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A Globally Convergent Matricial Algorithm
for Multivariate Spectral Estimation

Federico Ramponi, Augusto Ferrante, and Michele Pavon

Abstract—In this paper, we first describe a matricial Newton-
type algorithm designed to solve the multivariable spectrum
approximation problem. We then prove its global convergence.
Finally, we apply this approximation procedure to multivariate
spectral estimation, and test its effectiveness through simulation.
Simulation shows that, in the case of short observation records,
this method may provide a valid alternative to standard multi-
variable identification techniques such as MATLAB’s PEM and
MATLAB’s N4SID.

Index Terms—Convex optimization, global convergence,
Hellinger distance, matricial Newton algorithm, multivariable
spectrum approximation, spectral estimation.

I. INTRODUCTION

A UTOREGRESSIVE moving average (ARMA) identifi-
cation methods usually lead to nonconvex optimization

problems for which global convergence is not guaranteed, cf.
e.g. [11], [33], [39], [40]. Although these algorithms are simple
and perform effectively, as observed in [40, p.103], [32, Section
1], no theoretically satisfactory approach to ARMA parameter
estimation appears to be available. Alternative, convex opti-
mization approaches have been recently proposed by Byrnes,
Georgiou, Lindquist and co-workers [3], [30] in the frame of
a broad research effort on analytic interpolation with degree
constraint, see [1], [2], [4]–[9], [13], [18]–[26], [28], [29] and
references therein. In particular, [9] describes a new setting for
spectral estimation. This so-called THREE algorithm appears to
allow for higher resolution in prescribed frequency bands and
to be particularly suitable in case of short observation records.
It effectively detects spectral lines and steep variations (see [36]
for a recent biomedical application). An outline of this method
is as follows. A given realization of a stochastic process (a finite
collection of data ) is fed to a suitably structured bank
of filters, and the steady-state covariance matrix of the resulting
output is estimated by statistical methods. Only zeroth-order
covariance lags of the output of the filters need to be estimated,
ensuring statistical robustness of the method. Finding now an
input process whose rational spectrum is compatible with the
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estimated covariance poses naturally a Nevanlinna–Pick in-
terpolation problem with bounded degree. The solution of this
interpolation problem is considered as a mean of estimating the
spectrum. A particular case described in the paper is the max-
imum differential entropy spectrum estimate, which amounts
to the so-called central solution in the Nevanlinna–Pick theory.
More generally, the scheme allows for a non constant a priori
estimate of the spectrum. The Byrnes–Georgiou–Lindquist
school has shown how this and other important problems of con-
trol theory may be advantageously cast in the frame of convex
optimization. These problems admit a finite dimensional dual
(multipliers are matrices!) that can be shown to be solvable.
The latter result, due to Byrnes and Lindquist [8] (see also
[16]) is, however, nontrivial since the optimization occurs on
an open, unbounded set of Hermitian matrices. The numerical
solution of the dual problem is also challenging [9], [13], [35],
since the gradient of the dual functional tends to infinity at the
boundary of the feasible set. Finally, reparametrization of the
problem may lead to loss of global concavity, see the discussion
in [28, Section VII].

This paper adds to this effort in that we consider estimation
of a multivariate spectral density in the spirit of THREE [9], but
employing a different metric for the optimization part, namely
the Hellinger distance as in [17]. In papers [6], [7], Byrnes,
Gusev, and Lindquist chose the Kullback–Leibler divergence as
a frequency weighted entropy measure, thus introducing a broad
generalization of Burg’s maximum entropy method. More re-
cently, this motivation was supported by the well-known con-
nection with prediction error methods, see e.g. [32], [41]. In
the multivariable case, a Kullback–Leibler pseudodistance may
also be readily defined [24] inspired by the von Neumann’s rel-
ative entropy [43], [44] of statistical quantum mechanics. The
resulting spectrum approximation problem, however, leads to
computable solutions of bounded McMillan degree only in the
case when the prior spectral density is the identity matrix [17],
[24] (maximum entropy solution). On the contrary, with a suit-
able extension of the scalar Hellinger distance introduced in
[17], the Hellinger approximation generalizes nicely to the mul-
tivariable case for any prior estimate of the spectrum.

The main contributions of this paper, after some background
material in Sections II–IV, are found in Sections V–VIII. In Sec-
tion V, we establish strong convexity and smoothness of the dual
functional on a certain domain of Hermitian matrices. In Sec-
tion VI, we analyze in detail a variant of a Newton-type matri-
cial iteration designed to numerically solve the dual of the mul-
tivariable spectrum approximation problem. It had originally
been sketched in [17]. The computational burden is dramati-
cally reduced by systematically resorting to solutions of Lya-
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punov and Riccati equations thanks to various nontrivial results
of spectral factorization. We then show in Section VII that the
algorithm is globally convergent. Finally, in Section VIII, we
present guidelines for its application to multivariate spectral es-
timation and present some simulations comparing to existing
methods. Simulation in the multivariable case shows that, at
the price of some moderate extra complexity in the model, our
method may perform much better than MATLAB’s PEM and
MATLAB’s N4SID in the case of a short observation record.

II. CONSTRAINED SPECTRUM APPROXIMATION

Paper [18] introduces and solves the following moment
problem: Given a bank of filters described by an input-to-state
stable transfer function and a state
covariance matrix , give necessary and sufficient conditions
for the existence of input spectra such that the steady
state output has variance , that is

(1)

Moreover, parametrize the set of all such spectra (here, and in
the sequel, integration takes place on the unit circle with re-
spect to the normalized Lebesgue measure ). Throughout
this paper we use the following notations: for ma-
trices and for spectra and transfer
functions. The scalar product between square matrices is de-
fined as . Let be the family
of -valued functions defined on the unit circle which are
Hermitian, positive-definite, bounded and coercive. We have the
following existence result [18]: There exists satisfying
(1) if and only if there exists such that

(2)

Paper [28] deals with the following (scalar) spectrum approxi-
mation problem: When constraint (1) is feasible, find the spec-
trum which minimizes the Kullback–Leibler pseudo-distance

(3)

from an “a priori” spectrum , subject to the constraint (1). It
turns out that, if the prior is rational, the solution is also ra-
tional, and with degree that can be bounded in terms of the de-
grees of and . This problem again admits the maximum
differential entropy spectrum (compatible with the constraint) as
a particular case . The above minimization poses
naturally a variational problem, which can be solved using La-
grange theory. Its dual problem admits a maximum and can be
solved exploiting numerical algorithms. In [15] we restated and
solved a similar variational problem with respect to a different
metric, namely the Hellinger distance

(4)

Equation (4) defines a bona fide distance, well-known in mathe-
matical statistics. The main advantage of this approach to spec-
tral approximation is that it easily generalizes to the multivari-

able case, whereas log-like functionals do not enjoy this prop-
erty [1], [17], [22], [24].

III. FEASIBILITY AND THE OPERATOR

In this section, we discuss in depth the feasibility of (1). Fol-
lowing [28] and [17], let

, let be the space of -valued contin-
uous functions defined on the unit circle, and let the operator

be defined as follows:

(5)

We are interested in the range of the operator which, having
to deal with Hermitian matrices, we consider as a vector space
over the reals.

Proposition 3.1: The following facts hold:
1) Let . The following are equivalent:

• There exists such that identity (2) holds.
• There exists such that .
• There exists , such that

.
2) Let (not necessarily positive definite). There exists

such that identity (2) holds if and only if
.

3) if and only if
.

Proof: As stated above, it was proved in [18] that there
exists such that identity (2) holds with Hermitian
and positive definite if and only if for some

, . A similar result, albeit with a different
algebraic formulation of the feasibility condition, was proved
in [17, Proposition 2.1]. The proof of Fact 1 is straightforward
once we note that the “if” part of the proof of [17, Proposition
2.1] is constructive, and exhibits a continuous spectrum. Hence,
the fact that there exists a spectrum such that
is equivalent to there exists a continuous spectrum such that the
same holds.

As for the second assertion, let . Then there
exists such that

where and are two spectra such that (they
can be chosen to be bounded away from zero) and where and

are symmetric positive definite. Hence is a difference of
positive matrices for which (2) holds. This establishes (2) for
itself. Vice versa, suppose that (2) holds for an Hermitian . Let

be the unique solution of the following Lyapunov equation:

where . Then depends linearly upon , i.e.
, where since is reachable. Thus, there exists

an such that and . Let . Then
, and since (2) holds for and , it also holds for .
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Then assertion 1 implies that there exist and in
such that and ,

hence and assertion 2 follows.
The third assertion is a simple geometrical fact: If

, then for any

and the conclusion follows.
Remark 3.2: The underlying statement in Proposition 3.1,

Facts 1 and 2, is that if we defined over the vector space of
finite linear combinations of functions in , its range
would remain the same.

Remark 3.3: Proposition 3.1 shows that is the set
of all the Hermitian matrices for which there exists such
that (2) holds. This fact will be useful in numerical computa-
tions. Indeed, is obviously finite-dimensional, and if

is a base of , then the corresponding solu-
tions of (2), considered as a discrete-time Lya-
punov equation in the unknown , generate . Note that

are not necessarily linearly independent.

IV. MULTIVARIABLE SPECTRUM APPROXIMATION

IN THE HELLINGER DISTANCE

Let the function be
defined as follows:

(6)

that is, is the distance between the sets of square
spectral factors of the two spectra. It was shown in [17] that the
infimum in (6) is actually a minimum and that is a bona fide
distance between spectral densities, and reduces to the ordinary
Hellinger distance in the scalar case. It was also shown there
that the minimum in (6) is the same if we fix a square spectral
factor of , and then minimize over the spectral factors of

(7)

The multivariable spectrum approximation problem addressed
in [17] is the following. Let , where is
stable, has full rank and is reachable. Given ,
find

(8)

Since , applying the following change of base to :

it is easy to see that there is no loss of generality in taking .
Thus, once a factor of is fixed, (8) reduces to

(9)

which is an constrained minimization.
Remark 4.1: In [17, Theorem 6.1], it was shown that the min-

imizer in (7) is explicitly given by

(10)

Nevertheless, to solve the approximation problem (9), we do not
need to employ (10) (see below).

A. Variational Analysis

Now let us assume that the problem is feasible, i.e., condition
(2) holds. To solve (9), form the Lagrangian

(11)

where . Since by con-
struction, and by the feasibility assumption, it is
natural, though not strictly necessary, to restrict a priori the La-
grange parameter to (a would not
play any role in the above Lagrangian).

We proceed with unconstrained minimization of (11). The
functional (11) is convex and differentiable in . Thus, to find
the unique minimizing solution we impose that the first variation
of (11) is zero in each direction . We easily find the following
condition for (see [17] for the details):

To carry on with the computations, and to ensure that the re-
sulting optimum spectrum is integrable over the unit circle, we
require a posteriori that belongs to the following set:

(12)

that is, , where

(13)

If this is the case, the optimal spectral factor and the corre-
sponding optimal spectral density are easily found to be

(14)

Remark 4.2: Observe that, when is rational, (14) yields a
rational spectrum with McMillan degree that can be bounded.
The same applies to scalar spectrum approximation problem in
the Kullback–Leibler type distance (3), where the degree of the
optimal approximant is actually lower [28]. In the multivariable
case, however, the Kullback–Leibler solution is computable and
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of bounded McMillan degree only when (maximum
entropy solution), see [22, Theorem 1], [24, Section 4].

Consider now the issue of existence of a matrix such
that

(15)

that is, such that the corresponding optimal spectrum satisfies
the constraint (1). A key result of [17, Theorem 7.7], inspired
by a fundamental result of Byrnes and Lindquist [8], states that
such a indeed exists and is unique, therefore establishing that
for such (14) is the solution to problem (9).

Remark 4.3: Identity (15) is attained at if and only if
itself satisfies the constraint (1). The “only if” part is trivial.

As for the “if” part, let . Then substituting
into (14) we obtain the spectrum , which has the least
possible distance from and hence is automatically
optimal, and trivially satisfies (15). The assertion follows from
the uniqueness of .

In order to find the optimal , we form the dual functional
(see [17])

(16)
Notice that is finite on . Recall that the dual of a La-
grangian functional is always concave and that a finite convex
(or concave) function defined on a finite dimensional space is
continuous on the interior of its domain (see [31] or [37]). In-
stead of maximizing (16), we consider the equivalent problem
of minimizing the following functional:

(17)
The minimization of the convex and continuous functional
over is the main subject of this paper. The following sec-
tions are dedicated to prove strict convexity and smoothness of

, to describe a Newton-type algorithm for its numerical mini-
mization, and to prove the global convergence of that algorithm.
An application to spectral estimation and some numerical sim-
ulations follow.

V. PROPERTIES OF THE FUNCTIONAL

In this section, we establish various properties of the func-
tional on . We begin by recalling a few basic definitions
and facts from multivariate analysis. A function

is (Fréchet) differentiable on the open set if for all
there exists a linear map such that

A function is said to be if it is continuous on . Also,
is said to be if it is differentiable at each and if

the operator defined by

is . Now the derivative
is itself a function between finite-dimensional spaces. If is

, then is said to be . Proceeding in this way, the
-differentiability of can be defined. Finally, is said to

be of class if it is for all . A standard
result in analysis states that if and only if the partial
derivatives (where is the -th component of )
exist and are continuous on (see for instance [38, Theorem
9.21]). It follows that if and only if has in
continuous partial derivatives of any order up to , that is:

for all s.t. , , and .
In our setting, where , the role

of the above partial derivatives is played by the directional (or
Gâteaux) derivatives

where and is a fixed orthonormal
base of . A fortiori, if we show that has on
continuous directional derivatives of any order up to , taken in
whatever directions , then we can
say that .

Lemma 5.1: Let and be its minimum eigen-
value. The map is continuous.

Proof: The map from a matrix to the vector of coeffi-
cients of its characteristic polynomial

is continuous. Indeed, each of the
coefficients of is obtained by means of sums and products
of elements of . Moreover, it is a well-known fact (see for ex-
ample [34]) that the mapping from the coefficients of a monic
polynomial to its roots is continuous, in the following sense:
Given , let be the zeros of and

the respective multiplicities. For all , there exists
such that if and for all

, then has zeros in the ball centered in
with radius . In conclusion, if is Hermitian, the mapping

from to its minimum (real) eigenvalue is continuous.
Lemma 5.2: Define . Consider a

sequence converging to . Then are well
defined and continuous on and converge uniformly to on

.
Proof: Observe that, for , is a positive

definite, continuous matrix function on . By Lemma 5.1,
there exists a continuous function such that

for each . Hence, ,
where . Let , the
closed ball of radius centered in 0. Now

where

Thus, if we choose , then
. Hence, describes, as varies

in , a compact set that does not contain any
singular matrix. Now recall that the matrix inversion operator
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is continuous at any nonsingular matrix. Hence,
admits a uniform bound on . Since

, for sufficiently large, . Then

This implies that uniformly on .
Theorem 5.3: Consider . Then

1) .
2) is strictly convex on .

Proof: Let be the matrix inversion operator.
Making use of

(18)

the first variation of in an arbitrary direction is found
to be

(19)

The linear functional defined by (19)
is the gradient of at . To prove that we
must show that, for any fixed , is continuous
in the variable (it follows that is also continuous in

). Consider a sequence converging to 0. By
Lemma 5.2, converge uniformly to . Recall that

is bounded. Applying elementwise the bounded convergence
theorem, we get

Hence, for all , is continuous, i.e.
. The second variation of , say in direction

, is easily obtained applying (18) and the chain rule to (19)

(20)

The bilinear form is the Hessian of
at . Again, continuity of can be established
by the previous argument in view of Lemma 5.2. Similarly, it
can be shown that has continuous directional derivatives of
any order. Thus for any , and the first assertion
follows. Finally, we show that is strictly convex on . A
standard result in the theory of convex functions states that if a
function is (where is open), then is
strictly convex on if and only if its Hessian is positive def-
inite at each . Consider
for . Since the integrand in (20) is posi-
tive semidefinite, it follows that . In view of

Point 3 in Proposition 3.1, the integrand is not identically zero
and . It follows that is strictly convex.

Loosely speaking, [17] establishes existence of the min-
imum by showing that is bounded from below and that

whenever or approaches ,
the boundary of . Since the minimum point cannot reside
at infinity or at the boundary, we can then restrict the mini-
mization problem to a sublevel set of . It follows from the
continuity of that such a set is compact, and the existence
result follows from Weierstrass’ theorem. Since is strictly
convex, the minimum point is unique.

VI. A MATRICIAL NEWTON ALGORITHM

A. Description of the Iterative Method

The Newton algorithm is an iterative procedure for the search
of roots of a function or the minimization of a functional. With
respect to the latter objective, it can be formulated as follows.
Let be a functional defined over . In order
to find an estimate of a minimum point of ,

1) Make an initial guess , possibly near the minimum point.
2) At each iteration, compute the Newton step

(21)

where is the Hessian of at and is the gradient
of at (understood as a column vector).

3) Set , and let until both of the following
conditions hold:

(22)

(23)

where is a real constant, .
4) Set .
5) Repeat steps 2, 3 and 4 until , where is a

(small) tolerance threshold, then set .
In its “pure” form, the iteration of the Newton algorithm only
consists in step 2, which is indeed its essential part. Step 3 is the
so-called backtracking procedure.

For small , if is sufficiently regular, we
have . Since

, condition (23) must hold
for small , hence step 3 must terminate at some iteration. Since

, (23) implies . That is,
is a strictly decreasing sequence.

In essence, the “pure” Newton algorithm works very well
when the starting point happens to be near the minimum and the
function is there effectively approximated by a quadratic form,
but it can suffer from numerical problems when this is not the
case. The backtracking line search is a remedy to this drawback;
moreover it can be shown that, under certain regularity assump-
tions on , which hold in our case (see Section VII), after a finite
number of iterations step 3 always selects the multiplier ,
that is, the full step. During the latter stage, the convergence to
the minimizing solution is quadratic, meaning that there exists
a constant such that . This rate of
convergence makes the Newton algorithm often preferable over
other minimization methods (see [10]). We must minimize the
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functional over the set . As initial condition, we can
safely choose 0. Hence, set

(24)

It turns out that, although the problem is finite-dimensional, the
inversion of the Hessian is more demanding than inverting a
matrix. In order to compute the Newton step , we must solve
at the following linear equation:

(25)

where, once fixed , and must be under-
stood as a linear and a bilinear form, defined by (19) and (20), re-
spectively. Comparing with the above definitions, (25) reduces
to

(26)

In principle, (26) is not difficult to solve. We suggest the fol-
lowing procedure:

• At the beginning of the procedure, take a base
of .1Then compute the

solutions of the following dis-
crete-time Lyapunov equations:

As shown before, these solutions generate .
• To compute at each step,

1) Compute the integral

(27)

2) For each in the precomputed generators, compute
the following integral:

(28)
3) Solve, by means of linear algebraic methods (the

Moore-Penrose pseudoinverse), the equation

(29)

4) By linearity, the solution to (26) is

(30)

It is clear that the real difficulty here is the computation of the
integrals (27) and (28). This task requires extensive use of the
following results of linear stochastic systems theory.

1Actually, it suffices to take the �� � to be a base of �����, where
the map � is defined by

� � � �� �� �� � �

Lemma 6.1: Let be a stability matrix and
a minimal realization of a spectral factor of .

Let be the unique solution to the Lyapunov equation

(31)

Then the following hold:
1) .
2)

is a realization of the causal part of ; that is,
is analytic outside the unit circle and
.

Lemma 6.2: Let be a
minimal realization of the causal part of a spectrum . Let

be the stabilizing solution of the following Algebraic Riccati
Equation (ARE):

(32)

Let moreover and
. Then is the

minimum phase spectral factor of ; that is, is stable
and with stable causal inverse, and .

Lemma 6.3: Let be a square
transfer function, where is invertible. Then

(33)
is a realization of its inverse.

Lemma 6.4: For all matrices the following
identity holds:

(34)

Lemma 6.5: Let be a stability matrix and
be a minimal realization. Let be the solution of

the Lyapunov equation

(35)

Let be an ortho-normal basis of , i.e.

(36)

Let and

(37)

Then, .
Lemmas 6.1, 6.2 and 6.3 are standard results (see for example

[14]). The proofs of Lemmas 6.4 and 6.5 can be found in [12,
Appendix A] and [17, Appendix A], respectively.

Remark 6.6: Lemma 6.5 not only gives us a tool to compute a
left factor from a right factor of a given spectrum. It also works
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in the opposite direction. Indeed, let
be a minimal realization, and let . Then

Applying Lemma 6.5 we can find an
such that . Now

turning back to

B. Factorization of

The first problem to solve is to obtain a spectral factor of
, where . To this end, note

that

(38)
Applying lemma 6.4, we can rewrite (38) as

(39)

Now, the following linear matrix inequality:

(40)
is solvable for if and only if such is the following
ARE:

(41)

The stabilizing solution of (41) gives a realization for the
square, minimum phase co-analytic spectral factor of . We
have

(42)

and finally where, by means of
lemma 6.3

(43)

C. Computation of the Integrals in (27) and (28)

By virtue of Lemma 6.5 and Remark 6.6, we can switch from
a right factorization of a spectrum to a left factor-
ization , and vice versa. We will now show that
both (27) and (28) can be reduced to integrals of the form

(44)

where is a spectrum. Indeed, let
. Then

(45)

which has the form (44) with . Applying Lemma 6.5
we obtain a (left) spectral factor of

(46)

Finally, (45) can be computed obtaining a realization of
and applying Lemma 6.1. Now, let

, where is one of the
precomputed generators of . Then
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(47)

which is a difference of integrals of the form (44). To compute
(47), we must obtain (left) spectral factors of , and

. Suppose, first, that . For the first
spectrum we have

(48)

For the second, we have

(49)

And for the third

(50)

where is the causal part of , , is
a left factor of the spectrum , is a left factor
of the spectrum , and where we used Lemma 6.1 to
obtain the causal part of and from their spectral factors,
and Lemma 6.2 to obtain the minimum phase spectral factor of
the sum from its causal part. Thus, if , we really
have all the tools to compute integral (47).

Now, is not necessarily positive definite, but if is
the minimum between the eigenvalues of all the generators ,
then is positive definite. Thus, in the general case,
by linearity (47) can be reduced to

(51)

which is a difference of integrals with the same structure of
(47), and that are computable with the above tools (obviously

needs to be computed only
once). This enables us to solve (25).

D. Computations in the Backtracking Step

The backtracking stage involves similar, though easier, com-
putations. We must check the following conditions:

(52)

(53)

Checking (52) is really a matter of checking whether we can
factorize . Thus must be halved until
the ARE (41) is solvable having .

Finally, to check (53), we need to compute . This can be
done in a way similar to the above computations

(54)

VII. PROOF OF GLOBAL CONVERGENCE

Given that the minimum of exists and is unique, we in-
vestigate global convergence of our Newton algorithm. First, we
recall the following

Definition: A function twice differentiable in a set is
said to be strongly convex in if there exists a constant
such that for , where is the Hessian of

at .
We restrict our analysis to a sublevel set of . Let .

The set

(55)

is compact (as it was shown in [17, Section VII]). Be-
cause of the backtracking in the algorithm, the sequence

is decreasing. Thus .
We now wish to apply a theorem in [10, 9.5.3, p. 488] on
convergence of the Newton algorithm with backtraking for
strongly convex functions on . This theorem ensures linear
decrease for a finite number of steps, and quadratic convergence
to the minimum after the linear stage, thus establishing global
convergence of the Newton algorithm with backtracking. We
proceed to establish first strong convexity of on . To do
that, we employ the following result.

Lemma 7.1: Let be defined over an open convex subset
of a finite-dimensional linear space . Assume that is twice

continuously differentiable and strictly convex on . Then is
strongly convex on any compact set .

Proof: First, recall that since is twice continuously dif-
ferentiable and strictly convex, its Hessian is an Hermitian
positive definite matrix at each point . By Lemma 5.1, the map-
ping from to its minimum (real) eigenvalue is continuous. It
follows that the mapping from to the minimum eigenvalue of

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 10, 2009 at 16:49 from IEEE Xplore.  Restrictions apply. 



2384 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 10, OCTOBER 2009

the Hessian of at is also continuous, being a composition
of continuous functions. Hence the latter admits a minimum
in the compact set by Weierstrass’ theorem. Thus is the
minimum of the eigenvalues of all the Hessians computed in ,
and cannot be zero, since otherwise there would be an with

singular, and this cannot happen since is strictly convex.
Hence , i.e. is strongly convex on .

Remark 7.2: By an argument similar to that of Lemma 5.1, it
can be shown that for a twice continuously differentiable func-
tion which is strictly convex on , there exists such
that for all . Moreover, strong convexity on
a closed set implies boundedness of the latter. Thus, strong
convexity and boundedness of the Hessian are intertwined, and
both are essential in the proof of Theorem 7.3 (see [10]).

Theorem 7.3: The following facts hold true:
1) is twice continuously differentiable on ;
2) is strongly convex on ;
3) the Hessian of is Lipschitz-continuous over ;
4) the sequence generated by the Newton algo-

rithm of Section V (24)–(53) converges to the unique min-
imum point of in .
Proof: Property 1 is a trivial consequence of Theorem 5.3.

To prove 2, remember that is strictly convex on , hence
also on , and apply Lemma 7.1. As for property 3, what it really
says is that the following operator:

is Lipschitz continuous on . Theorem 5.3 implies that
or, which is the same, that . The con-

tinuous differentiability of implies its Lipschitz continuity
over an arbitrary compact subset of , hence also over the
sublevel set , and property 3 follows. Finally, to prove 4, no-
tice that all the hypotheses of [10, 9.5.3, p. 488] are satisfied.
Namely, the function to be minimized is strongly convex
on the compact set , and its Hessian is Lipschitz-continuous
over . It remains to observe that is defined over a subset of
the linear space which has finite dimension over
(recall that is spanned by a finite set of matrices. See
Proposition 3.1 and Remark 3.3, where ). Thus, once
we choose a base in , to every there corre-
sponds a vector in , to every positive definite bilinear form
over there corresponds a positive definite matrix in

, and to every compact set in there corresponds a com-
pact set in . Hence, every convergence result that holds in
must also hold in the abstract setting, in view of the homeomor-
phism between one space and the other.

VIII. APPLICATION TO SPECTRUM ESTIMATION

A. A Spectral Estimation Procedure

Following the purposes of the THREE method presented in
[9], now we describe an application of the above approximation
algorithm to the estimation of spectral densities. Consider first
the scalar case, and suppose that the finite sequence
is extracted from a realization of a zero-mean, weakly stationary
discrete-time process . We want to estimate the spec-
tral density of . The idea is the following:

• Fix a transfer function , feed the data
to it, and collect the output data .

• Compute a consistent, and possibly unbiased, estimate of
the covariance matrix of the outputs . Note that some
output samples should be discarded so that the
filter can be considered to operate in steady state.

• Choose as “prior” spectrum a coarse, low-order, esti-
mate of the true spectrum of obtained by means of an-
other (simple) identification method.

• “Refine” the estimate by solving the approximation
problem (8) with respect to , , and .

To be clear, the result of the above procedure is the only spec-
trum, compatible with the output variance , which is closest to
the rough estimate in the distance. Note that we are left
with significant degrees of freedom in applying the above pro-
cedure: The method for estimating , in particular its degree,
and the whole structure of , which has
no constraints other than being a stability matrix and
being reachable.

The coarsest possible estimate of is the constant spectrum
equal to the sample variance of the , i.e. ,
where . The resulting spectrum
has the form . Another simple choice is

, where is a low-order AR,
MA or ARMA model estimated from by means of
predictive error minimization methods or the like.

The flexibility in the choice of is more essential, and
has more profound implications. As described in [9], [15], [28]
and [17], the following choice:

...
...

. . .
...

... (56)

where the ’s lie inside the unit circle, implies that the (true)
steady-state variance has the structure of a Pick matrix, and
the corresponding problem of finding any spectrum that satisfies
(1) is a Nevanlinna-Pick interpolation. Moreover, the following
choice:

...
...

. . .
...

... (57)

implies that the steady-state variance is a Toeplitz matrix
whose diagonals contain the lags of the co-
variance signal of the input, and the corresponding problem of
finding any spectrum that satisfies (1) is a covariance extension
problem.

These facts justify the theoretical interest in algorithms for
constrained spectrum approximation, if for no other reason, as
tools to compute at least one solution to a Nevanlinna-Pick inter-
polation or to a covariance extension problem, respectively. But
the freedom in choosing has implications also in the above
practical application to spectral estimation, where the key prop-
erties, not surprisingly, depend on the poles of , i.e., the
eigenvalues of . In general, as described in [9], the magnitude
of the latter has implications on the variance of the sample co-
variance : The closer the eigenvalues to the origin, the smaller
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that variance (see [9, Section II.D]). Moreover, at least as far
as THREE [9] is concerned, the phase of the eigenvalues in-
fluences resolution capability: More precisely, the spectrum es-
timation procedure has higher resolution in those sectors of
the unit circle where more eigenvalues are located. According
to simulations, the latter statement appears to be true also in
our setting (the fundamental difference being that the metric
which is minimized is the Hellinger distance instead of the Kull-
back-Leibler one).

Remark 8.1: In the above setting is a consistent estimate
of the true steady-state variance. Although must belong to

as (this being the case even if is the sum
of a purely nondeterministic process and some sinusoids, as in
the simulations that follow), it is almost certainly not the case
that when we have available only the finitely
many data . Strictly speaking, this implies that
the constraint (1) with is almost always not feasible. It
turns out that, increasing the tolerance threshold in its step 5,
the Newton algorithm exhibits some kind of robustness in this
respect. That is, it leads to a whose corresponding spectrum

is close to satisfying the constraint.
Nevertheless, we prefer a clear understanding of what the re-

sulting spectrum really is. Thus, we choose to enforce feasibility
of the approximation problem, at least as permitted by machine
number representation, before starting the optimization proce-
dure. To this end, following the same approach employed in
[9], we pose the approximation problem not in terms of the es-
timated , but in terms of its orthogonal projection onto

, which can be easily computed by means of algebraic
methods. That is to say: We cannot approximate in the preimage

, because that set is empty, thus we choose to approx-
imate in , where is the matrix closest to such
that its preimage is not empty. This seems a reasonable choice
and by the way it is, mutatis mutandis, what the Moore-Penrose
pseudoinverse does for the “solution” , when the linear
system is not solvable.

Note that it is not guaranteed at all that the projection of a
positive definite matrix onto a subspace of the Hermitian ma-
trices is itself positive definite. In practice, this is not really
a problem, inasmuch is “sufficiently positive” and close to

. The positivity of must anyway be checked before
proceeding. This approach and the considerations on the posi-
tivity issue should be compared to [9, Section II.D], which deals
with the particular case when is the space of Toeplitz
matrices, and to [27, Section 4], where, to find a matrix a
close to , a Kullback–Leibler criterion is adopted instead of
least squares.

B. Simulation Results: Scalar Case

Fig. 1 shows the results of the above estimation procedure
with structured according to the covariance extension set-
ting (57) with 6 covariance lags (i.e. , is 6 6), run
over 500 samples of the following ARMA process:

Fig. 1. Estimation of an ARMA(6,4) spectrum by means of Hellinger-distance
spectrum approximation, constant prior and AR(3) prior.

Fig. 2. Spectral estimates of two sinusoids with superimposed noise by means
of Hellinger-distance spectrum approximation, constant prior. Compare with [9,
Section IV.B, Example 1].

(poles in 0.9, , 0.5j) where is a zero-mean
Gaussian white noise with unit variance. Two priors, both esti-
mated from data, have been considered: the constant spectrum

and the spectrum , where
is an AR model of order 3 obtained from

the data by means of the Predictive Error Method procedure in
Matlab’s System Identification toolbox.

Fig. 2 shows the performance of the above procedure in a
setting that resembles that of [9, Section IV.B, Example 1]. The
estimation procedure was run on 300 samples of a superposition
of two sinusoids in colored noise

with , and independent normal random variables
with zero mean and unit variance, and .
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Fig. 3. Estimation of the spectrum of a bivariate process with rich dynamics by means of Hellinger-distance spectrum approximation, constant prior.

The prior here considered is the constant spectrum equal to the
sample variance of the data. Following [9], was chosen
real block-diagonal with the following poles (equispaced in a
narrow range where the frequencies of the two sinusoids lie, to
increase resolution in that region):

(and a column of ones). It can be seen that Hellinger-distance
based approximation does a good job, as does the THREE algo-
rithm, at detecting the spectral lines at frequencies and .

C. Simulation Results: Multivariate Case

We now consider spectral estimation for a multivariate
process. Here, 100 samples of a bivariate process with a high
order spectrum were generated by feeding a bivariate Gaussian
white noise with mean 0 and variance to a square (stable)
shaping filter of order 40. The latter was constructed with
random coefficients, except for one fixed conjugate pair of
poles with radius 0.9 and argument 0.52, and one fixed con-
jugate pair of zeros with radius and argument 0.2.
The transfer function was chosen with one pole at the
origin and 4 complex pole pairs with radius 0.9 and frequencies
equispaced in the range . Then the above estimating pro-
cedure was applied, with prior spectrum chosen as the constant
density equal to the sample covariance of the bivariate process

. Fig. 3 shows a plot of , ,
and , respectively for the true spectrum and for the es-
timation of the latter based on one run of 100 samples. In Fig. 4
we compare the performances of various spectral estimation
methods in the following way. We consider four estimates ,

, , and of . The spectral density is the
estimate obtained by the procedure described above in Sec-
tion VIII-A. The spectral density is the maximum entropy
estimate [22] obtained using the same employed to obtain
our estimate. The spectral densities and are the
estimates of obtained by using “off-the-shelf” Matlab pro-

cedures for the Prediction Error Method (see i.e. [39] or [33])
and for the N4SID method (see [42] or [33]): The former is a
multivariable extension of the classical approach to ARMAX
identification, while the latter is a standard algorithm in the
modern field of subspace identification. In order to obtain a
comparison reasonably independent of the specific data set, we
have performed 50 independent runs each with 100 samples of

. In such a way we have obtained 50 different estimates ,
, ME, PEM, N4SID, , for each method.

We have then defined

(58)

where denotes the spectral norm. This is understood as the
average estimation error of our method at each frequency. Sim-
ilarly, we have defined the average errors , ,
and of the other methods. In each of the plots of
Fig. 4, we depict the average error of our method to-
gether with the average error of one of the other methods. More
explicitly, the first diagram shows the error for the Hellinger
approximation method and for the maximum entropy spectrum
described in [22]. The second diagram shows the error for the
Hellinger approximation and for the spectrum obtained via
MATLAB’s PEM identification method. The third diagram
shows the same for Hellinger approximation and MATLAB’s
N4SID method. The Hellinger approximation based approach
appears to perform better or much better than the other methods.
The simulation yields similar results with data points.
With data samples, PEM and N4SID perform as well
as our method.

Of course, one should always take into account the com-
plexity of the resulting spectrum. In this example, being
of order 9, the resulting spectral factor (or “model”) produced
by the Hellinger approximation has order 18, whereas the corre-
sponding maximum entropy model has order 9 and both N4SID
and PEM usually choose order 10.
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Fig. 4. Estimation of the spectrum of a bivariate process with rich dynamics by means of various methods. Comparison between the spectral norm of the differences
�� � �, �� � �, �� � �, and �� � � (average over 50 simulations).

In our simulation, the norm of the difference of two estimates
produced by PEM or by N4SID is sometimes very large when
compared to the norm of the difference between any two of the
estimates produced by our method. That is, although PEM and
N4SID are provably consistent as , when few data are
available both of them may introduce occasional artifacts, which
are well visible as “peaks” in Fig. 4 (a “peak” in the 50-run
average is due to a very high error in one of the runs, not to
a systematic error). Our method appears to be more robust in
this respect.

IX. CONCLUSION

In this paper, we considered the new approach to multivariate
spectrum approximation problem with respect to the multi-
variable Hellinger distance, which was proposed in [17]. We
developed in detail the matricial Newton algorithm which was
sketched there, and proved its global convergence. Finally, we
described an application of this approach to spectral estimation,
and tested it against the well-known PEM and N4SID algorithms.

It appears that approximation in the Hellinger distance may
be a useful tool to gain insight into the dynamics of a multi-
variate process when fewer data are available. In particular, sim-
ulations suggest that this method is less prone to produce arti-
facts than PEM and N4SID. Another advantage of our method
and of the maximum entropy paradigm is that a higher reso-
lution estimate in a prescribed frequency band can be easily
achieved by properly placing some poles of close to the
unit circle and with phase in the prescribed band.

Numerical robustness of the algorithm with respect to the
number and the position of the poles is an open challenge. Also,
the analysis of the achievable precision of the results (in a sta-
tistical sense) has still to be developed.
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