Stochastic receding horizon control with output feedback and bounded controls

Peter Hokayema,1, Eugenio Cinquemanib, Debasish Chatterjeec, Federico Ramponid, John Lygerosa

aAutomatic Control Laboratory, ETH Zürich, Physikstrasse 3, 8092 Zürich, Switzerland
bINRIA Grenoble-Rhône-Alpes, 655 avenue de l’Europe, Montbonnot, 38 334 Saint Ismier Cedex, France
cSystems & Control Engineering, IIT Bombay, Powai, Mumbai 400076, India
dDepartment of Information Engineering, Università degli Studi di Brescia, via Branze 38, 25123 Brescia, Italy

\begin{abstract}
We study the problem of receding horizon control for stochastic discrete-time systems with bounded control inputs and imperfect state information. Given a suitable choice of causal control policies, we first present a slight extension of the Kalman filter to estimate the state optimally in mean-square sense. We then show how to augment the underlying optimization problem with a negative drift-like constraint, yielding a second-order cone program to be solved periodically online. We prove that the receding horizon implementation of the resulting control policies renders the state of the overall system mean-square bounded under mild assumptions. We also discuss how some quantities required by the finite-horizon optimization problem can be computed off-line, thus reducing the on-line computation.
\end{abstract}

\section{1. Introduction}

A considerable amount of research has been devoted to deterministic receding horizon control, see, for example, (Maciejowski, 2001; Mayne, Rawlings, Rao, & Scokaert, 2000) and references therein. This resulted in proofs of recursive feasibility and stability of receding horizon control laws in the noise-free deterministic setting. These techniques can be extended to the robust case, i.e., whenever there is exogenous noise or parametric uncertainty of bounded nature entering the system. The counterpart for stochastic systems subject to process noise, imperfect state measurements, and bounded control inputs, however, is still lacking. The principal obstacle is posed by the fact that it may not be possible to determine an a priori bound on the support of the noise, for example, whenever the noise is additive and Gaussian. This extra ingredient complicates both the stability and the feasibility proofs: the noise, at least in the additive case, eventually drives the state outside any bounded set no matter how large the latter is taken to be, and employing any standard linear state feedback means that any hard bounds on the control inputs will eventually be violated.

In this article we propose a solution to the general receding horizon control problem for linear systems with noisy process dynamics, imperfect state information, and bounded control inputs. Both the process and measurement noise sequences are assumed to enter the system in an additive fashion, and we require that the designed control policies satisfy hard bounds. Periodically at times $t = 0, N_1, 2N_1, \ldots$, where N_1 is the control horizon, a certain finite-horizon optimal control problem is solved over a prediction (or optimization) horizon $N \geq N_1$. The cost to be minimized is the standard expectation of the sum of cost-per-stage functionals that are quadratic in the state and control inputs (Bertsekas, 2000, 2007). We can also include at the design level some variance-like bounds on the predicted future states and inputs—this is one possible way to impose soft state constraints that are in spirit similar to integrated chance-constraints, e.g., in Klein Haneveld (1983) and Klein Haneveld and van der Vlerk (2006).

There are several key challenges inherent to our setup. First, since the state information is imperfect one needs a filter to estimate the state. Second, in the presence of unbounded (e.g., Gaussian) noise, it is not possible in general to ensure any bound on the control values generated via linear state feedback; the additive nature of the noise ensures that the state exits from any fixed bounded set at some time almost surely, implying the necessity of nonlinear feedback policies. This issue is further complicated by the fact that only incomplete state information is available. Third, it is unclear whether the application of the

* This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor Fabrizio Dabbene under the direction of Editor Roberto Tempo.

1 Tel.: +41 44 632 0403; fax: +41 44 632 1211.

a Automatic Control Laboratory, ETH Zürich, Physikstrasse 3, 8092 Zürich, Switzerland

b INRIA Grenoble-Rhône-Alpes, 655 avenue de l’Europe, Montbonnot, 38 334 Saint Ismier Cedex, France

c Systems & Control Engineering, IIT Bombay, Powai, Mumbai 400076, India

d Department of Information Engineering, Università degli Studi di Brescia, via Branze 38, 25123 Brescia, Italy

\textit{Keywords:} Predictive control, Output feedback, Constrained control, State estimation, Stochastic control
bounded control policies stabilizes the system in any reasonable sense. For a deterministic discrete-time linear system, $x_{t+1} = Ax_t + Bu_t$, it is not possible to globally asymptotically stabilize the system, if the matrix A has unstable eigenvalues, see, for example, Yang, Sontag, and Sussmann (1997) and references therein. Moreover, in the presence of stochastic process noise the hope for achieving asymptotic stability is obviously not realistic. In this article we relax the notion of stability to mean-square boundedness of the state and impose the extra conditions that the system matrix A is Lyapunov (or neutrally) stable and that the pair (A, B) is stabilizable.

The main contributions of this paper can be summarized as follows: Given a suitable subclass of bounded causal feedback policies, we show how to augment the finite-horizon optimal control problem to be solved periodically every N, steps with a stability constraint and that the resulting optimization problem can be approximated to a globally feasible second-order cone program (SOCP). Under the assumption that the process and measurement noise are Gaussian, (even though the bounded inputs requirement makes the problem inherently nonlinear and the process statistics are non-Gaussian,) it turns out that Kalman filtering techniques can indeed be utilized. We rely on a low-complexity algorithm (essentially similar to standard Kalman filtering) for updating the conditional density of the state, given the history of the previous outputs, and report tractable solutions for the off-line computation of the time-dependent variance and covariance matrices in the optimization program. Finally, we show that the recursive application of the resulting control policies renders the state of the overall system mean-square bounded. This article builds upon and generalizes the earlier stability results in Hokayem, Chatterjee, Ramponi, Chaloulos, and Lygeros (2010) and Ramponi, Chatterjee, Milias-Argeitis, Hokayem, and Lygeros (2010) that were derived for the perfect state information case. Also, the current results generalize those in Chatterjee, Hokayem, and Lygeros (in press) and Hokayem, Chatterjee, and Lygeros (2009) from the perfect state information case to the imperfect state information case. In particular, if we have full state information available, the control policy proposed in this article reduces to that proposed in Hokayem et al. (2009) and to a special case of the policies proposed in Chatterjee et al. (in press) where the vector space is spanned by a single function. However, none of the earlier results, including those in Hokayem, Cinquemani, Chatterjee, and Lygeros (2010), are able to deal with recursive feasibility and stability for the setup of this article. Moreover, the control policy structure in this article is different from that in Hokayem, Cinquemani et al. (2010).

Related work

The research on stochastic receding horizon control is broadly subdivided into two parallel lines: the first treats multiplicative noise that enters the state equations, and the second caters to additive noise. The case of multiplicative noise has been treated in Couchman, Cannon, and Kouvaritakis (2006), Cannon, Kouvaritakis, and Wu (2009a) and Prims and Sung (2009). In Prims and Sung (2009), the noise enters the state equation multiplicatively and mixed hard state-input constraints are relaxed into expectation constraints. Terminal constraints are imposed as well that render the overall MPC scheme stable under full state feedback. The authors in Couchman et al. (2006) treat the case of uncertain output measurement matrix (C) and solve the MPC problem under probabilistic constraints on the outputs and full state feedback. In Cannon et al. (2009a) the stochastic MPC problem is treated under full state feedback and multiplicative noise entering the state equation. The proposed scheme comprises a pre-stabilizing linear state feedback control part and an open-loop part. The pre-stabilizing feedback gain is computed off-line and only the open-loop part is optimized online. The results in Cannon, Kouvaritakis, and Wu (2009b) extend those in Cannon et al. (2009a) to the case of additive noise as well. However, both results (Cannon et al., 2009a,b) involve a pre-stabilizing state feedback controller and hence no hard input bounds can be imposed.

We focus in this article on the additive noise case. The approach proposed here stems from and generalizes the idea of affine parametrization of control policies for finite-horizon linear quadratic problems proposed in Ben-Tal, Boyd, and Nemirovski (2006); Ben-Tal, Goryashko, Guslitzer, and Nemirovski (2004), utilized within the robust MPC framework in Ben-Tal et al. (2006), Goulart, Kerrigan, and Maciejowski (2006) and Löfberg (2003) for full state feedback, and in van Hessem and Bosgra (2003) for output feedback with Gaussian state and measurement noise inputs. More recently, this affine approximation was utilized in Skaf and Boyd (2010) for both the robust deterministic and the stochastic setups in the absence of control bounds; and optimality of affine policies in the scalar deterministic case was reported in Bertsimas, Iancu, and Parrilo (2010). In Bertsimas and Brown (2007) the authors reformulate the stochastic programming problem as a deterministic one with bounded noise support and solve a robust optimization problem over a finite horizon, followed by estimating the performance when the noise can take unbounded values, i.e., when the noise is unbounded, but takes high values with low probability. A similar approach was utilized in Oldestwurtel, Jones, and Morari (2008) as well. There are also other approaches, e.g., those employing randomized algorithms as in Batina (2004), Blackmore (2006) and Maciejowski, Lecchini, and Lygeros (2007). Results on obtaining lower bounds on the value functions of the stochastic optimization problem have been recently reported in Wang and Boyd (2009), and a novel stochastic MPC scheme based on the scenario approach has appeared in Bernardini and Benchorak (2009). Other works employing probabilistic constraints may be found in Li, Wendt, and Wozny (2002) and Schwarm and Nikolaou (1999). In Magni, Pala, and Scattolini (2009), an input-to-state stability approach is employed and stability is shown under full state feedback and bounded additive process noise. An MPC scheme for systems with imperfect state information has been proposed in Yan and Bitmead (2005) under general hypotheses with probabilistic constraints. However, the ability to deal with noise of an unbounded nature (for example Gaussian) is still absent, in which stability and recursive feasibility could not be proven in Yan and Bitmead (2005) under bounded control inputs.

The rest of this article is organized as follows. We formulate the stochastic receding horizon control problem with all the underlying assumptions, the construction of the estimator, and the main optimization problem to be solved in Section 2. We provide the main results pertaining to tractability of the optimization problem and mean-square boundedness of the closed-loop system in Section 3. We comment on the obtained results and provide some extensions in Section 4. We then present numerical examples in Section 5 and conclude in Section 6. Finally, we provide the proofs in the Appendix.

Notation. Let $(\mathcal{G}, \mathfrak{A}, \mathbb{P})$ be a general probability space. We denote the conditional expectation given the sub-σ-algebra \mathfrak{F} of \mathfrak{G} as $\mathbb{E}[\cdot | \mathfrak{F}]$. For any random vector s we let $\Sigma_{s} := \mathbb{E}[s^T s]$ and $\Sigma_{s}[\cdot]$ denote the conditional expectation given \mathfrak{F}_t. Hereafter we let $N_{+} := \{1, 2, \ldots \}$ and $N := N_{+} \cup \{0\}$. We let $\text{tr} (\cdot)$ denote the trace of a square matrix, $\| \cdot \|_p$ denote the standard p-norm, and simply $\| \cdot \|$ denote the Euclidean norm. We denote by $\| s \|_M := \sqrt{s^T M s}$ for $M = M^T > 0$. In a Euclidean space we denote by \mathfrak{B}, the closed Euclidean ball of radius r centered at the origin. For any two matrices A and B of compatible dimensions, we denote by $\mathfrak{N}(A, B)$ the k-th step reachability matrix $\mathfrak{N}_k(A, B) := [A^{k-1}B \cdots AB B]$.

For any matrix M, we let σ_{min} and σ_{max} be its minimal and maximal singular values, respectively. We let $(M)_{i_1\ldots i_2}$ denote the sub-matrix obtained by selecting the rows i_1 through i_2 of M and $(M)_i$ denote the i-th row of M. For any positive real number s, $\lfloor s \rfloor$ denotes the smallest integer that upper-bounds s.

2. Problem setup

Consider the following affine discrete-time stochastic dynamical model:

\begin{align}
 x_{t+1} &= Ax_t + Bu_t + w_t, \\
 y_t &= Cx_t + v_t,
\end{align}

where $t \in \mathbb{N}$, $x_t \in \mathbb{R}^n$ is the state, $u_t \in \mathbb{R}^m$ is the control input, $y_t \in \mathbb{R}^p$ is the output, $w_t \in \mathbb{R}^q$ is a random process noise, $v_t \in \mathbb{R}^p$ is a random measurement noise, and A, B, and C are known matrices. We posit the following standing assumption:

Assumption 1. (i) The pair (A, B) is stabilizable (Bernstein, 2009, Chapter 12).

(ii) The matrix A is Lyapunov stable (Bernstein, 2009, Chapter 12), i.e., the eigenvalues $\{\lambda_i(A) | i = 1, \ldots, n\}$ lie in the closed unit disc, and those eigenvalues $\lambda_i(A)$ with $|\lambda_i(A)| = 1$ have equal algebraic and geometric multiplicities.

(iii) The initial condition and the process and measurement noise vectors are mutually independent and normally distributed, i.e., $x_0 \sim \mathcal{N}(0, \Sigma_x)$, $w_t \sim \mathcal{N}(0, \Sigma_w)$, and $v_t \sim \mathcal{N}(0, \Sigma_v)$, with $\Sigma_w > 0$ and $\Sigma_v > 0$.

(iv) $(A, \Sigma_w^{1/2})$ is controllable and (A, C) is observable.

(v) The control inputs satisfy

\[\|u_t\|_\infty \leq U_{\text{max}} \quad \forall t \in \mathbb{N}. \]

Without loss of generality, we assume that A is given in real Jordan canonical form. Indeed, given a linear system described by the system matrices (\hat{A}, \hat{B}), there exists a coordinate transformation in the state-space that brings the pair (\hat{A}, \hat{B}) to the pair (A, B), where A is in real Jordan form (Horn & Johnson, 1990, p. 150). In particular, choosing a suitable ordering of the Jordan blocks, we can ensure that the pair (A, B) has the form

\[\begin{bmatrix} A_\kappa & 0 \\ B_\kappa & A_0 \end{bmatrix}, \]

where $A_\kappa \in \mathbb{R}^{n_\kappa \times n_\kappa}$ is Schur stable, and $A_0 \in \mathbb{R}^{(n - n_\kappa) \times (n - n_\kappa)}$ has its eigenvalues on the unit circle. By **Assumption 1(ii)**, A_0 is therefore block-diagonal with the diagonal blocks being either ±1, or 2×2 rotation matrices. As a consequence, A_κ is orthogonal. Moreover, since (A, B) is stabilizable, the pair (A_κ, B_κ) must be reachable in a number of steps $\kappa \leq n_\kappa$ that depends on the dimension of A_κ. Therefore, we can start by considering that the state Eq. (1a) has the form

\[\begin{bmatrix} x_{t+1}^\kappa \\ x_{t+1}^\omega \end{bmatrix} = \begin{bmatrix} A_{\kappa} & 0 \\ A_{\omega} & A_0 \end{bmatrix} \begin{bmatrix} x_t^\kappa \\ x_t^\omega \end{bmatrix} + \begin{bmatrix} B \kappa & 0 \\ B_\omega & B_0 \end{bmatrix} \begin{bmatrix} u_t \\ v_t \end{bmatrix}, \]

where A_κ is Schur stable, A_0 is orthogonal, and there exists a non-negative integer $\kappa \leq n_\kappa$ such that the subsystem (A_κ, B_κ) is reachable in κ steps. This reachability index κ is fixed throughout the rest of the article.

For each $t \in \mathbb{N}$, let $y_t := [y_0, \ldots, y_t]$ denote the set of output observations up to time t. Fix a prediction horizon $N \in \mathbb{N}_+$, with $N \geq \kappa$, and define the cost j_t as

\[j_t = \mathbb{E}_t \sum_{k=0}^{N-1} \left(\|x_{t+k}^\kappa\|_{Q_k}^2 + \|u_{t+k}\|_{R_k}^2 \right) + \|x_{t+N}^\omega\|_{Q_N}^2, \]

where $Q_k = Q_k^T \geq 0$, $Q_N = Q_N^T \geq 0$, and $R_k = R_k^T \geq 0$ are given matrices of appropriate dimension, for $k = 0, \ldots, N - 1$.

The evolution of the system (1a)–(1b) over a single prediction horizon N, starting at t, can be described in a compact form as

\[X_t = AX_t + Bu_t + DW_t, \quad Y_t = CX_t + V_t, \]

where $X_t = \begin{bmatrix} x_t \\ x_{t+1}^\omega \end{bmatrix}$, $U_t = \begin{bmatrix} u_t \\ u_{t+1}^\omega \end{bmatrix}$, $W_t = \begin{bmatrix} w_t \\ w_{t+1}^\omega \end{bmatrix}$, $Y_t = \begin{bmatrix} y_t \\ y_{t+1}^\omega \end{bmatrix}$, $V_t = \begin{bmatrix} v_t \\ v_{t+1}^\omega \end{bmatrix}$, and $C = \begin{bmatrix} I & \mathbf{0} \\ A & \mathbf{0} \end{bmatrix}$.

The cost function (4) at time t can also be written compactly as

\[j_t = \mathbb{E}_t \left[\|X_t\|_{Q_0}^2 + \|U_t\|_{R_0}^2 \right], \]

where $Q = \text{diag}(Q_0, \ldots, Q_N)$ and $R = \text{diag}(R_0, \ldots, R_{N-1})$. The cost j_t in (4) is a conditional expectation given the observations up to time t, the evaluation of which requires the conditional density $f(x_t | y_t)$ of the state given the previous and current measurements. For $t, s \in \mathbb{N}$, define $\hat{x}_{t|s} := \mathbb{E}_t[X_t]$ and $P_{t|s} := \mathbb{E}_t \left[(X_t - \hat{x}_{t|s})(X_t - \hat{x}_{t|s})^T \right]$.

The following result is a slight extension of the standard Kalman filter. A proof may be found in Kumar and Varaiya (1986, p.102).

Proposition 2. Let **Assumption 1(iii)** hold and assume that u_t is a deterministic function of y_t. Then $f(x_t | y_t)$ and $f(x_{t+1} | y_t)$ are the probability densities of Gaussian distributions $\mathcal{N}(\hat{x}_{t|t}, P_{t|t})$ and $\mathcal{N}(\hat{x}_{t+1|t+1}, P_{t+1|t+1})$, respectively, with $P_{t|t} \geq 0$ and $P_{t+1|t+1} \geq 0$. For $t = -1, 0, 1, 2, \ldots$, their conditional means and covariances can be computed iteratively starting at $(\hat{x}_{0|-1}, P_{0|-1}) := (0, \Sigma_0)$, as follows:

\[\hat{x}_{t+1|t+1} = \hat{x}_{t+1|t} + P_{t+1|t}C^T(CP_{t+1|t}C^T + \Sigma_\kappa)^{-1}(y_{t+1} - CX_{t+1|t}), \]

\[P_{t+1|t+1} = P_{t+1|t} - P_{t+1|t}C^T(CP_{t+1|t}C^T + \Sigma_\kappa)^{-1}CP_{t+1|t}, \]

\[\hat{x}_{t+1} = A\hat{x}_{t+1|t} + Bu_t, \]

\[P_{t+1} = AP_{t|t}A^T + \Sigma_w. \]

Proposition 2 states that the conditional mean and covariances of x_t can be propagated by an iterative algorithm which resembles the Kalman filter. In particular, the matrix $P_{t|t}$ together with $\hat{x}_{t|t}$ characterize the conditional density $f(x_t | y_t)$, which is needed in the computation of the cost (4) (or equivalently (6)). We note here that in the receding horizon control case considered in this paper, w_t will be a nonlinear function of y_0, \ldots, y_t; therefore we cannot assume that all the probability distributions in the problem are Gaussian as in the case of LQG; in fact, the priori distributions of x_t and of y_t are not. Hereafter, we shall denote for notational convenience by \hat{x}_t the estimate $\hat{x}_{t|t}$, and let

\[\hat{x}_t = \left[(\hat{x}_t^\kappa)^T \quad (\hat{x}_t^\omega)^T \right]^T, \]

which corresponds to the Jordan decomposition in (3). Let $K_t := (AP_{t|t}A^T + \Sigma_w)^{-1}(C(AR_{t+1|t}A^T + \Sigma_\kappa)^{-1}A)_{t+1|t}$ and define $I - K_tC$ and $\Phi_t := I - K_tA$. Then, we can write the estimation error vector over a single prediction horizon N as

\[E_t := X_t - \hat{X}_t = F_t e_t + g_t W_t - \mathcal{H}_{t} V_t, \]
where $e_t = x_t - \hat{x}_t$, $\hat{X}_t = \begin{bmatrix} \hat{x}_t \\ \vdots \\ \hat{x}_{t+N} \end{bmatrix}$, $\mathcal{F}_t = \begin{bmatrix} I & \phi_t & \phi_{t+1} & \cdots \\ & \phi_t & \phi_{t+1} & \cdots \\ & & \phi_{t+N-1} & \phi_t \end{bmatrix}$.

The innovation sequence can be written as

$$Y_t - \hat{Y}_t = C \mathcal{F}_t e_t + C \mathcal{F}_t \mathcal{W}_t + (I - C \mathcal{H}_t) V_t,$$

where $\hat{Y}_t \triangleq \mathcal{C} \hat{X}_t$. Consequently, the innovation sequence over the prediction horizon is independent of the input vector U_t. Also, under the foregoing assumptions, the error vector e_t is a Gaussian random variable with mean zero and variance ρ_{t1}.

2.1. Optimization problem and control policies

We would like to minimize the cost (4) over the class of all causal feedback policies. However, this optimization problem is extremely difficult to solve in general (Bertsekas, 2000, 2007). Therefore, we restrict attention to a subclass of causal feedback policies for which the optimization problem is tractable. Guided by our earlier approach in Chatterjee et al. (in press), Hokayem et al. (2009), Hokayem, Chatterjee et al. (2010), and Hokayem, Cinquemani et al. (2010) and given a control horizon $N_1 \geq 1$ and a prediction horizon $N > N_1$, we would like to periodically minimize the cost (4) at times $t = 0, N_1, 2N_1, \ldots$ over the following class of control policies

$$u_{t+\ell} = \eta_{t+\ell} + \sum_{i=0}^{\ell} \theta_{t+\ell+i} \psi_i(Y_{t+i} - \hat{Y}_{t+i}),$$

(14)

where $\ell = 0, 1, \ldots, N - 1$, $\hat{Y}_t \triangleq \mathcal{C} \hat{X}_t$ is the output of the estimator, and for any vector $z = (z_1, \ldots, z_p) \in \mathbb{R}^p$, $\phi_i(z) = (\psi_{i1}(z_1), \ldots, \psi_{ip}(z_p))$, where $\psi_{ij} : \mathbb{R} \to \mathbb{R}$ is any function with $\sup_{x \in \mathbb{R}} |\psi_{ij}(x)| \leq \varphi_{\text{max}} < \infty$ for some $\varphi_{\text{max}} > 0$. The feedback gains θ_{t+i} are $\mathbb{R}^{m \times p}$ and the affine terms $\eta_t \in \mathbb{R}^m$ are the decision variables. The value of $u_{t+\ell}$ in (14) depends on the values of the measured outputs from the beginning of the prediction horizon at time t up to time $t + \ell$ only, which requires finite memory. Note that we have chosen to saturate the measurements we obtain from the vectors $(y_t - \hat{y}_t)$ before employing them in the control policy. This allows us to consider unbounded noise and yet ensure bounded policies; neither the process noise nor the measurement noise distributions are defined over a compact domain, in contrast to robust deterministic receding horizon controller (Mayne et al., 2000) or other stochastic receding horizon control approaches as in Cannon, Cheng, Kouvaritakis, and Raković (2010). Moreover, the choice of element-wise saturation functions $\phi_i(\cdot)$ is left open. As such, we can accommodate standard saturation, piecewise linear, and sigmoidal functions, to name a few. The control policy (14) at time t can be compactly written as

$$U_t = \eta_t + \Theta_t \psi(Y_t - \hat{Y}_t),$$

(15)

where Θ_t has the following (causal) lower block triangular structure

$$\Theta_t := \begin{bmatrix} \theta_{t,t} & 0 & \cdots \\ \theta_{t+1,t} & \theta_{t+1,t+1} & \cdots \\ \vdots & \vdots & \ddots \\ \theta_{t+N-1,t} & \theta_{t+N-1,t+1} & \cdots & 0 \end{bmatrix},$$

(16)

and $\psi(Y_t - \hat{Y}_t) :=\begin{bmatrix} \psi_0(Y_t - \hat{Y}_t) \\ \cdots \\ \psi_{N-1}(Y_t + \hat{Y}_t - \hat{Y}_t) \end{bmatrix}$.

Since the innovation vector $Y_t - \hat{Y}_t$ in (13) is not a function of η_t and Θ_t, the control inputs U_t in (14) remain affine in the decision variables. This fact is important to show convexity of the optimization problem, as will be seen in the next section. Finally, the constraint (2) can be rewritten as

$$\|U_t\|_\infty \leq U_{\text{max}} \ \forall t = 0, N_1, 2N_1, \ldots$$

(17)

Summarizing, the optimization problem to be solved periodically at times $t = 0, N_1, 2N_1, \ldots$ is given by

$$\min_{\eta_t, \Theta_t} \left\{ J_t \mid (5), (15), (16), (17) \right\}.$$

(18)

3. Main results

Even if problem (18) is successively feasible every N_1 steps, in general the resulting control actions do not guarantee stability of the resulting receding horizon controller. Unlike standard deterministic stability arguments utilized in MPC, see, for example, (Mayne et al., 2000), we cannot assume the existence of a compact robust positively invariant terminal region, since the process noise sequence does not have a compact support. Instead, we introduce an additional stability constraint which, if recursively feasible, renders the state of the closed-loop system mean-square bounded. Guided by the argument in Rampini et al. (2010), we then show that this constraint is indeed recursively feasible.

For $t = 0, N_1, 2N_1, \ldots$, the state estimate at time $t + N_1$ can be written as

$$\hat{x}_{t+N_1} = A^{N_1} \hat{x}_t + B \eta_{N_1}(A, B) \begin{bmatrix} U_t \\ \vdots \\ U_{t+N_1-1} \end{bmatrix} + \Xi_t,$$

(19)

where $\Xi_{N_1}(A, B)$ is the reachability matrix as defined earlier and Ξ_t is defined as

$$\Xi_t := \begin{bmatrix} A^{N_1-1} K_1 C & A^{N_1-2} K_{t+1} C & \cdots & K_{t+N_1-1} C \\ A^{N_1-1} K_2 C & A^{N_1-2} K_{t+1} C & \cdots & K_{t+N_1-1} C \\ \vdots & \vdots & \ddots & \vdots \\ A^{N_1-1} K_t C & A^{N_1-2} K_{t+1} C & \cdots & K_{t+N_1-1} C \\ A^{N_1-1} K_{t+1} C & A^{N_1-2} K_{t+1} C & \cdots & K_{t+N_1-1} C \\ \vdots & \vdots & \ddots & \vdots \\ A^{N_1-1} K_{t+N_1-1} C & \cdots & \cdots & \cdots \end{bmatrix}.$$

(20)
In order to show boundedness of the state variance, we require that the N_c-step iteration (19) has bounded variance. However, this estimate has the term Σ_t, which involves the error in the state estimation process as well as the process and measurement noise vectors. This term Σ_t may be viewed as 'noise' entering the system, with bounded fourth moment. In particular, we require that there exists, at least after some time T', a uniform bound on its first moment. This is captured by the following Proposition.

Proposition 3. There exists an integer T' and a positive constant ζ, depending on the given problem parameters, such that

$$\mathbb{E}[\|\Sigma_t\|] < \zeta \quad \text{for all } t \geq T'.$$

Using the constant ζ, we now require the following "drift condition" to be satisfied: for any chosen constant $\varepsilon > 0$ and for every $t = 0, N_c, 2N_c, \ldots, U_t \in \mathbb{U}$ designed such that the following condition is satisfied

$$A \Sigma_t + \mathcal{R}_{\nu}(\mathbf{A}_t, \mathbf{B}_t) \begin{bmatrix} u_t \\ \vdots \\ u_{t+N_c-1} \end{bmatrix} \leq \left\| \Sigma_t \right\| - \left(\zeta + \frac{\varepsilon}{2} \right)$$

whenever $\left\| \Sigma_t \right\| > \zeta + \varepsilon$. (22)

As will be shown later, condition (22) above guarantees that on average the state norm contracts every N_c steps, a crucial ingredient towards showing mean-square boundedness of the closed-loop system. Moreover, N_c needs to be chosen appropriately (depending on the reachability index κ) in order to ensure that the constraint is feasible. Note that

$$\begin{bmatrix} u_t \\ \vdots \\ u_{t+N_c-1} \end{bmatrix} = \left(\eta_t \right)_{1:N_c} + (\mathbf{O}_t)_{1:N_c} \psi(Y - \hat{Y}).$$

(For notational convenience, we have retained $\psi(Y - \hat{Y})$ with the knowledge that the matrix $(\mathbf{O}_t)_{1:N_c}$ causally selects the first N_c output vectors as they become available, see (16).) We augment problem (18) with the stability constraint (22) to obtain

$$\min_{(\eta, \mathbf{O})} \left\{ \int_0^T f_t \mid (5), (15), (16), (17), (22) \right\}. \quad (23)$$

The ingredients of our stochastic receding horizon control problem corresponding to (23) are summarized in Algorithm 1.

Algorithm 1 Basic Stochastic Receding Horizon Algorithm

Require: density $f(x_0|y_{-1}) := \mathcal{N}(0, \Sigma_{x_0})$

1: set $t \leftarrow 0, x_{0|-1} \leftarrow 0,$ and $P_{0|-1} \leftarrow \Sigma_{x_0}$
2: loop
3: for $i = 0$ to $N_c - 1$ do
4: \hspace{1em} measure y_{t+i}
5: \hspace{1em} calculate $\hat{x}_{t+i}(= \hat{x}_{t+i|t+i})$ and $P_{t+i|t+i}$ using (7)-(8)
6: if $i = 0$ then
7: \hspace{1em} solve the optimization problem (23) for the optimal policy $[u_t^*, \ldots, u_{t+N_c-1}^*]$
8: end if
9: using the obtained control policy above, compute and apply u_{t+i}^*
10: calculate $\hat{x}_{t+i+1|t+i}$ and $P_{t+i+1|t+i}$ using (9)-(10)
11: end for
12: set $t \leftarrow t + N_c$
13: end loop

Assumption 4. We require that:

(i) The control and prediction horizons satisfy $N \geq N_c = \kappa$, where κ is the reachability index of the orthogonal subsystem $(\mathbf{A}_t, \mathbf{B}_t)$ in (3).

(ii) The control authority $U_{\max} \geq U_{\max}'$, where $U_{\max}' := \sigma_{\text{min}}(\mathcal{R}_{\nu}(\mathbf{A}_t, \mathbf{B}_t))^{-1}(\zeta + \frac{\varepsilon}{2})$ and $\mathcal{R}_{\nu}(\mathbf{A}_t, \mathbf{B}_t)$ is the N_c-step reachability matrix of the orthogonal subsystem.

In fact, choosing any control horizon $N_c \geq \kappa$ turns out to be sufficient in order to have a feasible control vector U_t for problem (23) with an upper bound $U_{\max}' = U_{\max}^*$, however, we will take $N_c = \kappa$ for simplicity.

Theorem 5. Consider the system (1a)–(1b), and suppose that Assumptions 1 and 4 hold. Then:

(i) For every time $t = 0, N_c, 2N_c, \ldots$, the optimization problem (23) in Algorithm 1 is convex and can be conservatively approximated and solved via the following globally (hence recursively) feasible second-order cone program (SOCP):

$$\min_{(\eta, \mathbf{O})} \begin{bmatrix} z_1 \\ \vdots \\ z_M \end{bmatrix}$$

subject to

$$\begin{cases} \left\| \eta_t + \Theta_t A_t^\top + \text{tr} \left(\Theta_t^\top M \Theta_t (A_t^w - A_t^y T^\top) \right) \right\|_2^2 + 2 \eta_t^\top A_t^w B_t \eta_t + 2 \text{tr} \left(\Theta_t^\top B_t^\top Q (D A_t^w + A_t^y T^\top) \right) - z_1 \\ \left\| \eta_t \right\|_2 + \left\| \psi(Y - \hat{Y}) \right\|_2 \leq U_{\max} \quad \forall i = 1, \ldots, M, \quad (24) \end{cases}$$

the structure of Θ_t in (16), where $M := \mathcal{R} + B_t^\top Q B_t$, and $A_t^w := \mathbb{E}_t[\psi(Y_t - \hat{Y}_t)^2], A_t^y := \mathbb{E}_t[\psi(Y_t - \hat{Y}_t)], A_t^w := \mathbb{E}_t[\psi(Y_t - \hat{Y}_t)^2]$. (25)

(ii) The application of Algorithm 1 via the SOCP approximation in part (i) above renders the closed-loop system mean-square bounded, i.e., for any initial Y_0, there exists a (computable) finite constant $\gamma > 0$, depending on the given problem parameters, such that

$$\sup_{t \in \mathbb{N}} \mathbb{E}_t[\|x_t\|^2] \leq \gamma. \quad (26)$$

In practice, it may be also of interest to further impose constraints both on the state and the input vectors. For example, one may be interested in imposing linear and/or quadratic constraints on the state of the form

$$\mathbb{E}_t[\|x_t\|^2 + \lambda^\top X_t] \leq \alpha_t. \quad (30)$$

where $\lambda = \delta^\top \geq 0$ and $\alpha_t > 0$. Moreover, expected energy expenditure constraints can be posed as follows

$$\mathbb{E}_t[\|u_t\|^2] \leq \beta_t. \quad (31)$$

where $\delta = \delta^\top \geq 0$ and $\beta_t > 0$. In the absence of hard input constraints, such expectation-type constraints are commonly used in the stochastic MPC (Eugenia, Agarwal, Chatterjee, D & Lygeros, in press; Prisms & Sung, 2009) and in stochastic optimization in the form of integrated chance constraints (Klein Hanewald, 1983; Klein Hanewald & van der Vlerk, 2006). This is partly because it is not possible, without posing further restrictions on the boundedness of the process noise u_t, to ensure that hard constraints on the state are satisfied. For example, in the standard LQG setting nontrivial hard constraints on the system state would
generally be written with nonzero probability. Moreover, in contrast to chance constraints where a bound is imposed on the probability of constraint violation, expectation-type constraints tend to give rise to convex optimization problems under weak assumptions (Eugenia et al., in press; Klein Haneveld, 2013; Klein Haneveld & van der Vlerk, 2006). We can augment problem (23) with the constraints (30) and (31) to obtain

$$\min_{(\eta, \theta)} \left\{ f_1 \mid (5), (15), (16), (17), (22), (30), (31) \right\}. \tag{32}$$

Notice that the constraints (30) and (31) are not necessarily feasible at time \(t \) for any choice of parameters \(\alpha_i \) and \(\beta_i \). As such, problem (32) may become infeasible over time if simply satisfying Algorithm 1. We therefore modify step 7 in Algorithm 1 to generate Algorithm 2. In this new version of the algorithm, problem (32) is either feasible at step 7 with the given \(\alpha_i \) and \(\beta_i \), or a bisection search is implemented (steps 12–26), with \(\alpha_i \) and \(\beta_i \) as lower bounds, and upper bounds

$$\alpha_i^* := 3 \left(A^T \delta \mathcal{E} \mathcal{A}^2 \left[x_i x_i^T \right] + D^T \mathcal{D} \Sigma_{w} \right) + L^T \mathcal{A} \hat{x}_i + 3 \text{Nm} \max(\delta) U_{\text{max}} \tag{33}$$

and

$$\beta_i^* := \text{Nm} \max(\phi) U_{\text{max}} \tag{33}$$

that guarantee feasibility. The search is iterated until the change in \(\alpha \) and \(\beta \) falls below a pre-specified region of the search space that is reached, which is used to keep the computational burden limited.

Corollary 6. Consider the system (1a)–(1c), and suppose that Assumptions 1 and 4 hold. Then:

(i) For every time \(t = 0, N_c, 2N_c, \ldots \) the optimization problem (32) in Algorithm 2 is convex and can be numerically optimized and solved via the following globally (hence recursively) feasible (at each step 7 or step 13) second-order cone program (SOCP):

$$\text{minimize} \quad z_1 \quad \text{subject to} \quad \| \eta_i, \Theta, \Lambda_i \|_2^2 + \text{tr} \left(\Theta_i^T \mathcal{M} \Theta_i (\Lambda_i^{w^w} - \Lambda_i^{w^T}) \right) + 2 \delta_i \mathcal{A} \mathcal{D} \Sigma_{w} \beta_i + 2 \text{tr} \left(\Theta_i^T \mathcal{D} \Sigma_{w} \mathcal{A} \Lambda_i^{w^w} + \Lambda_i^{w^T} \right) \leq z_1$$

$$\| (\eta_i)_{1:m} \|_1 \leq \beta \quad \forall \ i = 1, \ldots, N_m,$$

$$\| \Lambda_i^{w^w} \|_2^2 + \| \Lambda_i \| \leq z_2,$$

$$\| \eta_i, (\Lambda_i, \beta_i) \|_{1:m} \leq z_3,$$

whenever

$$\| x_i \|_2 \geq \xi + \varepsilon$$

(ii) The application of Algorithm 2 via the SOCP approximation in part (i) above renders the closed-loop system mean-square bounded, i.e., for any initial \(y_0 \), there exists a (computable) finite constant \(\gamma > 0 \), depending on the given problem parameters, such that

$$\sup_{t \in \mathbb{N}} \mathbb{E} \| x_t \|_2^2 \leq \gamma. \tag{36}$$

Algorithm 2 Modified Stochastic Receding Horizon Algorithm

Require: density \(f(x_t | y_{t-1}) := \mathcal{N}(0, \Sigma_{x_0}) \)

1. set \(t \leftarrow 0, x_{0|-1} \leftarrow 0, \) and \(p_{0|-1} \leftarrow \Sigma_{x_0} \)
2. **loop**
3. for \(i = 0 \) to \(N_c - 1 \) do
4. measure \(y_{t+i} \)
5. calculate \(\hat{x}_{t+i} \leftarrow (x_{t+i+1|-1}) \) and \(P_{t+i+1|-1} \) using (7)–(8)
6. if \(i = 0 \) then
7. solve the optimization problem (32) using the given \(\alpha_i \) and \(\beta_i \)
8. if step 7 is feasible then
9. save the optimal sequence \((u^*_t, u^*_t, \ldots, u^*_t) \)
10. goto step 28
11. else
12. set \(\alpha_i \leftarrow \alpha_i^*, \beta_i \leftarrow \beta_i^* \)
13. solve the optimization problem (32) using \(\alpha_i \) and \(\beta_i \)
14. obtain the sequence \((u^*_t, u^*_t, \ldots, u^*_t) \)
15. set \(\gamma \leftarrow \gamma \quad \text{if step 7 is feasible} \)
16. solve the optimization problem (32) using the new \(\alpha_i \) and \(\beta_i \)
17. if step 7 is feasible then
18. set \(\alpha_i \leftarrow \alpha_i^*, \beta_i \leftarrow \beta_i^* \)
19. save the new optimal sequence \((u^*_t, u^*_t, \ldots, u^*_t) \)
20. else
21. set \(\alpha_i \leftarrow \alpha_i^*, \beta_i \leftarrow \beta_i \)
22. **end if**
23. **end if**
24. apply \(u^*_t \)
25. calculate \(\hat{x}_{t+i+1|-1} \) and \(P_{t+i+1|-1} \) using (9)–(10)
26. **for**
27. set \(t \leftarrow t + N_c \)
28. **end for**
29. **end loop**

4. Discussion

4.1. Recursive feasibility

The SOCPs solved in Theorem 5 and Corollary 6 are globally feasible, independently of the initial conditions of the plant and the estimator. As such, there is no a priori requirement for an initially feasible and invariant set of initial conditions, as is the case in nominal or robust receding horizon control (Mayne et al., 2000). This guarantee of recursive feasibility is shown in the proofs of Theorem 5 and Corollary 6 by providing a feasible control law that satisfies all the constraints in the SOCPs.

4.2. Mean-square boundedness

The mean-square boundedness conditions (29) and (36) provide an on-average guarantee that the state does not grow arbitrarily large. This is a weaker notion of stability than, for example, asymptotic stability or input-to-state stability (ISS) that have been utilized in nominal and robust receding horizon control, respectively. However, in the presence of possibly unbounded process and measurement noise, it is virtually impossible to guarantee that the state converges to the origin or that it is ultimately bounded in some compact set for every initial condition.
and every realization of the noise processes. In this case, similarly to LQG (i.e., even with unbounded control authority), mean-square boundedness is the best that can be aimed for within our setting, given the unboundedness of the noise processes and the limited control authority. The constants γ in (29) and (36) may be computed using the derivations in the Appendix and the formulas in the remark in Pemantle and Rosenthal (1999, pp.145).

4.3. More general policies

It is not difficult to show that one can also use quadratic policies of the form

$$U_t = \eta_t + \Theta_1 \psi(Y_t - \hat{Y}_t) + \Theta_2 \psi(Y_t - \hat{Y}_t), \quad (37)$$

instead of (14), where Θ_1 has the same causal structure of Θ_0, and $\hat{\psi}(Y_t - \hat{Y}_t) := \hat{\psi}_0(y_t - \hat{y}_t) \cdots \hat{\psi}_{n-1}(y_{t-N-1} - \hat{y}_{t-N-1})^T \hat{\psi}_n(Y_t - \hat{Y}_t)^T$, with $\sup_{s \in \mathbb{R}} | \hat{\psi}(s) | \leq \hat{\psi}_{\max} < \infty$ for some $\hat{\psi}_{\max} > 0$. The underlying optimization problems (23) and (32) with the policy (37) are still convex and both Theorem 5 and Corollary 6 still apply with minor changes.

4.4. Off-line computation of the Λ matrices

The optimization problems (23) and (32) solved in Theorem 5 and in Corollary 6, respectively, are second-order cone programs (SOCP) for which efficient numerical solvers are available via software packages such as yalmip (Löfberg, 2004). As such, the optimization may be performed online. However, at any time $t = 0, N_c, 2N_c, \ldots$, our ability to solve the optimization problems in Theorem 5 and Corollary 6, respectively, hinges upon the computation of the matrices in (28).

Recall that $Y_t - \hat{Y}_t$ is the innovation sequence that was given in (13), and that \hat{x}_t is the optimal mean-square estimate of x_t given the history \hat{y}_t. The matrices (28) may be computed by numerical integration with respect to the independent Gaussian measures of $\psi_1, \ldots, \psi_{t-N-1}$, of v_t, \ldots, v_{t-N_c}, and of $(x_t - \hat{x}_t)$ given \hat{y}_t. Due to the large dimensionality of the integration space, this approach may be impractical for online computations. One alternative approach relies on the observation that Λ_t^v, Λ_t^wv, and Λ_t^{wv} depend on x_t via the difference $x_t - \hat{x}_t$. Since $x_t - \hat{x}_t$ is conditionally zero-mean given \hat{y}_t, we can write the dependency of (28) on the time-varying statistics of x_t given \hat{y}_t as follows: $\Lambda_t^v(\hat{x}_t, P_{\hat{y}_t}) = \Lambda_t^v(\hat{x}_0, P_{\hat{y}_0}) + \hat{x}_t \Lambda_t^wv(\hat{x}_0, P_{\hat{y}_0}, P_t), \Lambda_t^wv(\hat{x}_0, P_{\hat{y}_0}, P_t), \text{ and } \Lambda_t^{wv}(\hat{x}_0, P_{\hat{y}_0}, P_t)$, where $\Lambda_t^v := \mathcal{E}_{\hat{y}_t}[(x_t - \hat{x}_t)\psi(Y_t - \hat{Y}_t)^T]$. In principle one may compute off-line and store the matrices $\Lambda_t^v(\hat{x}_0, P_{\hat{y}_0}), \Lambda_t^wv(\hat{x}_0, P_{\hat{y}_0}, P_t), \Lambda_t^{wv}(\hat{x}_0, P_{\hat{y}_0}, P_t)$, which depend on the covariance matrices $P_{\hat{y}_t}$ but not on \hat{x}_t, and just update online the value of $\Lambda_t^v(\hat{x}_t, P_t)$ as the estimate \hat{x}_t becomes available. However, this poses serious requirements in terms of memory. A more appealing alternative is to exploit the convergence properties of the covariance matrix $P_{\hat{y}_t}$. The following result can be inferred, for instance, from Kamen and Su (1999, Theorem 5.1).

Proposition 7. Under Assumption 1(iii) and (iv) the discrete-time algebraic Riccati equation in $P \in \mathbb{R}^{n \times n}$, $P = \Pi \Pi^T + C^TP + CP^T + \Sigma_u - CP^T \Pi^T \Pi + \Sigma_u$, has a unique solution $P > 0$. The sequence $P_{t+1|t}$ defined by (8) and (10) converges to P^* as t tends to ∞, for any initial condition $P_{0|0} > 0$.

As a consequence, from (8) one sees that $P_{t|t}$ converges to $P^* = P^* - P^*C^T(CP^T + \Sigma_u)^{-1}CP^*$, which is the asymptotic error covariance matrix of the estimator \hat{x}_t. Thus, neglecting the initial transient, one may just compute off-line and store the matrices $\Lambda_t^v(P^*), \Lambda_t^wv(P^*), \Lambda_t^{wv}(P^*)$, and $\Lambda_t^{wv}(P^*)$, and just update the matrix $\Lambda_t^v(\hat{x}_t, P^*)$ for new values of the estimate \hat{x}_t.

5. Simulations

Consider the system (1a)-(1b) with the following matrices:

$$A = \begin{bmatrix} 0.9 & 0 & 0 \\ 0 & 0 & \cos(\psi) \\ 0 & \sin(\psi) & \cos(\psi) \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \text{and } C = I, \quad \psi = \frac{\pi}{2}. $$

The orthogonal part of the state is 3-dimensional, and the controllability index of the orthogonal part is $k = 3$.

Example 1. The simulation data was chosen to be: $x_0 \sim \mathcal{N}(0, I), w_t \sim \mathcal{N}(0, 10I), v_t \sim \mathcal{N}(0, 10I), Q = I, R = 1, N = 5, N_c = k = 3$, and ψ the usual piecewise linear saturation function with $\psi_{\max} = 1$. For this example the theoretical bound on the input is $U_{\max} = 453$ for a choice of $\varepsilon = 10$.

We simulated the system above using Algorithm 1 for the discrete-time interval $[0, 100]$. In comparison, we simulated also the policy (38) proposed by the authors in Ramponi et al. (2010) whenever the state is estimated using a Kalman filter, with the understanding that this goes beyond the results in Ramponi et al. (2010), since Ramponi et al. (2010) deals only with the case of perfect state information. We also simulated the standard LQG controller for this system with post-saturation of the obtained controls. The average state norm as well as the standard deviation of the state norm using the three strategies are depicted in Fig. 1 and the total costs are plotted in Fig. 2. Fig. 2 shows approximately 16% improvement in the cost after 100 time steps by using Algorithm 1 versus the policy (38) in Ramponi et al. (2010) coupled with a Kalman filter. The performance of our policy is close to
We also simulated the same system as before with $Q = 100I$ and $R = I$. In this case the theoretical bound $\zeta = 336.6$ and the corresponding $U_{max} = 440.45$. As this theoretical bound on ζ is conservative, we reduced ζ down to 2 and chose $\epsilon = 0.5$, which result in $U_{max} = 3.2664$. This choice of ζ is far below the required theoretical bound (which was given in Example 1 above) and as such the stability guarantees in the article do not apply anymore, i.e., there is no theoretical guarantee that the closed-loop system is mean-square bounded. However, it is apparent from Figs. 3 and 4 that our policy is stabilizing. It is important to notice that the clipped LQG policy hits the saturation level U_{max} quite often, whereas our policy does not, as seen in Fig. 5. However, despite the fact that our strategy does not take full advantage of the available control authority, it is still able to outperform the clipped LQG as well as the adapted policy in Ramponi et al. (2010).

6. Conclusions

We presented a method for stochastic receding horizon control of discrete-time linear systems with process and measurement noise and bounded input policies. We showed that the optimization problem solved periodically is successively feasible and convex. Moreover, we illustrated how a certain stability condition can be utilized to ensure that the application of the receding horizon controller renders the state of the system mean-square bounded. We discussed how certain matrices in the cost function can be computed off-line and provided examples that illustrate our approach, showing conditions under which it outperforms certain competing approaches.

Acknowledgments

This research was partially supported by the Swiss National Science Foundation under grant 200021-122072 and by the European Commission under the projects Feednetback FP7-ICT-223866 (www.feednetback.eu) and MoVeS FP7-ICT-2009-257005.

Appendix. Proofs

We begin by considering the estimation equation in (7) and combining it with (9) and the system dynamics (1a)–(1b) to obtain (recall that \hat{x}_t is used instead of \tilde{x}_t for notational simplicity) $\hat{x}_{t+1} = A\hat{x}_t + Bu + K(CA\hat{x}_t - \hat{\zeta}_t) + Cw_t + v_{t+1}$, where $K_t = (AP_{t|t}A^T + \Sigma_A)C^T(CAP_{t|t}A^T + \Sigma_A)^{-1}$ and $P_{t|t}$ is the error covariance matrix defined in (8). Both K_t and P_t are uniformly norm-bounded as shown in the following Lemma:

Lemma 8. Consider the system (1a)–(1b), and let Assumption 1(iv) hold. In addition, assume that $\rho_0 > 0$. Then, there exists a time $T' \in \mathbb{N}$ and constants $\rho, \rho_m > 0$ such that $\text{tr}(P_{t|t}) \leq \rho$ and $\|K_t\| \leq \rho_m, \forall t > T'$.

Proof. First, observe that $\sum_{i=0}^{t-1} A^i\Sigma_w(A^i)^T = \left[\begin{array}{ccc} \Sigma_{w,1}^{1/2} & \cdots & A^{i-1}\Sigma_{w,1}^{1/2} \\ \Sigma_{w,2}^{1/2} & \cdots & A^{i-1}\Sigma_{w,2}^{1/2} \\ \vdots & \ddots & \vdots \\ \Sigma_{w,i}^{1/2} & \cdots & A^{i-1}\Sigma_{w,i}^{1/2} \end{array}\right]$, and since $(A_1, \Sigma_{w,1}^{1/2})$ is controllable by Assumption 4(iv), we see that there exists $\kappa_1 \in \mathbb{N}$ such that for all $k > \kappa_1$ the rank of $\left[\begin{array}{ccc} \Sigma_{w,1}^{1/2} & \cdots & A^{i-1}\Sigma_{w,1}^{1/2} \\ \Sigma_{w,2}^{1/2} & \cdots & A^{i-1}\Sigma_{w,2}^{1/2} \\ \vdots & \ddots & \vdots \\ \Sigma_{w,i}^{1/2} & \cdots & A^{i-1}\Sigma_{w,i}^{1/2} \end{array}\right] = \kappa_1$.

Fig. 3. Average and standard deviation of the state norm for $U_{max} = 3.2664$.

Fig. 4. Total cost for $U_{max} = 3.2664$.
Consider the system (1a)–(1b), and suppose that Assumption 4 holds. Then assertion(i) of Theorem 5 holds.

Proof. Convexity: It is clear that $X^\top QX_t + U_t^\top R U_t$ is convex in X_t and U_t, and both X_t and U_t are affine functions of the design parameters (η_t, Θ_t) for every realization of the noise sequences $(u_t)_{t \in \mathbb{N}}$ and $(t)_{t \in \mathbb{N}}$. Since taking expectation of a convex function retains convexity (Boyd & Vandenberghe, 2004), we conclude that the cost $V_t = E_y_t \left[X_t^\top Q X_t + U_t^\top R U_t \right]$ is convex in (η_t, Θ_t). Similarly, the constraints (17) and (22) are convex in (η_t, Θ_t) as they are a composition of convex and affine functions (Boyd & Vandenberghe, 2004).

SOCP formulation: Substituting the augmented dynamics (5) into the objective function (6), we have that $\tilde{f}_t = E_y_t \left[\|A X_t + B U_t + D W_t \rho_{1,t} + (U_t)^\top B^2 Q (A X_t + D W_t) + E_y_t \left[W_{1,t}^2 \right] \right]$, where we have used the fact that the noise W_t is zero-mean and $M = R + B^2 Q B$. Note that the last term above does not depend on the decision variables so we shall henceforth drop it from the optimization. Now, substituting the policy (15) into the last equation and completing the square yields $\tilde{f}_t = E_y_t \left[\left(\eta_t + \Theta_t \psi (Y_t - \hat{Y}_t) \right)^\top M (\eta_t + \Theta_t \psi (Y_t - \hat{Y}_t)) + 2 \left(\eta_t + \Theta_t \psi (Y_t - \hat{Y}_t) \right)^\top B^2 Q (A X_t + D W_t) \right]$, which is convex in Θ_t, symmetric, and therefore, there exists a matrix Q such that $\eta_t^\top Q \eta_t = r$ for some $r > 0$.

Concerning the constraint (26), we have shown in Chatterjee et al. (in press) and Hokayed et al. (2009) that combining the constraint $\|u_t\|_\infty \leq U_{\max}$ and the class of policies (15) is equivalent to the constraints $(\eta_i)_{i \in N}$ is positive definite, there exists $\rho > 0$ such that $\|\rho^\top \|_\infty \leq U_{\max}$ and $\max_{i \in N} \rho_i$ for all $i = 1, \ldots, N_m$. Substituting (15) into the stability constraint (22), we obtain

Using the bounds in Lemma 8, we can proceed to prove Proposition 3.

Proof (Proof of Proposition 3). Recall the expression of ζ_i in (20) and define the following quantities:

Using Lemma 8, we have that $\| \zeta_i \| \leq N_c \| C \| \| X_t \| \leq N_c \| \rho_{\max} \| C \|$, and $\| H_t \| \leq N_c \| X_t \| \leq N_c \| \rho_{\max} \|$, for all $t \geq T$. It follows that

Enforcing that the last term above is $\leq \| \tilde{\xi}_t \| - \| \xi \|$, whenever $\| \tilde{\xi}_t \| > \| \xi \| + \varepsilon$, is equivalent to the constraint (27), where the decision variables are now (z_2, z_3, η, Θ). Moreover, if the constraint (27) is satisfied, then the stability constraint (22) is satisfied as well. As such, the optimization problem solved in Theorem 5(i) is a conservative approximation of (23) due to the fact that the constraint (27) is tighter than (22).
Finally, it is easy to see that the cost (24) is linear and (25) through (27) are second-order cone constraints, hence the optimization program is a SOCP (Ben-Tal & Nemirovski, 2001).

The following result pertains to mean-square boundedness of the Schur subsystem \tilde{x}_t^2 of the estimator, i.e., $\tilde{x}_t^2 = A_t^x \hat{x}_t + B_t u_t + (K_t)_{1,n} C(A_t \hat{x}_t - x_t) + C(u_t + v_{t+1})$, where $(K_t)_{1,n}$ are the first n rows of the gain K_t.

Lemma 10. Let Assumption 1 hold. Then there exists a constant $\gamma_s > 0$, depending on the given problem parameters, such that

$$E_y \left(\left\| \tilde{x}_t^2 \right\|^2 \right) \leq \gamma_s, \quad \forall t, \quad \text{where } T^* = T^* \text{ as defined in Proposition 3.}$$

Proof. Since the matrix A_t is Schur stable, there exists a positive definite matrix $M \in \mathbb{R}^{n \times n}$ that satisfies $A_t' M A_t - M = -I$, see Bernstein (2009, Proposition 11.10.5). Pick a constant $\nu \in [0, \min \left\{ 1, 1/\lambda_{\max}(M) \right\}]$ such that $A_t' M A_t - M \leq -\nu M$.

Then for any $t \in \mathbb{N}$, $E_y \left[\left\| \tilde{x}_t^2 \right\|^2 - \left\| \tilde{x}_t^1 \right\|^2 \leq -\nu \left\| \tilde{x}_t^1 \right\|^2 + 2E_y \left(\left\| (K_t)_{1,n} (CA_t \hat{x}_t - x_t) + C(u_t + v_{t+1}) \right\|^2 \right) \right]$, where $\left\| \tilde{x}_t^1 \right\| := x_t M \hat{x}_t$. Using Young’s inequality and Assumption 1, we have that $2E_y \left(\left\| \tilde{x}_t^2 \right\|^2 - \left\| \tilde{x}_t^1 \right\|^2 \right) \leq E_y \left(\left\| (A_t' M A_t - M) \tilde{x}_t^1 \right\|^2 \right) + 2E_y \left(\left\| \tilde{x}_t^1 \right\|^2 \right) \leq \sum_{i=1}^n \lambda_i (\left\| \tilde{x}_t^1 \right\|^2 + (\left\| \mu \right\|^2 + \left\| \mu \right\|^2 \left(\left\| (CA^2) \hat{\rho} \right\|^2 + \left\| C \right\|^2 \right) \left(\text{tr} (\Sigma_u) + \left(\text{tr} (\Sigma_s) \right) \right) C)$$

Choose an $\epsilon \leq 2\lambda_{\max}(M)$ and let $c := \sum_{i=1}^n \lambda_i (\left\| \tilde{x}_t^1 \right\|^2 + (\left\| \mu \right\|^2 + \left\| \mu \right\|^2 \left(\left\| (CA^2) \hat{\rho} \right\|^2 + \left\| C \right\|^2 \right) \left(\text{tr} (\Sigma_u) + \left(\text{tr} (\Sigma_s) \right) \right) C)$, then we have $E_y \left(\left\| \tilde{x}_t^2 \right\|^2 \leq \left(1 - \frac{\epsilon}{\nu} \right) \left\| \tilde{x}_t^2 \right\|^2 + c, \quad \text{for all } t > T. \right.$

Iterating the last inequality, we have $E_y \left(\left\| \tilde{x}_t^2 \right\|^2 \right) \leq \left(1 - \frac{\epsilon}{\nu} \right)^{T-t} \left\| \tilde{x}_t^2 \right\|^2 + \sum_{i=0}^{T-t-1} \left(1 - \frac{\epsilon}{\nu} \right)^i \left\| \tilde{x}_t^2 \right\|^2 + \left(1 - \frac{\epsilon}{\nu} \right)^T \left\| \tilde{x}_t^2 \right\|^2$, for all $t > T$. Setting $\gamma_s := \left\| \tilde{x}_t^2 \right\|^2 + \left(1 - \frac{\epsilon}{\nu} \right)^T \left\| \tilde{x}_t^2 \right\|^2$, completes the proof. □

We consider next the orthogonal subsystem of the estimator and show that the process $(\tilde{x}_t^2)_{t \in \mathbb{N}}$ is mean-square bounded. We shall rely on the following fundamental result pertaining to mean-square boundedness of a general random sequence $(\xi_t)_{t \in \mathbb{N}}$, it is an immediate consequence of Pemantle and Rosenthal (1999, Theorem 1).

Proposition 11. Let $(\xi_t)_{t \in \mathbb{N}}$ be a sequence of nonnegative random variables on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $(\xi_t^2)_{t \in \mathbb{N}}$ be any filtration to which $(\xi_t)_{t \in \mathbb{N}}$ is adapted. Suppose that there exist constants $\epsilon > 0$, and $M, J < \infty$, such that $\xi_t \leq J$, and for all $t \in \mathbb{N}$:

$$E_\mathcal{F}_t \left[\xi_{t+1} - \xi_t \right] \leq -\frac{\epsilon}{2} \quad \text{on the event } (\xi_t > J) \quad (39)$$

and

$$E_{\mathbb{F}_1} \left[\xi_1 - \xi_1^2 \right] \leq M. \quad (40)$$

Then there exists a constant $\gamma = \gamma(\epsilon, J, M) > 0$ such that

$$\sup_{t \in \mathbb{N}} E_\mathcal{F}_t \left[\xi_t^2 \right] \leq \gamma.$$

Lemma 12. Let Assumptions 1 and 4 hold. Then there exists a constant $\gamma_s > 0$, depending on the given problem parameters, such that

$$E_y \left(\left\| \tilde{x}_t^2 \right\|^2 \right) \leq \gamma_s, \quad \forall t \geq T := N_c \left(T^* / k \right) . \quad (41)$$

Proof. Consider the subsampled process $\tilde{x}_{t+T}^2 = A_t^{N_c} \tilde{x}^2 + \mathcal{N}_c (A_0, B_0) u_{t+t-N_c} - (\Sigma)_{n-n+1:n}$ for $t = 0, N_c, 2N_c, \ldots$, where Σ is as defined in (20) and u_{t+t-N_c-1} := $\begin{bmatrix} u_{t} \\ \vdots \\ u_{t+N_c-1} \end{bmatrix}$. We shall first verify the two conditions (39) and (40) of Proposition 11 for the process $(\xi_t)_{t=0:N_c, 2N_c, \ldots}$ = $(\left\| \tilde{x}_t^2 \right\|)_{t=0:N_c, 2N_c, \ldots}$. Using the triangle inequality, we have that

$$E_y \left(\left\| \tilde{x}_{t+T}^2 \right\| - \left\| \tilde{x}_t^2 \right\| \right) \leq E_y \left(A_t^{N_c} \tilde{x}^2 + \mathcal{N}_c (A_0, B_0) u_{t+t-N_c} - (\Sigma)_{n-n+1:n} \right).$$

We know from Proposition 3 that there exists a uniform (with respect to time t) upper bound ξ for the last term on the right-hand side of the last inequality for $t > T := N_c \left(T^* / k \right)$. Accordingly, we have

$$E_y \left(\left\| \tilde{x}_{t+T}^2 \right\| - \left\| \tilde{x}_t^2 \right\| \right) \leq E_y \left(\left\| A_t^{N_c} \tilde{x}^2 \right\| + \mathcal{N}_c (A_0, B_0) u_{t+t-N_c} - (\Sigma)_{n-n+1:n} \right).$$

Using the inequality $(a + b)^2 \leq 2a^2 + 2b^2$, it follows that

$$E \left(\left\| \tilde{x}_{t+T}^2 \right\| - \left\| \tilde{x}_t^2 \right\| \right)^2 \leq E \left(\left\| \tilde{x}_{t+T}^2 \right\| - \left\| \tilde{x}_t^2 \right\| \right)^2 .$$

By design, $\left\| u_t \right\| \leq U_{\max}$. In addition, Σ is independent of $(\tilde{x}_t^2)_{t=0:N_c, 2N_c, \ldots}$ and is Gaussian; it has its fourth moment bounded. Therefore, there exists a constant $M > 0$ such that

$$E \left(\left\| \tilde{x}_{t+T}^2 \right\| - \left\| \tilde{x}_t^2 \right\| \right)^2 \leq E \left(\left\| \tilde{x}_{t+T}^2 \right\| - \left\| \tilde{x}_t^2 \right\| \right)^2 .$$

Thus, by Proposition 11, there exists a constant $\gamma_s > 0$, depending on the given problem parameters, such that $E_y \left(\left\| \tilde{x}_{t+T}^2 \right\| - \left\| \tilde{x}_t^2 \right\| \right)^2 \leq \gamma_s$ for all $t = T, T + N_c, T + 2N_c, \ldots$. Finally, using a standard argument (as in Ramponi et al. (2010)) we can show the existence of another constant $\gamma_s > 0$ such that the condition (41) holds. □
bounded control input, and since $T < \infty$, it follows that there exists a constant $\gamma > 0$ such that $E_y[|X_0|^2] \leq \gamma$, for all $t \in \mathbb{N}$, establishing the claim (ii) of Theorem 5.

Proof (Proof of Corollary 6). The proof of Corollary 6 follows exactly the same reasoning as in the proof of Theorem 5, except for the constraints in (34) and (35). Rewriting the constraints (30) and (31) as (34) and (35), respectively, can be done similarly to the way we rewrote the cost (6) in Theorem 5. It remains to show the upper bounds similarly to the way we rewrote the cost (6).

References

Peter Hokayem received his B.E. degree in Computer and Communications Engineering from the American University of Beirut in 2001, his M.S. degree in Electrical Engineering from the University of New Mexico in 2003, and his Ph.D. degree in Electrical and Computer Engineering from the University of Illinois at Urbana-Champaign in 2007. Following a stint at the University of Wuerzburg, he joined the Automatic Control Laboratory at ETH Zurich in 2008, where he is currently a senior postdoctoral researcher. His current research interests include stochastic model predictive control and distributed optimization and control. He received the Automatica Paper Prize Award in 2008.

Eugenio Cinquemani received his Ph.D. degree in 2005 from the Department of Information Engineering of the University of Padova, Italy. He then worked as a Post-Doc at the Automatic Control Laboratory of the ETH Zurich, Switzerland, for three years. Since November 2009 he works as a Research Scientist at the INRIA Grenoble – Rhône-Alpes, France. His research interests include identification, estimation and control methods for stochastic and hybrid systems, with applications to biological networks.

Debasish Chatterjee received his Ph.D. in Electrical Engineering from University of Illinois at Urbana-Champaign, USA, in 2007, following which he did his postdoctoral research at the Automatic Control Laboratory, ETH Zurich, Switzerland. He is now with the Systems & Control Engineering, IIT Bombay, India. His research interests center around constrained and optimization-based control, switched and hybrid systems, and applications of random processes in systems and control.

Federico Ramponi was born in Verona, Italy, on August 3, 1978. He received his M.Sc. in computer engineering and his Ph.D. in control engineering from the University of Padova, Italy, in 2004 and 2009 respectively. From 2009 to 2011 he has been a post-doctoral fellow within the Automatic Control Laboratory, ETH Zurich, Zurich, Switzerland. He has recently become an assistant professor at the Department of Information Engineering, University of Brescia, Italy. His research interests include stochastic model predictive control and stochastic model checking.

John Lygeros completed a B.Eng. degree in Electrical Engineering in 1990 and an M.Sc. degree in Systems Control in 1991, both at Imperial College, London, UK. In 1996 he obtained a Ph.D. in Electrical Engineering and Computer Sciences from the University of California, Berkeley. During the period 1996–2000 he held postdoctoral research appointments at MIT and UC Berkeley, as well as a part-time research engineer position at SRI International, Menlo Park, California. Between 2000 and 2003 he was a University Lecturer at the Department of Engineering, University of Cambridge, UK, and a Fellow of Churchill College. Between 2003 and 2006 he was an Assistant Professor at the Department of Electrical and Computer Engineering, University of Patras, Greece. In July 2006 he joined the Automatic Control Laboratory at ETH Zurich, where he is currently serving as a Full Professor and the Head of the Laboratory. His research interests include modeling, analysis, and control of hierarchical, hybrid, and stochastic systems, with applications to biochemical networks, air traffic management, power grids and camera networks. John Lygeros is a Fellow of the IEEE, and a member of the IET and the Technical Chamber of Greece.