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Summary. In this paper, we consider the problem of finding, among solutions of a moment
problem, the best Kullback-Leibler approximation of a given a priori spectral density. We present
a new complete existence proof for the dual optimization problem in the Byrnes-Lindquist spirit.
We also prove a descent property for a matricial iterative method for the numerical solution of
the dual problem. The latter has proven to perform extremely well in simulation testbeds.

1 Introduction

The concept of positive real function, originating in Networks Theory with Brune in
1930, has proven to be one of the deepest and most unifying ones of electrical en-
gineering. Names such as Foster, Cauer, Bode, Darlington, Youla, Popov, Kalman,
Yakubovich, Faurre, B.D.O. Anderson, J.C. Willems spring to mind. The quest first
posed by Kalman in 1964 for a realization theory for stochastic systems could rely
on these precious foundations. The strict sense version of the stochastic realization
problem (also called Markovian representation problem) has roots also in the theory of
Markov processes and in mathematical statistics (Bahadur transitive sufficient statistics,
etc.). Giorgio Picci was one of the pioneers (together with McKean [39], Akaike [1, 2]
and Ruckebusch [46]) in the early-mid seventies in this field. Perhaps, among the fore-
runners, he was the only one that drew equal inspiration from both of these areas, due
to the fact that he had equal interest in the concepts of Systems Theory and of Math-
ematical Statistics [43, 44, 45]. Perhaps, this can be recognized as one of the main
characteristics of all of Giorgio’s rather diversified scientific production, which lays at
the interface between stochastic systems theory and mathematical statistics. Another
salient aspect of his research work is the taste for profound, foundational questions that
continues today, for instance, in his work on subspace methods identification.

One of us (M.P.) had the privilege to witness the early days of the great Lindquist-
Picci collaboration [33]- [38], and to receive continuous, generous help from Giorgio
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both as a student and as a young researcher. The best way I can pay a personal tribute
to Giorgio as a scientist is to observe that, although I have interacted and continue
to interact with a large number and spectrum of colleagues, whenever there is a deep
question on the table, I still go or address people to Giorgio, precisely as I did more
than thirty years ago.

It is a joy to celebrate his devotion to science and research per se that continues
unabated to this day, and his manifold, benchmark contributions to stochastic systems
theory.

In this paper, we study a generalized moment problem for spectral densities in the
spirit of Byrnes-Georgiou-Lindquist [4, 6, 7, 8, 9, 10, 11, 17, 21, 22, 23, 24, 25, 26, 27,
40]. This problem includes as special case the covariance extension problem and
Nevanlinna-Pick interpolation for positive real functions. It also includes as special
case a maximum entropy problem which has been shown to be related to a special one-
step ahead Wiener-Kolmogorov prediction problem [27]. It features a Kullback-Leibler
type index. It lays, therefore, very much in the center of the field in which Giorgio has
been active for some forty years.

In the Byrnes-Georgiou-Lindquist approach, the smooth parametrization of the solu-
tions to the generalized moment problem occurs in a convex optimization setting. The
Kullback-Leibler criterion, where optimization is performed with respect to the second
argument, is employed as cost index. Other distances between spectra have been re-
cently investigated in [18, 19, 28, 29]. The contribution of this paper is twofold: On
the one hand we provide a detailed and complete existence proof for the dual optimiza-
tion problem (Section 5) in the Lindquist-Byrnes spirit [11]. On the other hand, we
show that the matricial algorithm proposed in [41] for the numerical solution of the
dual problem may be viewed as a modified steepest descent method (Section 6).

2 A Generalized Moment Problem

Let S+(T) be the family of bounded, coercive, spectral density functions on the unit
circle. Thus, a measurable, bounded function Φ belongs to S+(T) if the values of Φ
are real and bounded away from zero. Notice that Φ ∈ S+(T) if and only if Φ−1 ∈
S+(T). Let Ψ ∈ S+(T) represent an a priori estimate of the spectrum of an underlying
zero-mean, wide-sense stationary stochastic process {y(k), k ∈ Z}. Suppose we can
estimate the asymptotic covarianceΣ of the n-dimensional stationary process {xk; k ∈
Z} satisfying

xk+1 = Axk +Byk, k ∈ Z, (1)

where A is a stability matrix and the pair (A,B) is reachable. The rational transfer
function

G(z) = (zI −A)−1B, A ∈ Cn×n, B ∈ Cn×1, (2)

models a bank of filters. When Ψ is not consistent with Σ, we need to find Φ ∈ S+(T)
that is closest to Ψ in a suitable sense among spectra satisfying∫

G(eiϑ)Φ(eiϑ)G∗(eiϑ) = Σ, (3)
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where star denotes transposition plus conjugation. The Hermitian matrix Σ is assumed
to be positive definite and integration takes place on [−π, π] with respect to the normal-
ized Lebesgue measure dϑ/2π.

The question of existence of Φ ∈ S+(T) satisfying (3) and, when existence is
granted, the parametrization of all solutions to (3), may be viewed as a generalized
moment problem. We refer to [30] and references therein for a full discussion on the
importance and on the manifold applications of such problem. Here, we only mention
that, by suitably choosing the matrices A and B, this problem reduces the celebrated
covariance extension problem, see [30] for details. Existence of Φ ∈ S+(T) satisfying
constraint (3) is a nontrivial issue. It was shown in [23,24] that such family is nonempty
if and only if there existsH ∈ C1×n such that

Σ − AΣA∗ = BH +H∗B∗. (4)

For simplicity of notation, we reformulate the constraint by normalizingΣ to the iden-
tity. Indeed, the set of solutions to (3) does not change if we replace (Σ,A,B) with
(I, A′ = Σ−1/2AΣ1/2, B′ = Σ−1/2B). Notice that in this way G is replaced by
G′ := Σ−1/2G. Thus constraint (3) from now on reads∫

GΦG∗ = I. (5)

3 Kullback-Leibler Criterion

In [30], the following problem is considered:

Problem 1. Given Ψ ∈ S+(T), find Φ̂ that solves

minimize S(Ψ‖Φ) (6)

over
{
Φ ∈ S(T) |

∫
GΦG∗ = I

}
, (7)

where S(Ψ‖Φ) is the Kullback-Leibler index:

S(Ψ‖Φ) =
∫
Ψ log

(
Ψ

Φ

)
.

As is well known, this pseudo-distance originates in hypothesis testing, where it repre-
sents the mean information for observation for discrimination of an underlying proba-
bility density from another [32, p.6]. It also plays a central role in information theory,
identification, stochastic processes, etc., see e.g. [3, 12, 13, 15, 20, 31, 42, 48] and refer-
ences therein. It is also known in these fields as divergence, relative entropy, informa-
tion distance. etc. If ∫

Φ =
∫
Ψ,

we have S(Ψ‖Φ) ≥ 0. The choice of S(Ψ‖Φ) as a distance measure, even for spec-
tra that have different zeroth moment, is discussed in [30, Section III]. This choice is
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essentially based on the possibility of rescaling Ψ . Clearly, in this way the optimiza-
tion problem amounts to approximating the “shape” of the a priori spectrum. In this
spirit, Georgiou has recently investigated other distances between rays of power spectra,
[28,29]. This is of course sensible to pursue in several engineering applications such as
speech processing or prediction problems.

4 Optimality Conditions and the Dual Problem

The variational analysis in [30] is outlined as follows (see also [41]). Let

L′
+ := {Λ = Λ∗ ∈ Cn×n : G∗ΛG > 0, ∀eiϑ ∈ T}. (8)

For Λ ∈ L′
+ consider the Lagrangian function

L(Φ,Λ) = S(Ψ‖Φ) + tr
(
Λ

(∫
GΦG∗ − I

))
= S(Ψ‖Φ) +

∫
G∗ΛGΦ− tr (Λ), (9)

where “tr ” denotes the trace operator. Consider the unconstrained minimization of the
strictly convex functional L(Φ,Λ):

minimize{L(Φ,Λ)|Φ ∈ S(T)} (10)

This is a convex optimization problem.

Theorem 1. Suppose Λ̂ ∈ L′
+ is such that∫

G
Ψ

G∗Λ̂G
G∗ = I. (11)

Then Φ̂ given by

Φ̂ =
Ψ

G∗Λ̂G
(12)

is the unique solution of Problem 1.

Thus, the original Problem 1 is now reduced to finding Λ̂ ∈ L′
+ satisfying (11). We

define the linear operator Ξ : H → C(T) by Ξ(Λ) = G∗ΛG, where H is the set of
Hermitian matrices of dimension n× n and C(T) is the set of continuous functions on
T. Observe that if Λ ∈ L′

+ satisfies (11), then, for all ΛK ∈ kerΞ , the sum Λ + ΛK
also belongs to L′

+ and satisfies (11). Hence, we may restrict the search for Λ̂ to the
orthogonal complement of kerΞ i.e. to the range of the adjoint operator Γ := Ξ∗. It is
easy to see that the operator Γ is defined by

Γ (Φ) =
∫
GΦG∗, Φ ∈ C(T). (13)
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Thus, by setting
L+ := L′

+ ∩ [ker(Ξ)]⊥ = L′
+ ∩Range(Γ ) (14)

we are reduced to find Λ̂ ∈ L+ satisfying (11). This is accomplished via duality theory.
Consider the dual functional

Λ→ inf{L(Φ,Λ)|Φ ∈ S(T)}.

For Λ ∈ L+, the dual functional takes the form

Λ→ L

(
Ψ

G∗ΛG
,Λ

)
=

∫
Ψ logG∗ΛG− tr (Λ) +

∫
Ψ. (15)

Consider now the maximization of the dual functional (15) over the set L+. Let, as
in [30],

JΨ (Λ) := −
∫
Ψ logG∗ΛG+ tr (Λ). (16)

The dual problem is then equivalent to

minimize {JΨ (Λ)|Λ ∈ L+}. (17)

The dual problem is a strictly convex optimization problem [30]. Byrnes and Lindquist
have shown in [11] that JΨ has a unique minimum point in L+. This result implies that,
under assumption (4), there exists a (unique) Λ̂ ∈ L+ satisfying (11). Such a Λ̂ then
provides the optimal solution of the primal problem (6)-(7) via (12). In the next section,
we provide a new detailed proof of this result inspired by that of [11].

5 An Existence Theorem

Let us consider the closure of L+, given by

L+ = {Λ = Λ∗ ∈ Cn×n : Λ ∈ Range(Γ ), G∗ΛG ≥ 0, ∀eiϑ ∈ T}. (18)

On the convex set L+, we define the sequence of functions

JnΨ (Λ) := tr (Λ)−
∫
Ψ log

(
G∗ΛG+

1
n

)
. (19)

Lemma 1. The pointwise limit J∞
Ψ (Λ) = limn J

n
Ψ (Λ) exists and defines a lower semi-

continuous, convex function on L+ with values in the extended reals.

Proof. For each n, JnΨ is a continuous, convex function on the closed convex set L+.
Hence epi (JnΨ ), the epigraph of JnΨ , is a closed, convex subset of Cn×n×R. Moreover,
for Λ ∈ L+, JnΨ (Λ) < Jn+1

Ψ (Λ). Hence, J∞
Ψ is well defined and in fact J∞

Ψ (Λ) =
supn JnΨ (Λ). It follows that epi (J∞

Ψ ) = ∩nepi (JnΨ ) is also closed and convex. We
conclude that J∞

Ψ is lower semicontinuous and convex on L+.
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Lemma 2. Assume (4). Then,

1. J∞
Ψ is bounded below on L+;

2. J∞
Ψ (Λ) = JΨ (Λ) on L+;

3. J∞
Ψ (Λ) is finite on all of L+ \ {0}.

Proof. By (4), there exists Φ1 ∈ S+(T) satisfying (5), namely
∫
GΦ1G

∗ = I . Hence,
tr (Λ) can be written as tr (Λ

∫
GΦ1G

∗) =
∫
G∗ΛGΦ1, and we get

JnΨ (Λ) =
∫ [

G∗ΛGΦ1 − Ψ log
(
G∗ΛG+

1
n

)]
=

∫
Φ1

[
G∗ΛG− Ψ

Φ1
log

(
G∗ΛG+

1
n

)]
.

Since the function x− β log(x+ 1
n ) with β > 0 attains its minimum at x = β − 1

n , we
get

JnΨ (Λ) =
∫
Φ1

[
G∗ΛG− Ψ

Φ1
log

(
G∗ΛG+

1
n

)]
≥

∫
ψ − 1

n

∫
Φ1 − S(Ψ ||Φ1).

We conclude that J∞
Ψ ≥

∫
ψ − S(Ψ ||Φ1) on all of L+. To establish 2, notice that, by

Beppo Levi’s theorem,

J∞
Ψ (Λ) := tr (Λ)−

∫
lim
n→∞Ψ log

(
G∗ΛG+

1
n

)
, Λ ∈ L+. (20)

To prove 3, observe that for 0 	= Λ ∈ ∂L+, the boundary of L+, G∗ΛG is a nonzero
rational spectral density so that logG∗ΛG is integrable over T [47, pag. 64]. Since Ψ
is bounded, also Ψ logG∗ΛG is integrable.

In view of these lemmata, we extend JΨ (Λ) to all of L+ by setting JΨ (Λ) := J∞
Ψ (Λ)

on ∂L+. Notice that, by (20), JΨ is finite and given by (16) on L+ \ {0}, and it is +∞
in Λ = 0.

Lemma 3. Assume (4). Then

lim
‖Λ‖→+∞

JΨ (Λ) = +∞. (21)

Proof. Recall that by (4), there exists Φ1 ∈ S+(T) satisfying (5), and, consequently,
tr (Λ) =

∫
G∗ΛGΦ1 > 0, ∀Λ ∈ L+. Suppose Λk is a sequence of matrices in L+ such

that limk→∞ ||Λk|| = +∞. Define the normalized sequence Λ0
k := Λk

||Λk|| (of course,

we can assume Λk 	= 0, ∀k). Since trΛ0
k > 0,

η := lim inf
k→+∞

trΛ0
k ≥ 0.

Consider a sub-sequence such that the limit of its trace is η. This subsequence contains
a convergent sub-subsequence {Λ0

km
} since Λ0

k belongs to the surface of the unit ball,
which is compact. Let Λ∞ := limm→∞ Λ0

km
. Since G∗Λ0

nG > 0 on T, G∗Λ∞G ≥ 0
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on T. Moreover, Λ∞ ∈ RangeΓ , since RangeΓ is finite-dimensional, and hence
closed. This implies that G∗Λ∞G cannot be identically zero. In fact, if so, Λ∞ ∈
L+ = ker(Ξ) = RangeΓ⊥. Then Λ∞ ∈ RangeΓ ∩ RangeΓ⊥ = {0}, which is a
contradiction since ‖Λ∞‖ = 1. Thus

η = lim
n→∞ trΛ0

n = trΛ∞ =
∫
G∗Λ∞GΦ1 > 0 (22)

Hence, there exists aK such that trΛ0
k > η/2 for all k ≥ K . Finally, since G∗Λ0

kG ≤
G∗G, we obtain:

lim inf
k→∞

JΨ (Λk) = lim inf
k→∞

||Λk||trΛ0
k −

∫
Ψ log ||Λk||G∗Λ0

kG

= lim inf
k→∞

||Λk||trΛ0
k − (∫ Ψ) log ||Λk|| −

∫
Ψ logG∗Λ0

kG

≥ lim inf
k→∞

||Λk||trΛ0
k − (∫ Ψ) log ||Λk|| −

∫
Ψ logG∗G

≥ lim inf
k→∞

||Λk||
η

2
− (∫ Ψ) log ||Λk|| −

∫
Ψ logG∗G

= lim inf
k→∞

η

2

(
||Λk|| −

∫ Ψ
η/2

log ||Λk||
)
−

∫
Ψ logG∗G

= +∞.

Theorem 2. Assume that the feasibility condition (4) is satisfied. Then the problem of
minimizing the functional JΨ (Λ) = trΛ −

∫
Ψ logG∗ΛG over L+ admits a unique

solution Λ̂ ∈ L+.

Proof. In view of Lemma 1, Lemma 2 and Lemma 3, the functional JΨ is inf-compact
on the closed set L+, and therefore it admits a minimum point Λ̂ there. We show
next that Λ̂ ∈ L+. Of course, Λ̂ is not the zero matrix since JΨ (0) = +∞. Let
0 	= Λ ∈ ∂L+. By Lemma 2, JΨ (Λ) is finite. Observe that, by (4), I ∈ L+. By
convexity of L+, it then follows that Λ + ε(I − Λ) ∈ L+, ∀ε ∈ [0, 1]. We compute the
one-sided directional derivative or hemidifferential

J
′

Ψ+
(Λ; I − Λ) := lim

ε↘0

[
JΨ (Λ + ε(I − Λ))− JΨ (Λ)

ε

]
= tr (I − Λ) +

∫
Ψ −

∫
G∗GΨ
G∗ΛG

= −∞. (23)

Hence, Λ cannot be a minimum point. We conclude that Λ̂ ∈ L+.

6 A Descent Method for the Dual Problem

In general, the optimal solution of the dual problem needs to be computed numerically.
This is a delicate problem because of the unboundeness of the gradient of JΨ at the
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boundary of L+, see (23). The approaches proposed in [30] and references therein
involve some preliminary reparametrization of L+, which may imply loss of global
convexity.

In [41], a different matricial iterative method was proposed that appears to be very
fast and numerically robust. This method does not restrict the search of Λ̂ to L+ and
indeed it normally converges to a Λ̂ 	∈ Range(Γ ). We show below that this method may
be viewed as a modified gradient descent method with fixed step size. This method is
described as follows.

Let

M := {M ∈ L′
+ : 0 ≤M ≤ I, tr [M ] = 1}, (24)

M+ := {M ∈ M : M > 0}. (25)

ForM ∈ M, define the map Θ by

Θ(M) :=
∫
M1/2G

[
Ψ

G∗MG

]
G∗M1/2. (26)

Theorem 3. [41]. The map Θ maps M into M and M+ into M+.

Consider the following iterative algorithm.

Algorithm. LetM0 = 1
nI . Note thatM0 ∈M+. Define the sequence {Mk}∞k=0 by

Mk+1 := Θ(Mk). (27)

Notice that, by Theorem 3, Mk ∈ M+ for all k. Moreover, since Mk ∈ M, ∀k, the
sequence is bounded. Hence it has at least one accumulation (limit) point in the closure
M of M.

Theorem 4. Suppose that the sequence {Mk}∞k=0 has a limit M̂ ∈ M+. Then M̂ ∈ L′
+

and satisfies (11), and therefore provides the optimal solution of the approximation
problem via (12).

Notice that even when the sequence generated by (27) converges to a singular matrix
M̂ ∈M, it is still possible, though not guaranteed, that such a matrix solves the original
problem. We next show that the algorithm may be viewed as a modified gradient descent
method. To this aim, rewrite (27) as

Mk+1 =Mk +M1/2
k

[∫
GΨG∗

G∗MkG
− I

]
M

1/2
k . (28)

Proposition 1. Define

∆Mk :=M1/2
k

[∫
GΨG∗

G∗MkG
− I

]
M

1/2
k , (29)

so that (28) reads Mk+1 = Mk + ∆Mk. Then, ∆Mk is a descent direction at Mk

for JΨ .
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Proof. Let

∇JΨ (Mk) = I −
∫
GΨG∗

G∗MkG

denote the “gradient” of JΨ atMk. Then,

< ∇JΨ (Mk), ∆Mk >= tr (∇JΨ (Mk)∆Mk) = −tr
(
M

1/4
k ∇JΨ (Mk)M

1/4
k

)2
.

By Theorem3, Mk > 0, for all k. It follows that tr (∇JΨ (Mk)∆Mk) < 0, unless
∇JΨ (Mk) = 0 in which caseMk is a fixed point of the iteration which solves the dual
problem by Theorem(4).

One could implement the matricial iteration as

Mk+1 =Mk + αk∆Mk, (30)

where 0 < αk ≤ 1 is determined through backstepping, see e.g. [5]. Our extensive
simulation (see e.g. [41]), however, shows that convergence in fact occurs with αk ≡ 1!
Indeed, the algorithm appears to perform numerically very well. In fact, at each step
the integral (26) may be computed very precisely and efficiently via a spectral factoriza-
tion technique that only requires to solve an algebraic Riccati equation and a Lyapunov
equation, both of dimension n. We have performed an extensive number of simula-
tions where the sequence generated by (27) never failed to converge. In a very small
number of cases, we have observed convergence toward a singular matrix which, how-
ever, satisfied (11), and therefore provided the optimal solution of the approximation
problem.
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