Û(−ω)| = |Û(ω)|;
∠Û(−ω) = −∠Û(ω).

(8)

In words, the absolute value of the Fourier transform of a real signal is an even function, and its
phase is an odd one. Also, it is immediate to show that its real part is even, and its imaginary
part is odd.

0.2.2 Z-transforms

The so-called Z-transform of a signal {u(t)} is the power series:

U(z) = Z [{u(t)}] (z) :=
+∞∑
t=−∞

u(t)z−t, (9)

where z ∈ C. As happens for the Fourier transform, the Z-transform may not converge for any
z ∈ C (take for example the sequence u(t) = |t|!); if, however, {u(t)} is summable, then (9)
converges at least on the unit circle {z ∈ C s.t. |z| = 1} = {ejω | ω ∈ [−π, π]}, and there it
coincides with the Fourier transform, i.e. Û(ω) = U

(
ejω
)
.

0.2.3 Unilateral Z-transforms

The Z-transform of a causal signal {u(t)} reads

U(z) = Z [{u(t)}] (z) =
+∞∑
t=0

u(t)z−t. (10)

In deterministic control theory systems are usually assumed to be causal (because is causal
in the first place any realistic physical system: the effects always “start after” the causes, so
the output y(t) of a physical system at time t cannot depend on future samples of the input
u(t + 1), u(t + 2), u(t + 3), . . .). So, impulse responses are causal. It is also common practice
to start the analysis of the behavior of systems always at a finite time t0, and in view of time-
invariance it is customary to set t0 = 0. Furthermore, the values of inputs and outputs before
t0 = 0 are often irrelevant to the analysis.

To make the long story short, in control theory it is customary to assume that all the signals
that come into play are causal (inputs, outputs, impulse responses, state trajectories, and so
on), and to assume that (10), always starting from t = 0, is “the” Z-transform. At least, it
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is the most used version of the Z-transform in this branch of engineering, in the same way as∫ +∞
0 f(t)e−stdt, starting from 0, is the common version of the Laplace transform. We will call

it unilateral.

The Z-transform of the impulse response of an LTI causal system is called the transfer function
of that system. Its Fourier transform is also called sometimes the transfer function or, depending
on the context, the frequency response of the system.

0.3 Some properties of the unilateral Z-transform

0.3.1 Convergence region

If the series (10) converges for a certain z̄ ∈ C, then it converges absolutely for all z ∈ C such
that |z| > |z̄|. Indeed, if

∑+∞
t=0 u(t)z̄−t converges, then the sequence {u(t)z̄−t} must be bounded,

that is |u(t)z̄−t| ≤ K for all t. But then, for all |z| > |z̄|,

+∞∑
t=0

|u(t)z−t| =
+∞∑
t=0

|u(t)z̄−t|
∣∣∣∣z−tz̄−t

∣∣∣∣ ≤ K +∞∑
t=0

∣∣∣ z̄
z

∣∣∣t =
K

1− |z̄/z|
<∞.

Hence, either the series does not converge for any z ∈ C (example: u(t) = t!), or it converges
at least on an open region outside a disc, i.e. on a set of the form {z ∈ C s.t. |z| > R}.
The minimum R for which this happens is called convergence radius. If, in particular, {u(t)} is
summable, then R < 1, the convergence region includes the unit circle and the Fourier transform
can be recovered as Û(ω) = U

(
ejω
)
.

0.3.2 Linearity

The operator Z that maps sequences to transforms is linear: if {u1(t)} and {u2(t)} are signals,
and a1, a2 are real constants, then

Z [{a1u1(t) + a2u2(t)}] (z) =
+∞∑
t=−∞

(a1u1(t) + a2u2(t))z
−t

= a1

+∞∑
t=−∞

u1(t)z
−t + a2

+∞∑
t=−∞

u2(t)z
−t

= a1U1(z) + a2U2(z),

provided that both U1(z) and U2(z) exist for some z ∈ C; the transform of the linear combination
exists at all such z. More generally,

Z

[{
T∑
τ=0

aτuτ (t)

}]
(z) =

T∑
τ=0

aτUτ (z)

for all z ∈ C such that Uτ (z) exists for τ = 0, · · · , T , that is at least in the intersection of the
convergence regions of U1(z), . . . , UT (z).

0.3.3 Transform of a convolution

The transform of a convolution is the product of the respective transforms. Consider for example
the input-output relation of a causal LTI system with impulse response {w(t)}. To a causal
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input signal {u(t)} corresponds an output y(t) = w ∗ u(t) which is also causal. It holds:

y(t) =
t∑

τ=0

w(t− τ)u(τ)

Y (z) =
+∞∑
t=0

(
t∑

τ=0

w(t− τ)u(τ)

)
z−t =

+∞∑
t=0

(
+∞∑
τ=0

w(t− τ)u(τ)

)
z−t

=

+∞∑
τ=0

+∞∑
t=0

w(t− τ)u(τ)z−(t−τ+τ) =

+∞∑
τ=0

u(τ)z−τ
+∞∑
t=0

w(t− τ)z−(t−τ);

since {w(t)} is causal all the terms in the inner sum for which t− τ < 0 vanish, hence the inner
sum starts from τ , and

Y (z) =

+∞∑
τ=0

u(τ)z−τ
+∞∑
t=τ

w(t− τ)z−(t−τ) =

(
+∞∑
τ=0

u(τ)z−τ

)(
+∞∑
t′=0

w(t′)z−t
′

)
= W (z)U(z).

(11)

0.3.4 Delay

If a signal is delayed by one time step its transform gets multiplied by z−1. Let {u(t)} be a
causal signal and let {ū(t)} be its delayed version, defined by ū(t) := u(t− 1) for all t. Then:

Ū(z) =
+∞∑
t=0

ū(t)z−t =
+∞∑
t=0

u(t− 1)z−t = z−1
+∞∑
t=0

u(t− 1)z−(t−1)

= z−1
+∞∑
t′=0

u(t′)z−(t
′) = z−1U(z),

where the fourth equality holds because u(−1) = 0. This fact tells us that, despite being a
complex number in the original definition, z−1 can be interpreted as a delay operator acting on
Z-transforms. With a slight abuse of notation, we will write “z−1” to denote a delay also when
dealing with sequences, e.g. u(t− 1) = z−1u(t).

0.3.5 Anticipation

Let {u(t)} be a causal signal and let {ū(t)} be its anticipated version, defined by ū(t) := u(t+1)
for all t. Then:

Ū(z) =

+∞∑
t=0

ū(t)z−t =

+∞∑
t=0

u(t+ 1)z−(t+1)+1 = z

+∞∑
t=0

u(t+ 1)z−(t+1)

= z
+∞∑
t′=1

u(t′)z−t
′

= z (U(z)− u(0)) .

Note the asymmetry between delay and anticipation (the term u(0)): this is the only price we
have to pay for having chosen the transform to be unilateral.

In some respects, if u(0) is not relevant or if it can disregarded, one can loosely interpret z as an
anticipation operator acting on sequences, in the same sense as z−1 is the delay operator; but
strictly speaking they are not the inverses of each other (if we adopt the full-fledged bilateral
Z-transform (9), instead, they are). This is the discrete-time counterpart of the customary
interpretation, in continuous-time models, of the complex variable s of Laplace transforms as a
representative of the derivative operator and of 1/s as the representative of integration.
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0.3.6 Some useful transforms

In this section we suppose that all signals are causal. 1(t) will denote the unit step:

1(t) =

{
1 if t ≥ 0

0 if t < 0

Here follows a table of unilateral Z-transforms:

signal transform convergence region

δ(t) 1 C
1(t) z

z−1 |z| > 1

1(t) · t z
(z−1)2 |z| > 1

1(t) · t2 z(z−1)
(z−1)3 |z| > 1

1(t) · at z
(z−a) |z| > |a|

1(t) · cos(ωt) z(z−cosω)
z2−2z cosω+1

|z| > 1

1(t) · sin(ωt) z sinω
z2−2z cosω+1

|z| > 1

Example. The transform of u(t) = 1(t) is

U(z) =

+∞∑
t=0

z−t =

+∞∑
t=0

(
z−1
)t

=
1

1− z−1
=

z

z − 1
,

where of course the series converges if |z−1| < 1, i.e. |z| > 1; this is rigorous enough. Here’s
instead a true example of “sporting club” mathematics. The transform of u(t) = 1(t) · t is

U(z) =
+∞∑
t=0

tz−t (let ζ = z−1)

=
+∞∑
t=0

tζt = ζ ·
+∞∑
t=0

tζt−1 = ζ ·
+∞∑
t=0

∂ζt

∂ζ
= ζ · ∂

∂ζ

+∞∑
t=0

ζt = ζ · ∂
∂ζ

1

1− ζ

= ζ · 1

(1− ζ)2
=

z−1

(1− z−1)2
=

z

(z − 1)2
.

0.3.7 Final value theorem

I provide this result without proof:

Theorem 0.3.1 Let {u(t)} be a signal and U(z) be its Z-transform; suppose that limt→+∞ u(t) =
L exists and that (u(t)− L) ∈ O(at) for some a ∈ (0, 1). Then it holds

L = lim
t→+∞

u(t) = lim
z→1

(z − 1)U(z), (12)

implying in particular that the second limit also exists.

For example, let’s check the limit of a causal signal whose transform is a rational transfer
function:

W (z) =
b0z

n + b1z
n−1 + . . .+ bn−1z + b0

zn + a1zn−1 + . . .+ an−1z + a0

= b0
(z − z̄1)(z − z̄2) . . . (z − z̄n)

(z − p̄1)(z − p̄2) . . . (z − p̄n)
.
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If the roots p̄1, p̄2, . . . , p̄n of the denominator belong to the open unit circle (|p̄i| < 1) then, as we
shall see, this is the transfer function of an asymptotically stable system. It is also the transform
of its (causal) impulse response {w(t)}. We know that the modes of the system are decaying
exponentials or damped oscillations, so the limit L exists and w(t) − L decays exponentially.
Then

lim
t→+∞

w(t) = lim
z→1

(z − 1)W (z) = 0.

The response of the same system to the unit step u(t) = 1(t) is instead some causal signal
{y(t)}. It holds

lim
t→+∞

y(t) = lim
z→1

(z − 1)W (z)U(z) = lim
z→1

(z − 1)W (z)
z

z − 1
= W (1).

0.4 The response to harmonic signals

0.4.1 Non-causal systems

Consider a BIBO-stable system, not necessarily causal. Its impulse response {w(t)} must be
summable (

∑+∞
t=−∞ |w(t)| < ∞), hence its frequency response Ŵ (ω) = W

(
ejω
)

must exist for
every ω ∈ [−π, π].
A fundamental property of such a systems is that its response to harmonic signals (i.e. sinusoids,
or sums of sinusoids) are also harmonic. To see this, consider first the response {y(t)}+∞−∞ to a
complex input {u(t)}+∞−∞ of the form u(t) = ejωt:

y(t) = w ∗ u(t) =
+∞∑

τ=−∞
w(t− τ)ejωτ

=

+∞∑
τ=−∞

w(t− τ)e−jω(t−τ)ejωt

= ejωt
+∞∑

τ ′=−∞
w(τ ′)e−jωτ

′
= Ŵ (ω) ejωt.

This property is too important to let it pass without re-stating it in the proper, magnificent,
linear-algebraic language. A BIBO-stable LTI system is a linear operator ϕ mapping sequences
to sequences. For all the sequences u(t) = ejωt it holds, with loose notation,

ϕ
[
ejωt

]
= Ŵ (ω) ejωt;

and here is the statement:

any harmonic sequence of the form ejωt is an eigenvector
(or “eigenfunction”) of ϕ, having Ŵ (ω) as the corresponding eigenvalue.

Since the property holds for any ω ∈ [−π, π], it also does for −ω; if u(t) = e−jωt = ej(−ω)t, then:

y(t) = Ŵ (−ω)e−jωt.

Now let {u(t)}+∞−∞ be a sinusoidal signal with frequency ω:

u(t) = A cos(ωt+ ϕ)

= A
ej(ωt+ϕ) + e−j(ωt+ϕ)

2
=
A

2
ejϕejωt +

A

2
e−jϕe−jωt;
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in view of linearity, the corresponding response is

y(t) =
A

2
ejϕ Ŵ (ω) ejωt +

A

2
e−jϕ Ŵ (−ω) e−jωt

= |Ŵ (ω)| A
2

(
ejϕ ej∠Ŵ (ω) ejωt +Ae−jϕ e−j∠Ŵ (ω) e−jωt

)
= |Ŵ (ω)| A ej(ωt+ϕ+∠Ŵ (ω)) + e−j(ωt+ϕ+∠Ŵ (ω))

2

= |Ŵ (ω)| A cos(ωt+ ϕ+ ∠Ŵ (ω)).

Thus, to a sinusoidal signal with frequency ω (non-causal, i.e. infinite in both directions), a
BIBO-stable system responds with the same sinusoidal signal, amplified by |Ŵ (ω)| and antici-
pated by ∠Ŵ (ω).

0.4.2 Causal systems

What happens if the system is causal and the sinusoid is causal too, i.e. it “starts at 0”? Consider
now a truncated exponential signal,

u(t) = 1(t) · ejωt

It holds

y(t) = w ∗ u(t) =
t∑

τ=0

w(t− τ)ejωτ =
t∑

τ=0

w(t− τ)e−jω(t−τ)ejωt

= ejωt
t∑

τ ′=0

w(τ ′)e−jωτ
′

= ejωt

(
Ŵ (ω)−

+∞∑
τ ′=t+1

w(τ ′)e−jωτ
′

)
;

note that since Ŵ (ω) =
∑+∞

τ ′=0w(τ ′)e−jωτ
′

must exist finite, the infinite sum within parentheses
must tend to 0 as t→∞; hence

y(t) = Ŵ (ω)ejωt + s(t),

where s(t) is a “transient” term, which tends to 0 as t → ∞. The same reasoning can be done
for the truncated version of u(t) = e−jωt, hence the response to a sinusoidal signal “starting at
0”

u(t) =

{
0, t < 0,

A cos(ωt+ ϕ), t ≥ 0,

is, by similar computations to the above ones,

y(t) =

{
0, t < 0;

|Ŵ (ω)| A cos(ωt+ ϕ+ ∠Ŵ (ω)) + s̄(t), t ≥ 0,

where s̄(t) is another transient term.

In conclusion, now we have four distinct interpretations for the frequency response of a LTI
BIBO-stable system:

1. Ŵ (ω) is the Fourier transform of the impulse response of the system; provided that the
transfer function W (z) converges in a region of the complex plane that includes the unit
circle, the frequency response is Ŵ (ω) = W

(
ejω
)
;
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2. provided that the Z-transforms of both the input and the output of the system converge in
a region of the complex plane including the unit circle (this happens if they are summable),
in that region the transfer function is a proportionality factor linking them:

Y (z) = W (z)U(z),

and similarly

Ŷ (ω) = Ŵ (ω)Û(ω);

3. the values Ŵ (ω) are the eigenvalues of the system ϕ, corresponding to the “eigenfunctions”
ejωt;

4. the response of the system to a sinusoid with frequency ω is the same sinusoid, amplified
by the modulus |Ŵ (ω)| of the frequency response and anticipated by its phase ∠Ŵ (ω); if
the system is causal and the sinusoid is fed at the input only starting from a certain time,
the response “starts” at that time and approaches the amplified and anticipated sinusoid
after a transient.

0.5 Difference equations

The causal LTI systems that are used in practice to model filters, sampled version of continuous-
time systems etc., are usually denoted by so-called difference equations. These are equalities
written in one of the following equivalent forms, depending on which is more convenient for ease
of notation:

a0y(t) + a1y(t− 1) + · · ·+ any(t− n) = b0u(t) + b1u(t− 1) + · · ·+ bmu(t−m)

a0y(t)− a1y(t− 1)− · · · − any(t− n) = b0u(t) + b1u(t− 1) + · · ·+ bmu(t−m),

where m ≤ n and a0 6= 0. Without loss of generality, it is also customary to divide everything
by a0, obtaining a model where the first coefficient is 1; this being convenient for our purposes,
we will work with the following model:

y(t)− a1y(t− 1)− · · · − any(t− n) = b0u(t) + b1u(t− 1) + · · ·+ bmu(t−m). (13)

The linear model (13) “represents” a causal system if the system imposes that (13) holds at all
times t. In particular, given a causal input, the corresponding output can be defined recursively:

y(t) = 0 for all t < 0 by assumption (causality);

y(t) = a1y(t− 1) + · · ·+ any(t− n) + b0u(t) + · · ·+ bmu(t−m), t ≥ 0.

Here, y(t) is well defined because we assume that the system is causal; hence y(t) is a function
of “past” samples y(t− 1), · · · , y(t− n), u(t), · · · , u(t−m), and not of future ones; but nowhere
does an equation like (13) imply that the represented system is indeed causal. In other words,
(13) is not “the system”: it is a property of the system, and causality is another; the equation
per se, taken alone, could very well represent a non-causal system.
Supposing that the output {y(t)} possesses a Z-transform as well as the input, {u(t)}, let
transform both sides:

Y (z)− a1z−1Y (z)− · · · − anz−nY (z) = b0U(z) + b1z
−1U(z) + · · ·+ bmz

−mU(z),

(1− a1z−1 − · · · − anz−n)Y (z) = (b0 + b1z
−1 + · · ·+ bmz

−m)U(z),

Y (z) =
b0 + b1z

−1 + · · ·+ bmz
−m

1− a1z−1 − · · · − anz−n
U(z).

(14)
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The function

W̄ (z) =
b0 + b1z

−1 + · · ·+ bmz
−m

1− a1z−1 − · · · − anz−n
=
b0z

n + b1z
n−1 + · · ·+ bmz

n−m

zn − a1zn−1 − · · · − an
(15)

exists in the region where both the transforms U(z) and Y (z) converge (the open region outside
a disc), and comparing with (11), it must coincide there with the transfer function W (z) of the
system. It can be rewritten as follows:

W̄ (z) =
B(z)

A(z)
=
b0(z − z1)(z − z2) · · · (z − zn)

(z − p1)(z − p2) · · · (z − pn)
, (16)

The (complex) roots p1, · · · , pn of the polynomial A(z) = zn−a1zn−1−· · ·−an are called the poles
of W̄ (z) = W (z), and the roots z1, · · · , zn of the polynomial B(z) = b0z

n+b1z
n−1+· · ·+bmzn−m

are called its zeros. It so happens that the region in which W (z) converges is the set {z ∈ C | |z| >
|pi|}, where pi is the pole with maximum modulus; in other words, the maximum modulus among
poles is the convergence radius. Consequently, the system is BIBO-stable if and only if the poles
of W̄ (z) belong to the open unit disc, that is, if all the poles pi satisfy |pi| < 1.
Again, the expression of W (z) as a function of a complex variable is a property of the system,
and it is not sufficient to describe it completely unless causality is assumed apart. Indeed, it is
causality that dictates the region where W̄ (z) is defined (and where W (z) converges)5.

Models like (13) are called finite-dimensional, because they can be realized with a recursive
algorithm using only a finite amount of memory. In view of the reasoning above, it is obvious
that any causal LTI system satisfying (13) admits a rational transfer function. However,

• it is not at all true that every LTI causal system can be described by a finite-dimensional
model. This is rather intuitive, because the true representative of an LTI system is its
impulse response, an infinite sequence which cannot, in general, be reconstructed by an
algorithm with a finite amount of memory. Stated another way, the impulse response
may very well have a non-rational Z-transform. Anyway, finite-dimensional models are
of paramount importance in engineering, because they are far handier than other models
for computation, estimation, prediction, identification, and closed-loop control. Moreover,
the transfer function of any BIBO-stable system can be approximated by a rational one
with arbitrary accuracy.

• to any finite-dimensional model there corresponds a unique rational transfer function,
but the converse is false. Consider indeed W̄ (z) written in the form (16): zero/pole
cancellations may happen, and they correspond to a “hidden” dynamics of the system
that either is not affected by the input, or is not visible at the output, or both. The
proper way to understand such dynamics is through state-space system theory; however,
the point here is that adding, so to say, “a zero and a pole at the same arbitrary position”,
two at a time, one leaves the transfer function unchanged, but obtaining larger and larger
models (13): hence, to the same transfer function there correspond infinitely many models.

5All of these concepts have their counterpart in the world of causal continuous-time systems, which you should
remember from control courses: the difference equation (13) corresponds to an ordinary linear differential equation
with constant coefficients; the left- and right-hand sides of the differential equation can be transformed according
to Laplace, and the rational function that one obtains dividing the right-hand polynomial by the left-hand one
happens to be the transfer function of the system. Such transfer function exists on a right half-plane assuming
that the system is causal; and the continuous-time system is BIBO stable if and only if the poles of its transfer
function lie in the open left-hand plane having the imaginary axis as its boundary. Indeed the unit circle plays
for discrete-time systems the role that the imaginary axis plays for continuous-time ones, i.e. a sort of frontier
between stable systems and unstable ones.
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