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 VII. On a M7lethod of Inhvestigating_ ]erioclicities in Disturbed Series, with special
 reference to Wolfer's Sunspot NTumbers.

 By G. UDNY YuuLE, C.B.E., M.1., JF..S., University Lecturer in Statistics, and Fellow of

 St. John's College, Cambridge.
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 I. INTRODUCTORY: SUPERPOSED FLUCTUATIONS AND DISTURBANCES.

 If wve take a curve representing a simple harmonic function of the time, and superpose

 on the ordinates small random errors, the only effect isto make the graph somewhat
 irregular, leaving the suggestion of periodicity still quite clear to the eye. Fig. l (a)

 shows such a curve, the random errors having been determined by the throws of dice.

 If the errors are increased in magnitude, as in fig. 1 (b), the graph becomes more irregular,
 the suggestion of periodicity more obscure, and we have only sufficiently to increase the
 "; errors" to mask completely any appearance of periodicity. But, however large the

 errors, periodogram analysis is applicable to such a curve, and, given a sufficient number

 of periods, should yield a close approximation to the period and amplitude of the under-
 lying harmonlic function.
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 2 68 G. UDNY YULE: METIHOD OF INVESTIGATING PERIODICITIES IN DISTURBED

 'When periodogram analysis is applied to data respecting any physical phenomenon

 in the expectation of eliciting one or more trie periodicities, there is usually, as it
 seens to me, a tendency to start from the initial hypothesis that the periodicity or

 periodicities are masked solely by such more or less random superposed fluctuations-
 fluctuations which do not in any way disturb the steady course of the underlying periodic

 function or functions. 'It is true that the periodogram itself will indicate the truth or
 otherwise of the hypothesis made, but there seems no reason for assuming it to be the

 hypothesis most likely a prior.

 If we observe at short equal intervals of time the departures of a simple harmonic

 pendulum from its position of rest, errors of observation will cause superposed fluctuations

 of the kind supposed in fig. 1. But by improvement of apparatus and automatic methods

 of recording, let us say, errors of observation are practically eliminated. The recording

 0- ( l ;_ t sb)

 FIG. 1.-Graphs of simple harmonic functions of unit amplitude with superposed random fluctuations:
 (a) smaller fluctuations, (b) larger fluctuations.

 apparatus is left to itself, and unfortunately boys get into the room and start pelting the

 pendulum with peas, sometimes from one side and sometimes from the other. The

 motion is now affected, not by superposed fluctuations but by true disturbances, and the
 effect on the graph will be of an entirely different kind. The graph will remain
 surprisingly smooth, but amplitude and phase will vary continually.

 Working with finite in lieu of infinitesimal intervals, we may construct an approximna-
 tion to a curve of the kind supposed. Let the terms of the trigonometrical series be

 U= A sin 2 t

 u1 --Asin 27:t r-4Pi.--h , ** **(1)

 U2 A sin 2 t + h .
 T
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 SERIES, WITH SPECIAL REFERENCE TO WOLFER'S SUNSPOT NUMBERS. 269

 etc., where A is the amplitude, t the time, T 'the period, h the interval between successive
 terms, and X gives the phase. Then, with a little reduction, we have for the second

 difference

 A2 (u ) (4 sin 2 7rh .s-is . (2)

 where, if 0 is the angle corresponding to the interval,

 =- 4 sin2 7rhim-2 0.-cos 0) . . . . . . . . (3) T

 But, in terms of the u's, (2) gives

 U2 = (2 - A) u8. - .... . . . . . . . . . . (4)
 where it may be noted

 2- 2 cos 0. ............. . (5)

 If there are no disturbances, (4) gives u., generally in terms of u.1 and ut.x_ Provided
 the interval were infinitesimal, (4) would still give u, correctly, even if the velocity in
 the interval x- 2 to x- 1 were affected by an impulse, so long as the interval x - 1 to x

 were undisturbed. But if a disturbance occurred also in the latter interval, we would
 have, say,

 Ux:( .6 (2 - )tt.-, U - Hi2 + a . . . . . . ...**(6

 where e is an error varying with the impulse or disturbance.

 Fig. 2 shows a graph constructed in the following way from this equation -:The period

 was taken as 10 intervals, and the first two ordinates as O and sin 36? (0588). Thereafter
 all the ordinates were calculated in succession by (6), the errors or "disturbances " C

 being given by dice-throwing. Four dice were thrown together: the divergence of the

 sum of the pips from the mean number (that is, 14) was divided by 20, and this was

 taken as the value of s. The values so determined fluctuate round zero with a standard

 deviation 0-1708, and are thus fairly considerable, ranging up to ? 0-5. Inspection
 of the figure shows that there are now no abrupt variations in the graph, but the

 amplitude varies within wide limits, and the phase is continually shifting. Increasing

 the magnitude of the disturbances simply increases the amplitude: the graph remains
 smooth. At one point, in fact, the disturbances9 was inadvertently magnified by an

 error of calculation, but there was no appreciable kink in the graph to direct attention
 to the blunder. It is, of course, true that the graph may be made to pass through any

 assigned series of points, however irregular, but to introduce such irregularities appro-

 priate large and erratic disturbances must be given: abrupt irregularities do not

 naturally occur with random disturbances.

 It is of interest to look a little more closely into the question wily the graph does
 present such a smooth appearance. An undisturbed harmonic function may be regarded
 as the solution of the difference equation

 A2 (ut) H- v (uZ+1) =0. .......X.....(7)
 2 o2
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 270 G. UDNY YULE: METHOD OF INVESTIGATING7 PERIODICITIES IN DISTURBED

 /~~~~~~~~~~~~~~~N

 A n d - i TV r 20 0 4 -t- / 0

 I~~~~~~ C\KX'n' '

 g ~In I1 \ ' ,

 0 10 20 50 40
 FIc. 2.-Graph of a disturbed harmonic function, experimental series.

 If the motion is disturbed, on the other han'd, we have, say,
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 SERIES, WITH SPECIAL REFERENCE TO WOLFER'S SUNSPOT NUMBERS. 271

 where q4(1) may be regarded as a "disturbance function." Looking at the matter
 from this standpoint, the simple harmonic function is the complementary function in

 the solution of (8), and the diference between the simple harmonic function and the
 oscillatory function of the time represented by the graph is the particular integral.

 Consider the formation of the series by equation (6), given initial te ms u0 and u1 and
 the disturbances e, S3, S4, etc., appropriate to u2 onwards. Writing for brevity

 2 - k . . . . . . . . . . . . . . . (9)
 the series will be

 0. u0

 1. U.,
 2. ku1 - u0 +: 2

 3. (k2 -1) u1 - ku0 + ks2 + '3
 4 {k (k2 - 1) - k} u1 - (k2 - I) t0 -H (k2 S) ?2 + 153 - e4
 5. {k[k (k2 -1) -k] - (k2-1)} u1 - {U, k (k2 -1) - k} u0+ {k (k2- ) -k} 2

 + (k2 - 1) ?3 + k V 5

 etc. Examining the C terms, we see that the coefficients 1, k, k2 _ 1, k (k2 - 1)-- k, etc.,

 are related by an equation of the form

 Am k (An-u) - Am,-2 . . . . . . . . . . . (10)

 But this is simply an equation of the form (4), and the coefficients of the e's are therefore

 the terms of a sine series, of the same period as the complementary function, with initial

 terms 1 and k. For the experimental series they are

 + 1
 + 1618034

 +- 1618034

 A- 1

 - P618034

 etc. Table I shows the first 30 terms of the experimental series, the complementary
 function, the particular integral, and the values of s. Thus, on line 10 of the table we
 have

 0 e 54272 -+ I (- 0 10)
 a- 618034 (- 0-10)

 1 W1*618034 (q- 0 *20)

 I 1 (- 0 .05)

 + 0
 - 1(+ 030)

 1 P618034 (- --0e )

 - 618034 (+ 0035)
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 272 G. UDNY YULE: METHOD OF INVESTIGATING PERIODICITIES IN DISTURBED

 TABLE 1.---Analysis of first 30 terms of experimental series used for fig. 2 into comi-
 plementary function (simple harmonic function) and particular integral (function

 of the disturbances alone).

 i Terin. I Observed Complementary Particular Disturbance series. function. integra.

 0 0 0 0 0
 i1 + 0.58779 + 0'58779 0 0
 2 + 0'80106 + 0.95106 - 0-15 - 0415
 3 + 1'05835 + 0-95106 + 0*10729 + 0 35
 4 + 0-81139 + 0*58779 + 0.22360 -- 0'10
 5 + 0*55451 0 + 0-55451 + 0 30 I
 6 - 0*01417 - 0*58779 + 0*57362 - 0 10
 7 -- 0'62744 - 0.95106 + 0.32362 - 0 05
 8 - 0'80105 - 0*95106 + 0'15001 + 0*20
 9 0'76869 - 0-58779 - 0'18090 - 0 10
 10 - 0 54272 0 0'54272 - 0.10
 11 + 0'14155 4- 0X58779 - 0*44624 + 0'25
 12 + 1P12175 + 0.95106 + 0.17069 + 0'35
 13 + 1'87348 + 0*95106 + 0'92242 + 0.20
 14 + 1-65960 + 0-58779 + 1*07181 - 0'25
 15 + 0'96181 0 + 0 96181 + 0*15
 16 - 0.10336 - 0.58779 + 0*48443 0
 17 - 0'92905 - 0.95106 + 0 02201 + 0*20
 18 1'54987 - 0.95106 - 0.59881 - 0.15
 19 - 1.92869 - 0*58779 1*34090 0'35
 20 - 1'47082 0 1-47082 + 0*10
 21 - 0.50115 + 0 58779 1-08894 - 0*05
 22 + 0.55994 -F+ 095106 0-39112 - 0 10
 23 + 1.75715 + 0.95106 -+ 0 80609 + 0'35
 24 + 2.23319 + 0'58779 + 1.64540 - 0*05
 25 -1- 170623 0 + 1P70623 - 0.15
 26 -+ 0 37755 0.58779 +- 0-96534 - 015
 27 1 P09534 - 0.95106 - 0 14428 0
 28 - 2-24985 0 95106 1-29879 0*10
 29 - 2'69499 - 0*58779 - 2 10720 - 015
 30 - 1'86074 0 - 1'86074 + 0 25

 The series tends to be oscillatory, since, if we take adjacent terms, most of the periodic

 coefficients of the e's are of the same sign, and consequently the adjacent terms are

 positively correlated; whereas if we take terms, say, 5 places apart, the periodic

 coefficients of the e's are of opposite sign, and therefore the terms are negatively

 correlated. The series also tends to be smooth-i.e., adjacent terms highly correlated----

 since adjacent terms represent simply differently weighted sums of i's, all but one of

 which are the same. [Added, February 17.-It may be noted that if, in constructing an
 empirical series by equation (6), we put ua -1 ,= ? there would be no true harmonic

 component, and the series would reduce to the particular integral alone; but the graph

 would present to the eye an appearance hardly different from that of fig. 2. The case
 would correspond to that of a pendulum initially at rest, but started into movement by

 the disturbances.
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 SERIES, WITH SPECIAL REFERENCE TO WOLFER'S SUNSPOT NUMBERS. 273

 It is evident that the problem of determining with any precision the period of the

 fundamental undisturbed function from the data of such a graph as fig. 2 is a much more

 difficult one than that of determining the period when we have only to deal with super-

 posed fluctuations. It is doubtful if any method can give a result that is not subject
 to an unpleasantly large margin of error if our data are available for no more than, say,

 10 or 15 periods. iDetermining the epochs of minima on the graph of fig. 2 by inter-
 polation, I find periods for individual waves ranging from 8 57 to 11 *29 intervals, the

 true period being 10. The first 15 waves give an average of 10 185, the second 15 an

 average of 9a 850, and it takes the whole 30 to give an average, 10 026, near the truth.
 The question of the applicability of periodogram analysis to a series of this type is

 further discussed in Section IV below; but from mere inspection of the graph it is,

 I think, clear that it must give results subject to a much larger margin of error than is
 usually supposed-results, consequently, which must be interpreted with the greatest
 caution, and that if applied to data covering only a few periods it may easily give results
 which are apparently absurd or highly paradoxical.

 Inspection of a graph of WOLFER,'S annual sunspot numbers, the upper curve in fig. 8

 (p. 296) suggests quite definitely to my eye that we have to deal with a graph of the
 type of fig. 2, not of the type of fig. 1, at least as regards its principal features. It is true
 that there are minor irregularities, which may represent- superposed fluctuations,
 probably in part of the nature of errors of observation; for the sunspot numbers can only
 be taken as more or less approximate " index-numbers " to sunspot activity. But
 in the main the graph is wonderfully smooth, and its departures from true periodicity,
 which have troubled all previous analysts of the data, are precisely those found in fig. 2---
 great variation in amplitude and continual changes of phase.

 If this interpretation is correct, it seems desirable to break away from the periodogram

 method: the problem is, in fact, no longer one merely of determining the period, but
 also of determining the values of s, the " disturbances," as I term them for short. It is
 natural, then, to approach the problem from the standpoint of the equation relating

 uX to u,,-,, uz2, etc. Starting also, as I did, with the conception of periodogram analysis
 and harmonic periodicities in my mind, it was natural to assume an equation of the
 form (6), and an equation of corresponding form for two periodicities. This gave the
 first method tried.

 It only occurred to me later that the method started from an unnecessarily limited
 assumption; that it would be better simply to find the linear regression equation of

 ux on u]x u__x_ and more terms if necessary, and solve this as a finite difference equation.
 This gave my second method. As the results of the first method were interesting, I give
 both methods below.

 On doing the work I was puzzled by the fact that the equation first found suggested a
 period obviously too short. A little consideration suggested that this was probably
 due to the presence of superposed fluctuations: as already noted, the graph of sunspot
 nmltbers suggests the presence of mainor irregularities dule to this cause, notwithstanding
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 274 G. UDNY YULE: METHOD OF INVESTIGATING PERIODICITIES IN DISTURBED

 that a certain amount of smoothing has already been introduced by employing tlhe

 annual average and not the monthly n umbers. I therefore desired to repeat the work

 on graduated figures, a assuming that graduationwould largely eliminate such irreguiaritie,
 and used the following method. The u's were first sunmed in overlapping sets of three,
 thus

 t~~~~~hasu+3-u 9

 W2 ts v -- 1to-- u, 3 k'

 Here W2/3 is evidently a first approximation to a graduated value of u2. As the second

 approximation was taken the corrected value

 t- 2 - . .I....... . (12)

 The results were not very good, as will be seen from the graph, tlhe second curve in fig. 8

 (p. 296), and froi a discussion below in Section III, p. 282. A better resut could
 probably have been obtained by graphic smoothing on a large-scale carit; but a

 "c mechanical " method of graduation gave directly figures for calculation, and they served

 the purpose of comparison. The graduated figures, together with NOLFER's numbers,*

 are given in Table A at the end of the paper. A test of the graduation gives for the mean
 difference (actual number less graduated num ber) - 04; standard deviation of

 differences, 6Q04. Over 90 per cent. of the differences lie within ? 10 points.

 If. FIRST M ETHOD OF ANNALYSIS: IT ARMONIC CUWVE EQUATION.

 A.--Assumption of a Single Period only. In equation (6) the average value of C is

 assumed to be zero. Hence, if we form an equation

 X Io- ku u1x 2 . . . . . . .. (13 )

 and deterinine k by the method of least squares, we have

 k2 - M 2 co3s 0 . . . . . . . . . o (14L)
 by (5). But

 S (ux - kux1 'I9) S (UX X k-u__

 and hence we can most readlly determine k by finding the correlation between ' - -2
 and ux1, and forming the regression equation of: the former on the latter. In the case
 of the sunspot nunibers we would have to work, of course, with the deviations of the u's
 from the general mean, and subsequently transform to zero as origin, so that there would

 be a constant on the right of (13).

 Since I could see no valid method of determining probable errors il cases of the present

 * 'Terrestrial Magnetisn and timosphleric Electricity,' Baltimtore (Junle, 1925).
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 SERIES, WITH SPECIAL REFERENCE TO WOLFER'S SUNSPOT NUMBERS. 275

 kind, where we are not dealing with random samples in the ordinary sense but with
 samples from series all the terms of which are highly correlated with one another,* a
 practical test of the method on the data of fig. 2 seemed to be of interest. The series
 of 300 terms was divided into two series of 150 terms each, whihe gave the following
 results-accents to the u's denote deviations

 Empirical Series.

 First 150 terms:

 I fx ~1 62438 u '-1 - UXAd

 cos 0 = 0*81219; 0 350 69; period -10 087.

 Second 150 terms:

 u'tx=IV 60636 u lxU-2

 cos 0 0 80318; 0 - 36* 56; period-9 i 845.

 The periods thus found are not far from those obtained from the interpolated minima
 (p. 273), viz., 10- 185 and 9 - 850: the coefficient of u'_1 for a period 10 should be 1 * 61803.

 The respective equations give values of the disturbances s having correlations + 0 997
 and + 0 987 with the true disturbances, and even in the latter case give quite a fair
 picture of the true state of affairs. On the whole, I think the result may be regarded
 as reasonably satisfactory.

 Turning now to WOLFER'S sunspot numbers, the series was used as a whole (1749-
 1924) : the deviations of the individual numbers from the general mean were written
 down to the nearest unit, and the correlation worked without further grouping. The
 results were

 WOLFER'S Sunspot Numbers, 1749-1924:

 s.d. of whole series -34 * 66 points

 tux 1 62373 UX-1 ta- U2 + 1 6 99 . . . . . . . . ( 15)
 cos 0 - 0 * 81187; 0 - 35? 72; period-10 * 08 years.

 s.d. of disturbances -17 05 points.

 As, in view of the subsequent work, I judge that the disturbances calculated from (15)
 have no special importance, it has not been thought worth while to tabulate them, but
 they are shown in the third graph in fig. 8: the graph is to double the scale of the
 graphs of sunspot numbers, and the line drawn gives quinquennial averages. It will
 be seen that the disturbances are very variable, running up to over + 50 points. But
 the course of affairs is rather curious. From 1751 to 1792, or thereabouts, the disturb-
 ances are mainly positive and highly erratic; from 1793 to 1834 or thereabouts, when the

 * Cf. the general discussion of the nature of time-series in " Why do we sometimes get nonsense correla-

 tions between time-series ? A study in sampling and the nature of time-series." Presidential Address,
 G. U. YULE, 'Journ. Stat. Soc.,' vol. 89 (1926).

 VOL. CCXXYI.-A. 2 p
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 276 G. UDNY YULE: METHOD OF INVESTIGATING PERIODICITIES IN DISTURBED

 sunspot curve was depressed, they are mainly negative and very much less scattered;
 from 1-835 to 1875, or thereabouts, they are again mainly positive and highly erratic;

 and finally, from 1876 to 1915, or thereabouts, once more mainly negative and much less

 erratic. It looks as if the " disturbance function bad itself a period of somewhere

 about 80 to 84 years, alternate intervals of 40 to 42 years being highly disturbed and
 relatively quiet. This characteristic appears in whatever way the disturbances are

 calculated, whether from the graduated or ungraduated numbers, and is returned to
 below (p. 283).

 BBut it is evident that the period, 10 -08 years, given by equation (15) is markedly too
 low: it ought, one would expect, to be in fair agreement with the usual estimate of

 rather over 11 years-1 1 125 years (SCHUSTER*) or 11 * 21 years (LARMOR and YAMAGAt).
 As already mentioned, the divergence might be due to the presence of superposed
 fluctuations. If such fluctuations are present, our two variables bs. u u2 and u -1

 are, as it we-re, aected by errors of observation, which would have the effect of reducing

 the correlation and also the regression. Reducing the regression means reducing the
 value of cos 0-that is, increasing 0 or reducing the apparent period. It was therefore

 attempted to eliminate superposed fluctuations by graduating the numbers, using the

 method already described (p. 274), and doing the work again on these graduated figures,
 which will be found in 'Fable A at the end of the paper. The results were as follows

 Graduated Sunspot Numbers, 1753-1920:

 sAd of whole series - 33-75 points.

 U-C I 1.68426 u - _ 2+ 14-13 ,. . . . . (16)
 cos 0 084213; 0(332?.63; period I1. 03 years.

 s.d. of disturbances = 11 43 points.

 The estimate of the period is now much closer to that usually given, and I think it may be

 concluded that the reason assigned for the low value obtained from the ungraduated

 numbers is correct.

 For lack of space on the plate a graph has not been given of the disturbances as
 calculated from (16). The scatter is greatly reduced (s.d. of disturbances 11 .43 against

 17 05), but the general course of affairs is very similar to that shown by the graph for the
 ungraduated numbers.

 The graphic test was applied to see whether the regression of ux + ux-2 on u,-1 was,
 in fact, appreciably linear or no. Figs. 3 and 4 show dot-diagrams for the ungraduated

 and the graduated numbers respectively. It will be seen that over the greater part of

 the range the regression is effectively linear. But for the larger negative deviations

 (low values of the sunspot numbers) there is an appreciable, though small, divergence

 * 'Phil. Trans.,' A, vol. 206, pp. 69-400 (1906).

 t 'Roy. Soc. Pro0.,' A, vol. 93, pp. 493-506 (1917).
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 from linearity affecting some 10 per cent. of the points. On the whole, however,
 divergence from linearity does not look as if it would be a serious trouble.

 If we ask ourselves the question how much of the variance of ux has been accounted
 for by uX-1 and u x-2, the answer is not afforded directly in the usual way by the

 +F100x

 0 0

 + O

 O , 0 00 0

 ? o a< O

 -100 S '

 ' / ' b 0 + 50 i 00 + I 50

 00 0

 &ct?4?m????? 50

 FIG. 3.-Graph to test approximation to linearity of regression of U'X + 4'X 2 (horizontal) on ut'-1 (vertical)
 gdOLaERdS sunspot numbers.

 i - -

 devition given X hv

 34G62~~~ 1 0133.5 19

 FIG.7.052raph to test on tf ) t ,,6,,- t o

 _ _~~grdae sunpo numbe yrs.

 correlation calculated, which is the correlation between uz -rU and uZ not the

 correlation between the right and left-:hand sides of (13). W7e must take t;he standard.l
 deviations given. W~e have:-

 WOLFER'S numbers. Graduated nurnbers.
 34 .662 1201 -3 33 -752 1139 -

 1 7 052 29C) - 7 1 1 432 G 30 .6

 91O lO 8eE

 2 1
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 278 G. UDNY YULE: METHOD OF INVESTIGATING PERIODICITIES IN DISTURBED

 and have therefore accounted for some 76 per cent. of the variance in the case of WOLFER'S

 numbers and some 89 per cent. in the case of the graduated figures. On the present lines

 we cannot account for superposed fluctuations, and, bearing in mind the look of the

 chart and its suggestion to the eye that a great part of the variation of the disturbances

 is merely random, the search for further periodicities does not look hopeful. It seems

 desirable to make the attempt, but it must be admitted that there is a very serious
 difficulty in the way of any such search, as becomes evident on very little consideration.

 B.--Assumption of Ttwo Periods.-Suppose we have an undisturbed periodic series
 involving two periods, T1 and T2, of which the general term is

 U = A,1 sin 2-;r t + TC + '7$ +- A2 sin t_ + 2 + /, (17) x ~~T,?xK 2 T 2 x

 and suppose wAe are given five successive terms, ux - to U., of which u x-2 is the central

 term. Then if u x-2 is compounded of a part a due to the first harmonic and a part
 (Ux -2 a) due to the second harmonic, we will have

 A2 (uX ) ux 1 2u,- -- _3

 - -a (t - V-2 (Otxo 2 - a) . . . . . . . . . . . (1 8)

 A4 (u!/ 1) -- W ~- ~-4u -1- 6uJ $-2 - 4uS3 + UX-4

 = 2 a + [L2 (UX-2 a) . . . . . . . . . . . . . (19)

 where, if 01, 02 are the respective angles corresponding to the interval it

 V 4 sin2T7- _-_2 (1 -c OS 01) . . . . . . (20)

 u2 4 - 24(I n COS =)2.(.-. . .2. . . . . (21)
 -2

 Using (18) to eliminate a from (19) and reducing, we have finally

 Ut = (4 - - P-2) (uASH -+ u-,3)

 - (6 - 2[_-tj 21J Atl p2) UX-2

 - M,, . _4A . . . . .b . . . . . . . . . . . ( 2 2)

 If the series is completely undisturbed, (22) can be used to calculate in succession all the
 following terms, when the first four are given.

 But now comes the problem. What happens if the series is " disturbed " in the sense

 of the previous work ? Can we, exactly as before, assume

 u,6$ 7z k (%_j -P u.,) - z k ;-2 - UX4 + Zf) . . . . . . . (23)

 where z is a deviation, of the nature of an error of observation, varying with the

 disturbance ? It seems clear that we cannot legitimately make any such assumption.
 lIt was going far enough to threat the single interval as if it were infinitesimal: we cannot
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 possibly stretch the assumption to cover three intervals. If, admitting this, we

 nevertheless assume a relation of the form (23), and proceed to determine k1 and k2 by

 the method of least squares, regarding u + u -,, u,-, + uG-3, and 'tSC-2 as our three
 variables, and forming the regression equation for the first on the last two, can this give

 us any useful information ? I think it can. The results may afford a certain criterion

 as between the respective conceptions of the curve being affected by superposed

 fluctuations or by disturbances. If there are no disturbances in the sense in which the

 term is here used, the application of the suggested method is perfectly legitimate, and

 should bring out any secondary period that exists. To put the matter in a rather

 different way: disturbances occurring in every interval imply an element of unpre-

 dictability very rapidly increasing with the time. Superposed fluctuations imply an
 element of unpredictability which is no greater for several years than for one year.

 If, then, there is a secondary period in the data, and we might well expect a period of

 relatively small amplitude--if only a sub-multiple of the fundamental period-equation

 (23) should certainly bring out this period, provided that we have only to do with superposed

 fluctuations and not disturbances.
 I accordingly worked out the results, which proved rather unexpected. I simply

 give the equations and the resulting values of the ,('S and O's. Accented u's denote

 deviations as before : it was not worth while working out the constant term in view of the

 results.

 WOLFER'S Sunspot Numbers, 1749-1924:

 u'.z = 1 16051 (u x-1 + u'X-3) - 1 01486 u'-2 - u'a . . .- (24)

 -., 2 56945 [2 0 27003

 cos 01 - 0-28473 cos 02 + 0 86498

 ?1 = 1060 . 54 or 2530 . 46

 First period _ 3 37 or Ik42 years.

 02 = 30'012

 Second period 11*95 years.

 s.d. of disturbances = 21-95 points.

 Graduated Numbers, 1753--1920 :

 = 1 65539 (u' -1 + u'-3) - 1 83955 U' -2 -* (25)

 th = 2*09183 t2 0 25278
 cos 01 - 0-04592 cos 02 = + 0 87361

 01 920 63 or 2670 37

 First period 3 89 or 1 35 years.

 02 290 12

 Second period 12 36 years.
 s.d. of disturbances = 17*47 points.
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 Since the values of the Vu's give cos 0 and not 0 itself, the value of 0 is not strictly
 determinate: the longer period. is naturally taken as approximate to the fundamental,

 but the choice of the shorter period is quite uncertain. So far as the results go then,

 they at first sight suggest the existence of tw ro periods, one a year or more longer than
 the value which anyone, on a mere inspection of the graph, would be inclined to take

 for the fundamental, and the other muleh shorter. OnX the face of it the result looks odd,
 and the last figures given for the ungralduated and graduated numbers respectively

 show that it is really of no meaning. The sta ndard deviations found for the disturbances

 are in both cases larger than when we assumed the existence of a single period only: 21 95
 against 17 05, and 17 47 against 1 1 43. So far from having improved matters by the
 assumption of a second period, we have made them very appreciably worse: we get a
 worse and -not a better estimate of u. when tu._ and u are brought into account

 than wvhenl we conlfinle oarseives to u1 and u, -2 alone, To put it maoderately, there is
 at least no evidence that any secondary period exists--a conclusion in entire accord with

 that of LARMOR and YAMAGA (10C. cit.). The result also bears out the assumption that

 it is disturbances rather than superposed fluctuations which are the main cause of the
 irregularity, the elemrient of unpredietability, in the data.

 'Trhe fact that we get a worse and not a better estimate, although that estimate is

 based on a larger number of variables, will naturally seem paradoxical to those who are
 accustomed to the ordinary theory of correlation. It is simple due to the fact that we

 have insisted on the regression equation being of a particular form, the coefficients of

 ux_ and u, being identical, and the coefficient of u,.4 unity. The result tells us merely
 thi-at, if we insist on this, such and such values of the coe .ficients are the best, but even so

 they cannot give as good a result as tlhe equation of form (13) with only two terms on

 the right.

 HII. SECOND METHOD OF ANALYSIS: PEGRESSION EQUATION.

 A.-Assunqption of a Single Period only.-AYe form the ordinary regression equation for
 u. on ux, and U,-2,

 -- b~u1 u- b~u,-2G . . . . . . (26)

 WXrith a curve that fluctuates round zero as base-line thelrle vill be no constant term on

 the right; with the sunspot numbers there m-ust 'be a constant as before, but this is
 immaterial. If the curve is of periodic form, the roots of the equation*

 -E2 b --b, 2b 6 a . . . . . . . . . . (27)

 must be imaginary. Let the roots be
 o'j ? i43

 * it follow 13ooLIg C Finite Diffe-reIces, ' 2nd edition, chatp xi, pp. 208-2 2 S
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 andlet 2 2 . b . . (28)

 tan 0 - /oc .. . . . . . . . . . . . (29)

 Then the general solution of the difference equation (26) is of the form.

 ux e\x (A cos Ox + B sin Ox), . , d . e . (30)

 Here 0 is, as before, the angle corresponding to the interval h. For a real physical
 phenomenon one would in general expect X to be negative, the solution representing
 damped harmonic vibrations; or zero, the solution being simple harmonic vibrations.
 The condition for the latter solution is that b2 shall be unity.

 This method also was tested on the empirical data of fig. 2, using two series of 150 terms

 each as before. The correlation between ud and U 2 was assumed to be the same

 as that between ut and ux_, both representing correlations between adjacent terms:
 we cannot get correlations between terms one apart, two apart, etc., that involve
 precisely the same terns, and results are, in so far, approximate; but the closeness of
 approximation will be the greater the longer the series.*

 Empirical Series.

 First 150 terms.

 us == 1 611u 7 1-i-0 - 9867 Ux-2 -

 C oots of (27) : 0 80585 + 0 -58078 $.

 tan 0 = 0.72070: 0 = 350e78 Period= 1006: X =-O0067.

 Second 150 terms.

 uB 15 - 975 ux-1- 0 9875 Wt2
 Roots of (27) 0-79875 + 0 59119 i.

 tan O0 =' 074014 ( = 360o51: Period 9*86: X =-0 0063.

 The values found for the period, 10 06 and 9 86, are close to the values given by the
 harmonic curve equation, viz., 10 087 and 9-845. The values found for , which should
 be zero, are, in fact, numerically less than 0 01 in each casc. T1he agreement seems
 quite satisfactory.

 Proceeding now to the work o i the sunspot numbers, the following are the results

 WOLFER'S Sunspot Numbers, 1749-1924:

 M -ez 1 34254ux-1-0 65504Ut2 -13d854.(31)
 Roots of (27): 0 67127 + O?45215 i.

 tan 0 =-- 0 67358: 0 33?* 963 . Period - 10 * 600 years:

 - O021154:

 s.d. of disturbances = 15'41 points.

 -* The correlations required are the first two serial correlations, as I have termed them. Cf. Address,
 already cited, 'Journ. Stat. Soc.,' vol. 89 (1926).
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 Graduated Sunspot Numbers, 1753-1920:

 tu = I * 51527 uv 1- 080245u 12 + 854. . . . . . (32)

 Roots of (27): 0 75764 ? 0 47795 i.

 tan 0 = 0 63085: 0 32' 246: Period 1 1*164 years.

 0*11004:

 s.d. of disturbances ,10 79 points.

 The magnitudes of the disturbances as calculated from equations (31) and (32)

 respectively are given in Table A at the end of the paper: the regressions were cut

 down to three decimal places for these calculations. The disturbances are also shown,

 together with the quinquennial averages as indicated by the lines, in the fourth and

 fifth graphs in fig. 8 (p. 296).

 The period derived from WOLFER'S numbers is now higher than that given by

 the harmonic formula (I0 60 against 10'08), but still too low; that derived from the

 graduated data is also a little higher (11 16 against 11 .03), and now lies between

 the values suggested by SCHUSTER, and by LARMOR and YAMAGA, respectively.

 But the solution of both equations is a heavily dabmped and not a simple harmonic move-

 ment. The damping given by the graduated. data is, however, only about half that
 given by WOLFER'S numbers: (31) gives a vibration reduced, to 0 106 of the original

 amplitude in the duration of a period, (32) a vibration reduced to 0 293 only. This is

 at first sight a very puzzling result, and precisely the reverse of what was to be expected

 by the elimination or reduction of superposed fluctuations. For let x, x2, x3 be three

 variables with the same standard deviation a, and let the correlations between x1 and x2

 and between X2 and x3 be r1, and the correlation between x] and x,3 be r2. Then, with
 a little reduction, we have for the partial regressions in the usual notation, b rl (t W~2)

 .(33
 J.2-S- ~ . .- . .i . .. . . . . . . . (33)

 -2 r,2 l l'-a -row ).3 - *2 2

 Now suppose all three variables to have random errors of the same standard deviation--

 errors completely uncorrelated with each other-superposed on them. Then both

 correlations will be reduced in the same proportion and become, say, pr1 and pr,.

 Whence, for the partial regressions in this case, we have

 _e _ por1 (1I-p )
 b1152 -8-- ? P 2 I

 (. . . .(34')

 I - 2r12 J
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 The respective ratios of the second coefficient to the first are

 b13.2 - '2 -2 r12
 b121 r1 (1 -r2) 1

 b'13.2 r- pr 2 .. . . . . . . . (35)
 b'12.3 r1 (1-pr2) J

 The condition that the second ratio shall be greater than the first (r2 not equal to rl)

 reduces simply to p < 1, which is necessarily true. That is to say, where superposed

 random errors occur, we would expect the ratio of the second partial regression to the

 first to be greater than when such errors are eliminated or reduced. We have found

 precisely the contrary, for the ratio is greater for the graduated than for the ungraduated

 numbers.

 An examination of the chart and of the figures suggests that the explanation may lie
 in an unexpected and unintended effect of the graduation.. The occurrence of a damping

 term in the solution of the empirical finite difference equation may conceivably be due

 to an attempt of the equation to represent the asymmetry of the waves in the sunspot

 curve, which is a marked feature of the sunspot curve in waves of large amplitude. A
 careful inspection of the graphs and of the figures of Table A suggests that the graduation

 has tended to lessen this asymmetry, owing presumably to second differences only having
 been taken into account. As definite features in Table A, it may be noted that graduation

 has pushed forward the maximum from 1769 to 1770, has greatly lessened the diference

 between the ordinates at 1778 and 1779, and has advanced the maximum again from

 1787 to 1788, from 1870 to 1871, from 1905 to 1906, and from 1917 to 1918. If wve take
 two damped sine curves with the above respective values of ?x, but, for fair comparison,

 the same period--say, 11 - 164 years-the first with the greater damping factor would have
 its first maximum at 2 15 years, the second with the lower damping factor at 2 44 years-

 i.e., the maximum would be advanced by roundly 0 3 of a year. The graduation seems

 to have had, unintentionally, the effect of producing an average advance of this order
 of magnitude, and therefore of reducing the apparent damping.

 The question whether in fact the damping factor represents a physical reality or merely

 an attempt of the empirical formula to adjust itself to the asymmetry of the waves is

 for the present postponed. In the first place, a more detailed examination of the

 disturbances is desirable.

 First let us examine more closely the apparent alternation of disturbed and quiet

 periods, each some 40 to 42 years in duration:, which was already noted in the graph of
 the disturbances as calculated from the h'armonic formula and is equally evident in the

 present graphs. It is not possible to assign the beginnings and ends of such periods

 with precision; and, as it happens, doino the work independently, I did not take precisely
 the same years for WOLFER'S and the graduated numbers. There is also a difficulty at

 the commencement of the data. As I judge it, the magnitude of the disturbance in 1751
 voL.. ccxxvl.-A. ....2 Q
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 indicates this year as within a disturbed period, and it is the first year for which -we can

 calculate a disturbance, so that it must be taken as the beginning of the period for

 WOLFER'S numbers. But 1753 is the first year for which we can calculate a disturbance

 for the graduated numbers, and this must be taken as the opening of the period.

 Table II gives the mean values of the disturbances for the periods finally adopted, and

 also the standard deviations. It will be seen that they completely confirm the impres-

 sion given by the graph. Alternate periods give positive and negative mean values*

 of the disturbance: the periods with positive mean give a high value of the standard

 deviation, the periods with negative mean a low value of the standard deviation. At

 TABLE II.-Means and Standard Deviations of disturbances in disturbed and quiet

 periods of 40 to 42 years. Disturbances from Table A at the end of the paper.

 WOLFER'S numbers.

 Number Mea Standard
 Period. of disturbance. deviation.

 years.

 1751-1792 42 -4- 6.74 17*80
 1793-1834 42 - 5e80 7*32
 1835-1875 41 + 4.43 i.7 85
 1876-1915 40 -- 2.61 10*59

 Graduated numbers.

 1753-1793 41 + 4 41 11P62
 1794-1834 41 -- 5*42 5*30
 1835-1875 41 + 3.95 12-49
 1876-1915 40 - 2.95 6.61

 the same time the last quiet period, taken as 1 876 to 1915 inclusive, was more disturbed
 than the very conspicuously quiet period from 1793 to 1834 or thereabouts. While a

 much longer experience will be necessary to confirm the result, this alternation seems a
 rather conspicuous feature of the existing data.

 Further inspection of the graphs suggests another feature which is at least not obvious
 in the first graph for the disturbances calculated from the harmonic curve formula.

 In the lines showing quinquennial averages, on the two lower graphs, there are distinct

 "humps " more or less consilient with the waves in the sunspot graph, but a little earlier

 * It may be noted that positive or negative disturbances as calculated from (31) or (32) are what is
 meant. But the constant term in each of these equations may be understood as a steady positive
 " disturbance," and if added to the disturbances of Table A, from which the graphs are plotted, would

 render positive the bulk of the negative disturbances there given.
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 in phase. Examination of the figures of Table A suggests, in fact, that positive disturb-

 ances tend to begin at or just after the minimum, and continue till the maximum or a

 year or two before, disturbances from the maximum to the minimum, or a year or two

 after the minimum., being preponderantly negative. Preceding the maximum there is
 often a group of two or more large positive disturbances. Table Ill gives a summary

 TABLE IIJ.-Sums and means of disturbances in rising and preponderantly falling parts
 of the graph of sunspot numbers: rising " implying from the minimum or a

 year beyond to the maximum or a year or two before.

 WOLFER'S nIumbers. Graduated numbers.

 Rise + Sum of Rise + Sum of
 Years. or disturb- Mean. Years. or disturb- Mean.

 fall - ances. fall- ances.

 1751-1756 - - 37*5 - 6.2 1753-1755 - - 10-8 - 3*6
 1757-1761 + + 36 0 A- 7*2 1756-1760 + + 13*2 + 2.6
 1762-1766 - 38*4 - 7.7 1761-1765 16- 16 3 3 3
 1767-1769 + + 58.2 + 19.4 1766-1768 + + 36.9 + 12*3
 1770-1775 _ - 25*3 - 4*2 1769-1774 - - 76 - 1P3
 1776-1778 + +102.5 + 34*2 1775-1778 + + 71 4 + 17*8
 1779-1784 _ - 27*5 - 4*6 1779-1784 4 - 0*8
 1785-1787 + + 77.5 + 25 8 1785-1787 + + 59*5 -- 19*8
 1788-1799 _ - 10*7 - 0*9 1788-1799 _ - 02 0.0

 1800-1802 + - 5*7 - 1.9 1800-1802 + - 9*0 - 3*0
 1803-1810 _ - 645 - 8.1 1803-1810 - - 56.7 7.1
 1811-1816 + - 37.7 - 6 3 1811-1816 4- - 36*9 6*1
 1817-1823 - 68.2 - 9*7 1817-1823 - - 58*9 - 84
 1824-1830 + - + 6 9 X4- 10 1824-1829 + - 6.4 - 1.1
 1831-1833 _ - 323 10*8 1830-1833 -- 23 4 - 58
 1834-1836 + + 76.7 + 25.6 1834-1836 + + 61 7 + 20 6
 1837-1843 _ - 77 - 1P1 1837-1843 _ + 3 5 + 0*5
 1844-1848 + + 66 0 -- 132 1844-1848 + + 39*6 - 7X9
 1849-1856 - 23 5 - 2*9 1849-1855 - - 14 - 02
 1857-1859 + + 42.0 + 14X0 1856-1859 + -1- 25*6 + 64
 1860-1867 - 27.5 - 3*4 1860-1866 _ - 15.9 - 2*3
 1868-1870 + + 89.4 -- 29*8 1867-1871 + -f 62 0 -+- 12 4
 1871-1879 53 5 - 5 9 1872-1879 - 24.7 -- 3 1
 1880-1884 + -- 16.1 + 32 1880-1884 + + 3 1 + 0 6
 1885-1890 _ - 498 - 83 1885-1889 _ - 32.7 - 6*5
 1891-1892 - + 32X3 + 16X1 1890-1892 + -+- 17*8 + 5.9
 1893-1901 - 48.2 - 54 1893-1902 _ _ - 42.9 - 4.3

 1902-1907 + + 6 9 + 11 1903-1908 + + 0 5 + 0*1
 1908-1913 _ 54 0 -- 9*0 1909-1913 _ - 41*4 - 8.3
 1914-1917 + +- 4841 + 12.0 1914-1918 + + 20*9 + 4.2
 1918-1923 _ -- 51*4 - 8.6 1919-1922 _ -- 19.6 -- 4.9

 of the disturbances over such alternate rising or preponderantly falling periods. Owing

 to the small shift noted as a secondary effect of the graduation, the years taken are not

 quite the same for WOLFER'S numbers and for the graduated. numbers. In both cases

 2 Q2
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 the tendency to alternation in sign is clear, though the closer for the ungraduated data.

 During the earlier part of the " very quiet " period that ended with 1834, all the sums of

 disturbances are negative, whether for a rising or falling part of the graph, but the sums

 tend to be higher during a fall than during a rise. During the rather abnormal long

 fall from 1788 to 1799 there is also an irregularity. The numbers seem. to have been
 maintained during these years by a succession of positive disturbances up to 1792 or 1793,

 and the negative disturbances of the following years only just overbalance these and

 leave a small negative total

 This distribution of the disturbances seems to me to have some bearing on the question
 whether we may perhaps tentatively regard the damped hiarmnonic formula at which we

 have empirically arrived as being something more than merely empirical, and repre-
 senting some physical reality. As it seems to me, the disturbances do occur just in the
 kind of way that would be necessary to maintain a damped vibration, and. this suggests

 that broadly the conception fits the facts.*

 Clearly, however, a simple damped vibration, varying round zero, is not quite what is
 wanted. One would rather expect a faurction of the form, of the square of a damped
 harTmonie vibration, say,

 y Ae at (1 - COS 0t) . . . . . . . . . . . . (36)

 The form of this function is shown in fig. 5, and it would look as though a train of such

 functions superposed on each other would give a graph not unlike that of the sunspot
 numbers (cf. below, fig. 6). But the difference

 equation of this function is of the third order, and

 would therefore have to be extended to include

 / uI2,_3. This raises again the serious theoretical

 difficulties briefly mentioned in Section II, B,
 ___ p. 278. Even if the difference equation is in

 ______- fact of the- forie supposed, it is doubtful if it can
 FIG. 5.-Graph of the function**a

 be determined. The question does render it equlation (36).
 necessary, however, to examine the correlations

 of U,, with u-3 and more distant terms, and see what information they give us.

 B.---The Correlations of ux with Ux - 3 and more Distant Terms, and the Information given
 thereby.-On the left of Table IV are given the serial correlations, as I have termed them,

 for WOLFER'S sunspot numbers and the graduated numbers respectively: ri is the
 correlation between ux and ut1 r2 the correlation between ux and u_2, and so on.
 From these all the partial correlations are calculated on the assumption that the series

 is indefinitely long, so that we may assume that the correlation between uibe and ux-2
 is the same as that between ux and ux1, and so forth-an assumption which implies

 * But I fail to find any relation between the disturbances and TURNER'S dates of discontinuity of phase
 (' Monthly Notices,' IR.A.S., vol. 74, p. 82).
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 corresponding equalities between partial correlations. The serial correlations are given

 as far as r5, which is the negative maximum, r, being slightly smaller numerically.

 TABLE IV.--Serial correlations for WOLFER'S and the graduated sunspot numbers, and

 the deduced partial correlations, etc. In the serial correlations, 1 denotes the

 correlation between uA and ua. a, 2 the correlation between u. and u,-2, and so on.
 In the partial correlations 13 2 denotes the correlation between. u, and ux-2, U?1.
 constant, and. so on.

 WOLFER'S sunspot numberS.

 Continued
 Serial correlations. Partial correlations. 1- r2. product of

 1 r2.

 1 i- 0 811180 12 -+ 0.81180 v 0341987 1 0341.987
 2 -H- (O0433998 1 132 -- 0655040 0*570923 0195248
 3 -t O031574 14'23 _ 0 101043 0 989790 0493255
 4 --0 0264463 15'234 X 0'013531 0.999817 04193219
 5 - 0'404119 16;2345 - 0050001 0.997500 04192736

 Graduated sunspot numbers.

 1 i - 0 840670 12 + 0840670 0*293274 0 293274
 2 ? 0*471388 13'2 - 0802451 0'356072 0K104427
 3 + 0 047038 14-23 -+ 0037840 0-998568 04104277
 4 - 0264147 15*234 + 0-351917 0876154 0091363
 5 -- 0*404327 16-2345 + 0325556 0*894013 0 081680

 In the case of the partial correlations, r13.2 denotes the correlation between u,, and

 u12,_2) u1/SC1 constant ; r4.23 the correlation between ux and u-3, uX-1 and u82 constant;
 and so on. Only those partial correlations are given which are necessary to show how
 far we can improve the estimate of ux by taking into account the successive terms

 beyond u,1-,. The continued products of (1 - r2) are given in the last column on the
 right, and we may fix our attention on these, considering first the figures for WOLFER'S

 numbers. It will be seen that after the first two terms all the correlations are so small
 that the continued product of (1 -r2) hardly falls at all, the variance of the disturbances-
 that is, the errors made in estimating u. from the preceding terms--only falling from

 some 19 5 per cent. to some 19 3 per cent. of the total variance of the numbers them-
 selves. It seems quite clear that in the case of the ungraduated numbers it would be an

 entire waste of time to take into account any terms more distant from u, than u %2
 for purposes of estimation. As regards the idea suggested that the difference equation
 should be of the form required for such a function as (36), it may be noted that r14.23
 is of the wrong sign: a positive correlation would be required. The correlations give no
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 evidence at all of any periodicity other than the fundamental, nor of any other exponen-

 tial function. They strongly emphasise the increase of the element of unpredictability

 with the time.

 When we turn to the correlations for the graduated numbers, matters are not altogether

 so clear. The last two partial correlations given in Table IV rise to markedly higher

 values than are found for the ungraduated figures, both exceeding + 0 3. The total
 correlations are based on 167 to 171 observations, and if we calculated the standard error

 by the ordinary formula, it would be under 0 08, and we would reckon both correlations
 as significant. Here, however, we have to do withli a correlated series, not a random

 sample; the standard error is probably higher, and personally I am inclined to doubt
 whether either correlation is really significant.. The discrepancies of sign as compared

 with the partial correlations for the ungraduated numbers in the case of the third and

 fifth partials may alone suffice to raise doubts. In any case, the effect of these correlations

 on the continued product of (1 - r2) is extremely small, only reducing the variance of

 disturbances from 10 4 to 8 2 per cent. of the total. In this case also there is very little

 to be gained by taking into account any terms beyond uMx2, even if that little be
 significant.

 This result, that terms beyond U.-2 hardly come into account if we attempt to estimate

 uX by means of the preceding terms is, as it seems to me, what ought to be expected if
 the series is in fact "disturbed." But, in a sense, it is rather disappointing. Fig. 6

 FIG. 6.-Graph of a series of superposed functions of the form of fig. 5, each one starting when the one

 before reaches its first minimum.

 shows a graph formed by superposing a series of functions of the form (36), or fig. 5, of

 varying amplitudes, a new one starting when the one before reaches its first minimum.
 It will be seen that the graph is very like that of the sunspot numbers. It may be that

 this is, or is a close approximation to, the actual function, but when disturbances affect
 the movement, it does not seem possible to determine the constants, at least by the
 present method. The road seems to be blocked at the first approximation given by

 the regression equations of the second order (31) and (32).

 The objection may be raised that the suggested function is not " anti-symmetrical, " as
 required by the result of LARMOR and YAMAGA'S investigation, so that F (t) -F (- t)
 when the origin is taken on the periodic curve at the mean height, and the Fourier series
 consists of sine terms only. But the divergence of the suggested function from anti-
 symmetry is quite small, and LARMOR and YAMAGA only state that the cosine terms
 found for the mean sunspot wave had amplitudes less than unity. To get a comparison
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 with their results I have worked out the harmonic analysis of the first period of the

 function (36) with the following nui-nerical values, being those used for fig. 5.

 y =- 100e- 230>It (1--cos 2 t) . . . . . . . . . . (37)

 where 0 23026 1/10 log e. Integration has first to be effected with zero as time-
 origin, and when the sine and cosine amplitudes have been determined the origin can be
 shifted to the epoch at which the function attains its mean value, t = I 6802. The
 final result is

 y = 34-459 + 36-10 sin Ox -I- 4107 sin 20x 4-1-06 sin 3Ox .
 + 0 * 63 cos Ox-1 * 61 cos 2Ox 0 *47. cos 3(Ox

 The expansion LARMOR and YAMAGA find for the unmodified sunspot curve is

 y = 44*5 + 35*4 sin lt -6- 615 sin 2kt, . . . . . . . . (339)

 and for the same curve as modified by equalising the amplitudes of all the waves in the
 sunspot curve over the period considered

 y = 45 + 375 8 sin k't + 6 5 sin 2k't +- 14 sin. 3kt. . . . . . (40)

 I chose the amplitude in (37) so as to make the amplitude in the first sine term approxi-
 mately the same in (38) as in-(39) and (40), so that the three expansions are fairly
 comparable. It will be seen that in (38) two of the three cosine amplitudes are less than
 unity, and would have been ignored on LARMOR and YAMAGA' S criterion: the third is
 only 1 * 61. It does not seem to me that (38) differs very materially from (39) or (40)
 the main difference seems to lie in the relatively low value obtained in (38) for the ampli-
 tude of the second sine term-, rather than in the amplitudes of the cosine terms, and the

 value taken for the damping coefficient, a -- O 23026, is high. In the above case a/0
 is 0 37 roundly: from the position of the niaximuni in LA moi and YAMAGA'S fig. 4
 I should estimate a at about 0 :L46, a/0 (the year as unit) at about 0 26.

 IV. SOME TRIALS OF PERIODOGRAM ANALYSIS ON THE EXPERIMENTAL DISTURBED

 SERIES.

 'The opinion was expressed in Section I that the application of periodogram analysis
 to " disturbed" functions must yield results Subject to a much larger margin of error
 than is usually supposed. I can see no direct way of tackling the problem and finding
 the standard error of the amplitude of a period found from any number n of observations,
 given the standard deviation of the disturbances, even assuming for simnpl~icity that
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 these are random, as in my experimental case. For the u's-i.e., the terms of the
 observed series-are not terms of a random but of an oscillatory series, in which ul

 is correlated with Unx and the sign of the correlation changes as x increases.* The
 problem is too complex for my abilities at least. Hence I thought it worth while to

 carry out some trials on the data used for fig. 2, and for testing the methods developed

 in Sections II and III. To avoid decimal places in the analysis, the original figures
 were cut down to two decimals and then multiplied by 100, so that one unit in fig. 2

 corresponds to an amplitude of 100, or an intensity of 10,000.
 A.-For the first test four groups of observations were used, covering roughly the

 first, second, third and fourth quarter of the observations respectively. For each of

 these groups the intensities of the periods 8, 9, 10, 1:1 and 12 alone were determined in
 the first instance. Subsequently, periods 9'S and 105 were added. Since for these

 periods it was necessary to take observations covering an even number of periods, 8

 periods were used, so that 84 observations were required for the period 10 5. The

 original intention was to use only 70 observations or as few more as could be helped;

 hence only 70 observations were employed to get the intensity of the period 10. The

 figures, however, are reasonably comparable, and are given in Table V: the second
 italicizedd) line of figures for each group gives the calculated intensity for a simple

 harmonic function of period 10 and the intensity shown in the table.

 It will be seen that while in every group the intensity for period 10 is the greatest,

 the relative intensities of the respective periods in the different groups vary largely.

 In Group HI the intensity of 10 5 is nearly equal to the intensity of 10, while the
 intensity of 9 5 is less than a third of the intensity of 10. In Group I the intensities

 of 9 5 and 10'5 are not far from equal, while in Groups Ill and IV the intensity of 9.5

 is much greater than that of 10 '5. In Groups I and II the intensity of 9 5 is less than

 the calculated figure, in Groups III and I-V substantially greater, while for the period

 105 matters go just the other way.

 If Awe look at the figures for periods di-verging rwore largely from the fundamental,

 the variation is almost more striking. In the case of periods 8 and 9, observed intensities
 vary roundly from one-fourth to four times the calculated intensity for a simple harmonic

 function, or more. For period 11 the range is from under a fourth to about three times
 the calculated figure. For period 12 Group IV shows an intensity well over four times the

 calculated figure: Group III gives an almost vanishingly small intensity against a
 calculated intensity of nearly 3,000.

 * Any series that is worth analysing at all must be an oscillatory series in this sense, the sense in
 which the term is used in the Address already cited (' Journ. Stat. Soc.' (1926)). SCHUSTER'S

 exp .onential formula renders great service by enabling us to exclude at once terms which might arise
 even in tihe analysis of a random series; but fluctuations of sampling in intensities based on saruples

 from an oscillatory series may be much larger than the corresponding fluctuations in samples from a

 random series, and at present one is thrown back on empirical tests of significance in such cases. It is

 true that they may also be lower, but SCHUSTER'S formula then leaves one on the safe side.
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 TABLE V.-Periodogram analysis, for seven periods only, of four groups of 70 to 80
 observations each in the experimental series. The first line in the table for each
 group gives the intensity found, the second line in italic type the calculated intensity

 for a simple harmonic function of period 10 and the intensity shown. Original
 ordinates multiplied by 100.

 Period: intervals.

 Group.

 8 9 9'S i 10 10.5 11 12

 1 880 9,139 35,606 62,341 40,233 12,480 1 708
 673 3,410 35,708 - 35,708 8(37 1,516

 lII2,344 771 18,030 61015 60,047 26,399 245
 659 3,338 34,949 _ 34,949 8, 258 1,483

 TIII+ 5,649 23,961 92,193 116,206 51,695 14,511 54
 1,255 6,356 66,562 - 66,562 15,727 2,825

 IV 3,738 6,591 65,395 90,927 33,457 2912 9,476
 982 4,974 5052,082 12,306 2,210

 Periods covered by 9 8 8 7 8 7 6
 amalysis.

 As might be expected from an examination of the graph, fig. 2, the phase of the
 fundamental period varies largely from group to group. The relative phases are:--

 Group I-3100

 I1-2760

 III--2520

 IV-2950

 It is evident that, for curves of this type, identity of phase in successive sections of the
 observations cannot serve as an empirical test of the reality of a period. The periodicity
 -or, rather, the fundamental tendency to the given period-inay be absolutely real, but
 phase may shift backwards and forwards over quite a large fraction of the period.

 B.--The second test carried out was a detailed periodogram analysis of the series
 as a whole (273 to 327 observations) between periods 9 and 11. The results are shown
 in Table VI and the graph fig. 7.

 One effect of the shifting phase of the fundamental period is immediately noticeable.
 The intensity of period 10 comes out at 67,600 roundly, a figure little higher than the
 intensities for Groups I1 and It in Table V, and much less than those shown by Groups
 III and IV. The average for Groups I to IA; would be 82,600; but even this figure is

 VO)L. cCOxvJ.-A, 2 ;n
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 TABLE VI.-Periodogram analysis of experimental series (273-327 observations) for
 periods between 9 and 11 intervals. The values of A and B for periods 9 and 11.
 have been adjusted to observation 1 as origin. Original ordinates multiplied by
 100.

 Period: Observations A.-Sine 1B.-Cosine Intensity: Calculated I
 intervals. used. amplitude. amplitude. I ? + B2 for harmonic amplitude. amplitude, ~~~~~f Unction.

 9.0 2 -298 - 1658 - 23- 6 832 0
 941 1 - 273 - 56-37 27 26 3,921 615
 -6 1 - 275 10-79 52 63 2,886 1,096
 9 2 1 276 + 15*07 43-46 2,116 1,076
 9?3 1 - 279 4- 14*33 - 33.57 2,398 148
 9, 1 1- 280 - 17*66 +-- 45*50 2,382 0
 9.4 1- 282 - 85*16 + 9-00 7,333 730
 9.5 1 -285 -L 5152 1-17 -14 16,376 3,045
 9e6 I 288 + 94-98 - 84 57 16)173 1,644
 9~z3 1 290 + 99.77 - 21-52 10,555 5
 9.7 1 -291 4 58*12 4 . 67 - 24 7,899 808
 9.8 I - 294 113-40 4 - i4 63 13,074 17,215
 9.9 1 - 297 -- 55 21 -- 193'.85 40,618 49.829
 10*0 I - 300 F 190-7I --- 176 79 67,625 67,625
 10.1 1 - 303 ? 23848 V 574 14 60,138 49,82(9
 10 2 1 - 306 - 77 48 - 156*229 30,484 17,215
 10 3 1 - 309 5.73 4- 6 *89 7,583 808
 1013 1- 310 4 4L92 4 67-45 4,574 0
 10*4 1- 312 4- 2 91 4- 58-58 3,440 1,644
 10.5 1 -- 315 - 22 01 -4- 62-4 4,383 3,045
 10- 6 - 318 - 33 . 74 4- 21*46 1,599 730
 10 1- 320 - 12^88 -A i 555 14 0
 10 7 1 321 - 3 97 9 43 10 148
 10-8 1 - 324 17 1>27 -4- 3130 ! 1,278 1,076
 10a 1- 325 - 29 41 4- 27>62 1,628 1,096
 10.9 1 - 327 - 38 06 - 0 67 1,4 9 615
 l1U0 2 - 298 - 6-51 - 8 70 1.18 0

 7 0 . -_ _ - _ _ _ _ -

 50-

 CoD - -- __ *

 CD,

 ;0:

 '.4-, 30 - 21

 '.4-' ~ ~ ~ PeL~
 FTS~t 7t~erlo Cogrt o hJep~~lna itu~~ eisQTWtGl? 1 ae:dt nT~l
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 misleadingly low, for the figure for each group is also lowered by the shifting phase. If

 the graph represented a simple harmonic function, the intensity would be given by

 A2 = 2a2, where a is the standard deviation of the series about the zero base-line, and

 for the series in question this would show an intensity of 92,700. The periodogram

 intensity is therefore too low by some 25 per cent.

 It is clear, then, that periodogram analysis applied to functions of the present kind

 tends to give much too low* an intensity for the fundamental. But this at once raises

 the question, what would be the magnitude of such reduction if the series were

 indefinitely long? If we refer back to Section I and the analysis of the series into its

 component parts, the complementary function which is a simple harmonic function

 and the particular integral which is a fluctuating series, the answer is, I think, clear.

 The intensity of the complementary function alone would remain at its true value:

 the intensity of the particular integral would vanish. But if disturbances are sufficiently

 large, the particular integral contributes nearly the whole of the intensity: even in the

 present case it contributes roundly eight-ninths. Hence in a heavily disturbed series the

 intensity would in the long run tend almost to vanish, and the result given by the

 periodogram might tend to mislead the incautious interpreter. Probably, however, the

 result would not mislead in practice, because only a modest number of periods is usually

 available.

 Turning now either to the last two columns of the table or to the graph, the main

 general effect of the varying phase is evidently to broaden the band that would be given

 by a simple harmonic function of the same period. At the points where the intensity
 should drop to zero for a simple harmonic function, the observed intensities show a

 tendency to drop to minima but remain above zero. The two sides of the periodogram

 are, however, strikingly unlike each other: the graph is markedly asymmetrical, and

 one cannot help wondering whether the same characteristic would have remained had

 the series been longer-3,000 observations, say, instead of 300. Outside limits of about

 9 *7 to 10*3, intensities are much higher for periods below the fundamental than for periods

 correspondingly above it.

 It is of interest to compare fig. 7 with Graph A in fig. 2 of SCHUSTER'S paper, in which

 the periodogram for the sunspot numbers between 1826 and 1900 is compared with the

 calculated periodogram, for a simple harmonic function. It shows something of the

 same characteristics, the intensities of shorter periods being much higher than the
 calculated values, while the intensities of longer periods, round about 14 years, are

 actually lower. The graph of the periodogram, for the entire series, from 1750 to 1900,
 SCHUSTER'S fig. 1, somewhat similarly but even more markedly shows much higher

 intensities for periods from 8-25 to 10-25 years than for periods from 12-25 to 14-25,

 the average intensities over these ranges being 1,061 and 394 respectively.

 * [Added, February 17.-Too low, I hope it is clear, only in the sense in which the whole of the intensity

 may be regarded as due to the tendency to follow the fundamental period. Actually the intensity is much

 higher than that of the complementary function, which is the strictly periodic component.]

 2 R 2
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 It must be borne in mind that this section has been concerned solely with the effect

 of a certain series of random disturbances. In data referring to natural phenomena
 it is unlikely that the disturbances will be strictly random with respect to time, and the

 effect on the per iodogram may be much more marked.

 V. SUMMARY AND CONCLUSIONS.

 The sunspot numbers it is suggested, should be regarded as analogous to the data

 that would be given by observations of a disturbed periodic miovenernt, such as that
 of a pendulum subjected to successive small random impulses.

 The graph of such a m-ovement presents the principal features of the graph of sunspot

 fnumebrs, viz., a Surprising degree of smoothuess accompam ed by a con).tinual change of
 amplitude and shift of phase.

 It is suggested that in this case the application of the periodogram method gives results

 subject to a large margin of error, andl may be misleading. Trial on an emipirical
 disturbed series (Section IV) showed, in fact, that with only 7 or 8 periods results are
 highly erratic ; with a larger number of periods, about 30, the main effect is a broadening
 of the band due to the fundamental and a reduction of the apparent intensity.

 The problem of determining the period and the disturbances, in the case of the sunspot

 numbers, was attacked in the first instance (Section 1I) by finding the best (least square)

 linear equation relating ux + u-2 to u,-,, this giving the form of difference equation
 required for a simple harmonic function. The equation gave a period which was

 obviously too low. It is suggested that this result is due to the presence of superposed

 fluctuations in addition to disturbances, a suggestion borne out by applying the same
 method to graduated values of the numbers. This yielded a much closer approximation
 to the period suggested by the graph.

 Applying an extension of the same method in an endeavour to determine whether
 or no there was any secondary period in addition to the fundamental, the paradoxical
 result was reached that (with the particular form of equation corresponding to two

 simple harmonic functions) ua. cannot be so closely estimated in terms of uvail to u$4

 as in terms of ,-, and U,-2 alone. There is thus no evidence of the existence of any
 secondary period. The result also suggests the existence of disturbances (as distinct
 from superposed fluctuations), since only disturbances can give the required element
 of unpredictability rapidly increasing with the time.

 T'he better and more general method was then applied (Section III) of determining
 the regression equation for Ad on n_ and u,- and solving this as a finite difference
 equation. The solution is a rapidly damped harmonic function.

 The " disturbances " deduced from the equation show two principal features: (1) a
 tendency to give preponderantly positive and highly variable disturbances, and pre-

 poncterantly negative and less variable disturbances, in alternate intervals of 40 to 42
 years (of. Table II) ; (2) a tendency for positive disturbances during the approach to the
 maximum of tjhe sunspot numbers, negative disturbances during the approach to
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 minimum (cf. Table III). It is suggested that the second feature accords with the

 necessity for maintaining a damped periodic function.

 A damped harmonic function of the time is, however, clearly not the mathematical

 form required: a form that would suit the data very well would be the square of a

 damped harmonic function. The difference equation of this function is of the third

 degree, and would therefore require u,-3 to be brought into the regression equation as
 well as u.1 and u,,-2.

 But investigation of the correlations (Table IV) shows that for the ungraduated

 numbers it would be no use whatever, for the graduated numbers very little use, to

 bring in further terms beyond .' -2, once more emphasizing the rapid increase of the
 element of unpredictability with the time.

 Further work on this line deem.s, therefore, to be blocked-a rather disappointing

 conclusion, since the form of function suggested otherwise looks hopeful.

 The correlations, like the method of Section II, equally fail to suggest the presence of

 any period other than the fundamental, a conclusion entirely in accord with the work

 of LARMOpR and YAMAGA.

 I do not put forward the methods used in the present paper as necessarily the best,

 nor even in all cases applicable. I was attacking a problem which, to me at least, was a

 new one, and used the methods that seemed best at the moment; but experience may

 suggest better methods. With the present experience, indeed, it seems clear that the

 method of Section III is not a good method for determining the period, for it tends to

 give too low a value when superposed fluctuations are present in addition to disturbances,
 as in all probability they nearly always are. It might be better, for example, to deter-

 mine the period first by the simple and straightforward method of taking the interval

 between the first and last maxima (or minima), and dividing by the number of inter-

 vening periods, leaving only the damping factor to be found by least squares or other-

 wise. But while this is quite a possible method for the sunspot numbers, it would not be

 possible with a variable largely affected by superposed fluctuations: maxima and
 minima would be too indefinite. Variables affected largely both by disturbances and by

 superposed fluctuations present a very difficult problem for analysis.

 And I would like in conclusion to suggest that many series which have been or might

 be subjected to periodogram analysis may be subject to " disturbance " in the sense in
 which the term is here used,* and that this may possibly be the source of some rather

 odd results which have been reached. Disturbance will always arise if the value of the

 variable is affected by external circumstance and the oscillatory variation with time is
 wholly or partly self-determined, owing to the value of the variable at any. one time

 being a function of the immediately preceding values. Disturbance, as it seems to me,

 * [Added, February 17.-A number of the graphs in HEDGES and MYERS' ' The Problem of Physico-

 Chemical Periodicity' (Arnold, 1926) look obviously of the "disturbed" type, the waves being very

 smooth, but varying in phase and amplitude.]
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 can only be excluded if either (1) the variable is quite unaffected by external circui-n-
 stance, or (2) we are dealing with a forced vibration and the external circumstances

 producing this forced vibration are themselves undisturbed.

 TABLE A.-WTOLFER'S sunspot numbers and graduated numbers, and the disturbances

 calculated by equations (31) and (32) respectively. The graduated numbers are
 given solely because they were used for part of the preceding work: they are not a

 good graduation (cf. text, pp. 282-283).

 r.WOLFER's IDistur- Grdu Distur- WOLFE~R's Distur- Gatdu 1)istur- Year.|W?~~~s bance ahed Db~c Year. WnLber bsce- ated D.t~
 number. banee. nme. banee. number. banee, nmbr bane.

 1749 80'9 - - 1793 46.9 - 3*9 50'8 + 9'8
 1750 83-4 _ - _ 1794 41-0 + 3-5 35-5 9'5
 1751 47'7 - 25'2 61'S ---- 1795 21'3 - 16'9 26'5 -+ 0'6
 1752 47.8 ? 24'5 40'2 _ 1796 16-0 + 0'4 12'6 - 11.9
 1753 30'7 - 16.1 30'5 -t 6'3 1797 6.4 - 15.0 7.9 - 2-8
 1754 12'2 - 11-6 15'5 - 11.3 1798 4'1 _ 7.9 3-8 - 10-9
 1755 9'6 - 0.5 6'1 - 5'8 1799 6'8 - 8-4 6-0 - 6-3
 1756 10.2 - 8'6 15-4 + 5.7 1800 14'5 - 5'8 17'5 - 1'4
 1757 32'4 + 11-1 29'4 - 1'9 1801 34'0 + 5-1 32-2 - 24
 1758 47.6 - 3'1 46'1 + 1'1 1802 45'0 - 5'0 42'4 5'2
 1759 54-0 -- 2'6 54'0 - 5.1 1803 43-1 - 8'9 47-0 - 4-3
 1760 62'9 + 7.7 71'1 + 13'4 1804 47.5 + 52 45.6 - 4-5
 1761 85-9 + 22'9 72'8 - 4.5 1805 42-2 - 7'2 41*8 - 2-4
 1762 61-2 - 26'8 67'6 4- 1.5 1806 28'1 - 11.3 26-4 - 13-2
 1763 45.1 + 5-3 46.5 - 10.4 1807 10'1 - 13'9 14-5 - 4-8
 1764 36-4 + 2-1 33.4 + 4-3 1808 81 - 0'9 5-2 - 8.4
 1765 20'9 - 12'3 19'0 - 7'2 1809 2'5 - 15'6 3'2 - 5-9
 1766 11-4 -- 6.7 18'1 -- 3.3 1810 0-0 - 11-9 0-3 - 13-2
 1767 37.8 -V 22'3 34.6 + 9'6 1811 1'4 - 108 1-1 - 9-6
 1768 69.8 + 12'6 74.8 + 24.0 1812 5'0 - 10-7 6-2 - 8-1
 1769 106-1 + 23'3 97.9 - 0'5 1813 12'2 - 7'5 8-4 - 13.0
 1770 100.8 - 9'8 101-9 + 0'7 1814 13'9 - 13-1 20-1 - 0'5
 1771 81'6 + 1'9 85'9 - 2'8 1815 354 + 10-9 32-4 - 4-2
 1772 66.5 + 9'1 59.3 - 2.0 1816 45'8 - 6'5 44-3 - 1-5
 1773 34-8 - 14'9 44.9 + 11'1 1817 41-1 - 11-1 41.0 - 13-0
 1774 30'6 + 13'6 19'2 - 14.1 1818 30'4 - 8.7 32'3 - 7-1
 1775 7'0 - 25'2 10.6 + 4'7 1819 23'9 - 3'9 23'2 - 5.7
 1776 19'8 + 16'6 30'3 -V 16'8 1820 15-7 10'3 15'0 - 7'l
 1777 925 + 56'6 93.5 + 43'2 1821 6'6 - 12'7 8'1 - 8'9
 1778 154'4 + 29'3 136'9 -V 6'7 1822 4'0 - 8.4 2'4 - 10'7
 1779 125-9 - 34*7 130'4 - 14.9 1823 L1*8 13-1 3'6 - 6.4
 1780 84'8 + 3'0 93'1 - 7S5 1824 8'5 - 52 65 - 9'9
 1781 68'1 + 22'8 61'0 + 11'7 1825 16'6 - 7'5 19'7 - 0.1
 1782 38.5 - 11'3 42.7 -- 12.1 1826 36'3 + 5-7 33'7 3'8
 1783 22'8 + 1'8 19.0 - 9'6 1827 49'7 - 2.0 51'2 -V 3'1
 1784 10.2 9.1 10'8 + 3'4 1828 625 + 57 60'8 - 2'6
 1785 24-1 -V 11-5 32'2 -V 18'2 1829 67'0 +- 1'8 70S -V 6'9
 1786 82'9 + 43.4 81'3 + 28'3 1830 71'0 + 8'4 64'7 - 6.7
 1787 132'0 -4- 22'6 123'2 + 13.0 1831 47'8 - 175 51'3 - 2'S
 1788 130'9 -- 5'9 135'6 -+ 1'3 1832 27'5 - 3'8 24-8 -- 13-9
 1789 118-1 V 15'2 115'4 - 4'1 1833 8'5 - 11'0 9'3 0.0
 1790 89'9 V4 32 90'8 -V 119 1834 13'2 - 5'9 16'9 V 9'9
 1791 66'v 6 -V 9'v4 70'S 5 H-V 12'- 6 183S 56 89 +V 309 3 62'S -V 31'S
 1792 (O0 -4H- lt5'6 S5'9 -V 9'1 1836 121'S +V 39'9 111'3S -I- 20'3
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 TABLE A (continued).

 |Ye '| raWOLFEu'S Disturb- Gradu- Disturb- WOLFER'S Disturb- Gradu- Disturb-
 Year. number. ance. acted ance. Year. number. ance. acted ance.

 number. number.

 1837 138 3 - 1.5 13041 - 5*8 1881 54-3 + 1.0 51-2 -F 0'4
 1838 103*2 -16-8 113-5 - 4.8 1882 59.7 - 5.9 61b7 - 4.2
 1839 85 8 + 23 9 83*1 + 2- 6 1883 63 7 + 5- 2 64 2 -- 1.1
 1840 63-2 -- 1.7 61-4 + 13-7 1884 63.5 4- 3-2 63-2 + 2-6
 1841 36-8 5.7 40 4 + 1-2 1885 52 2 - 5*2 48-4 - 8-7
 1842 24-2 + 2-3 20 5 - 4.3 1886 25-4 -- 17-0 29-7 - 5-8
 1843 10-7 -= 116 12-4 -+ 0.9 1887 13-1 - 07 12-2 - 6-8
 1844 15-0 + 2 6 18.1 -F 2-8 1888 6-8 8 0 7.3 0-2
 1845 40.1 + 13-1 35-2 + 4?9 1889 6.3 - 8 1 2-9 11-2
 1846 61-5 + 3 6 66-6 + 14.9 1890 7-1 - 10.8 12-1 * 0 7
 1847 98-5 + 28-3 100-3 + 14-8 1891 35 6 - 16-3 37.3 + 8-4
 1848 124 3 + 18 4 113 6 + 2'2 1892 73 0 - 16 0 68 4 + 8.7
 1849 95-9 - 20 4 98-7 - 5-8 1893 8419 - 3.7 84.3 - 2-3
 1850 66-5 + 5.3 73-6 + 2-3 1894 78-0 - 2-1 79.4 - 6-3
 1851 6415 ? 24 2 60 2 + 15W0 1895 64 0 --F 1*0 62-2 - 3-3
 1852 54-2 -_ 2.7 54-4 + 9.4 1896 41 8 - 6*9 42-4 - 1.0
 1853 39 0 - 5.4 38.3 - 8r7 1897 26 2 - 1.9 30 7 + 3 5
 1854 20'6 - 10.1 20.7 - 6.5 1898 26-7 + 5 0 20-2 - 5-2
 1855 6-7 - 9-3 6.4 - 7-1 1899 12-1 20'5 16-9 - 1.9
 1856 4'3 1- 5-1 6-2 + 0.3 1900 9.5 3.1 6-2 - 16-1

 1857 22-8 + 7-6 22-7 4- 5-6 1901 2'7 16-0 393 - 5-4
 1858 5418 4- 13.1 59-0 4- 16.7 1902 5 0 - 6-3 8-0 - 4'9
 1859 93-8 + 21-3 87 0 - 3-0 1903 2 -4 -F 5.6 21-7 - 0-6
 1860 95-7 8-2 95-2 - 211 1904 42 0 - 1 3 46-5 - 7-2
 1861 77-2 -- 3-7 79-2 - 81 1 1905 63 5 4 9.2 54-1 - 11-8
 1862 59*1 4 4.2 57-7 + 1-2 1906 53-8 -- 17-8 63-7 + 6-2

 1863 44-0 1.3 149.9 1- 13.2 1907 62-0 H- 17-5 54-2 - 11-8
 1864 47-0 4- 12 8 401 4 - 1-8 1908 48.5 -13.4 55-2 4- 113
 1865 30 5 - 17-7 32-6 - 1.4 1909 43.9 5.5 36.9 - 16-1
 1866 16-3 - 7.7 12.9 - 16-9 1910 18-6 - 22-4 22-5 -- 240
 1867 7-3 - 8-5 14-7 4- 8.5 1911 5-7 -- 4.4 6-7 - 10-6
 1868 37-3 4+ 24-3 31-2 4+ 6.4 1912 3-6 - 5.7 1.2 3.8
 1869 73-9 4+ 14*7 89*9 4- 416 1913 1.4 1 - 13.6 0o4 - 8-9
 1870 139*1 4+ 50 4| 113 2 | 10 8 1914 9 6 -- 3 8 18 1 F 5 6
 1871 111-2 -- 41-1 128-5 4- 16*3 1915 47-4 4- 216 33-7 - 3
 1872 101*7 +-F 29-6 924 -- 24-3 1916 57*l -- 14*1 76 *3 + 26*9
 1873 66 3 1-- 1i3 72-9 4- 23.1 1917 103*9 4- 44 4 83t5 -179
 1874- 44-7 4- 84 394 1- 9-8 1918 80-6 35.4 90 8 + 12 6
 1875 171 - 13 I 21t9 4+ 7*8 1919 63-6 -F 9-6 59-3 - 21 1
 1876 11-3 4- 3.8 11.5 - 2*9 1920 37T6 - 8'9 41-9 -F 12-0
 1877 12-3 1 551 8.1 - 4-6 1921 26 1 --F 3 4 24 ?! - 4 8
 1878 31- 19?6 44 I -I 11.5 '1922 14-2 . 10.1 12'9 - 27
 1879 60() 4- 4- 105 - 2-5 1923 5I -8 10.0 - -
 1880 32 3 4- 12 6 30V6 + 5)4 1921 16 >7 +- 14-
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