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a b s t r a c t

We study the problem of receding horizon control for stochastic discrete-time systems with bounded
control inputs and incomplete state information. Given a suitable choice of causal control policies, we
first present a slight extension of the Kalman filter to estimate the state optimally in mean-square sense.
We then showhow to augment the underlying optimization problemwith a negative drift-like constraint,
yielding a second-order cone program to be solved periodically online.Weprove that the receding horizon
implementation of the resulting control policies renders the state of the overall system mean-square
bounded under mild assumptions. We also discuss how some quantities required by the finite-horizon
optimization problem can be computed off-line, thus reducing the on-line computation.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

A considerable amount of research has been devoted to deter-
ministic receding horizon control, see, for example, (Maciejowski,
2001; Mayne, Rawlings, Rao, & Scokaert, 2000) and references
therein. This resulted in proofs of recursive feasibility and sta-
bility of receding horizon control laws in the noise-free deter-
ministic setting. These techniques can be extended to the robust
case, i.e., whenever there is exogenous noise or parametric uncer-
tainty of bounded nature entering the system. The counterpart for
stochastic systems subject to process noise, imperfect state mea-
surements, and bounded control inputs, however, is still lacking.
The principal obstacle is posed by the fact that it may not be possi-
ble to determine an a priori bound on the support of the noise, for
example, whenever the noise is additive and Gaussian. This extra
ingredient complicates both the stability and the feasibility proofs:
the noise, at least in the additive case, eventually drives the state
outside any bounded set no matter how large the latter is taken to
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be, and employing any standard linear state feedback means that
any hard bounds on the control inputs will eventually be violated.

In this article we propose a solution to the general receding
horizon control problem for linear systems with noisy process
dynamics, imperfect state information, and bounded control
inputs. Both the process and measurement noise sequences are
assumed to enter the system in an additive fashion, and we
require that the designed control policies satisfy hard bounds.
Periodically at times t = 0,Nc, 2Nc, . . . , where Nc is the control
horizon, a certain finite-horizon optimal control problem is
solved over a prediction (or optimization) horizon N ⩾ Nc .
The cost to be minimized is the standard expectation of the
sum of cost-per-stage functions that are quadratic in the state
and control inputs (Bertsekas, 2000, 2007). We can also include
at the design level some variance-like bounds on the predicted
future states and inputs—this is one possible way to impose soft
state constraints that are in spirit similar to integrated chance-
constraints, e.g., in Klein Haneveld (1983) and Klein Haneveld and
van der Vlerk (2006).

There are several key challenges inherent to our setup. First,
since the state information is imperfect one needs a filter
to estimate the state. Second, in the presence of unbounded
(e.g., Gaussian) noise, it is not possible in general to ensure any
bound on the control values generated via linear state feedback;
the additive nature of the noise ensures that the state exits from
any fixed bounded set at some time almost surely, implying
the necessity of nonlinear feedback policies. This issue is further
complicated by the fact that only incomplete state information
is available. Third, it is unclear whether the application of the
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bounded control policies stabilizes the system in any reasonable
sense. For a deterministic discrete-time linear system, xt+1 =
Axt + But , it is not possible to globally asymptotically stabilize
the system, if the matrix A has unstable eigenvalues, see, for
example, Yang, Sontag, and Sussmann (1997) and references
therein. Moreover, in the presence of stochastic process noise the
hope for achieving asymptotic stability is obviously not realistic.
In this article we relax the notion of stability to mean-square
boundedness of the state and impose the extra conditions that the
systemmatrix A is Lyapunov (or neutrally) stable and that the pair
(A, B) is stabilizable.

The main contributions of this paper can be summarized as
follows: Given a suitable subclass of bounded causal feedback
policies, we show how to augment the finite-horizon optimal
control problem to be solved periodically every Nc steps with a
stability constraint and that the resulting optimization problem can
be approximated to a globally feasible second-order cone program
(SOCP). Under the assumption that the process and measurement
noise are Gaussian, (even though the bounded inputs requirement
makes the problem inherently nonlinear and the process statistics
are non-Gaussian,) it turns out that Kalman filtering techniques
can indeed be utilized. We rely on a low-complexity algorithm
(essentially similar to standard Kalman filtering) for updating the
conditional density of the state, given the history of the previous
outputs, and report tractable solutions for the off-line computation
of the time-dependent variance and covariance matrices in
the optimization program. Finally, we show that the recursive
application of the resulting control policies renders the state of
the overall system mean-square bounded. This article builds upon
and generalizes the earlier stability results in Hokayem, Chatterjee,
Ramponi, Chaloulos, and Lygeros (2010) and Ramponi, Chatterjee,
Milias-Argeitis, Hokayem, and Lygeros (2010) that were derived
for the perfect state information case. Also, the current results
generalize those in Chatterjee, Hokayem, and Lygeros (in press)
and Hokayem, Chatterjee, and Lygeros (2009) from the perfect
state information case to the imperfect state information case.
In particular, if we have full state information available, the
control policy proposed in this article reduces to that proposed
in Hokayem et al. (2009) and to a special case of the policies
proposed in Chatterjee et al. (in press) where the vector space is
spanned by a single function. However, none of the earlier results,
including those in Hokayem, Cinquemani, Chatterjee, and Lygeros
(2010), are able to deal with recursive feasibility and stability for
the setup of this article. Moreover, the control policy structure in
this article is different from that in Hokayem, Cinquemani et al.
(2010).

Related work

The research on stochastic receding horizon control is broadly
subdivided into two parallel lines: the first treats multiplicative
noise that enters the state equations, and the second caters
to additive noise. The case of multiplicative noise has been
treated in Couchman, Cannon, and Kouvaritakis (2006), Cannon,
Kouvaritakis, and Wu (2009a) and Primbs and Sung (2009).
In Primbs and Sung (2009), the noise enters the state equation
multiplicatively and mixed hard state-input constraints are
relaxed into expectation constraints. Terminal constraints are
imposed as well that render the overall MPC scheme stable under
full state feedback. The authors in Couchman et al. (2006) treat the
case of uncertain output measurement matrix (C) and solve the
MPC problem under probabilistic constraints on the outputs and
full state feedback. In Cannon et al. (2009a) the stochastic MPC
problem is treated under full state feedback and multiplicative
noise entering the state equation. The proposed scheme comprises
a pre-stabilizing linear state feedback control part and an open-
loop part. The pre-stabilizing feedback gain is computed off-line
and only the open-loop part is optimized online. The results in
Cannon, Kouvaritakis, and Wu (2009b) extend those in Cannon
et al. (2009a) to the case of additive noise as well. However,
both results (Cannon et al., 2009a,b) involve a pre-stabilizing
state feedback controller and hence no hard input bounds can be
imposed.

We focus in this article on the additive noise case. The
approach proposed here stems from and generalizes the idea of
affine parametrization of control policies for finite-horizon linear
quadratic problems proposed in Ben-Tal, Boyd, and Nemirovski
(2006); Ben-Tal, Goryashko, Guslitzer, and Nemirovski (2004),
utilized within the robust MPC framework in Ben-Tal et al. (2006),
Goulart, Kerrigan, and Maciejowski (2006) and Löfberg (2003)
for full state feedback, and in van Hessem and Bosgra (2003)
for output feedback with Gaussian state and measurement noise
inputs. More recently, this affine approximation was utilized
in Skaf and Boyd (2010) for both the robust deterministic and
the stochastic setups in the absence of control bounds; and
optimality of affine policies in the scalar deterministic case was
reported in Bertsimas, Iancu, and Parrilo (2010). In Bertsimas and
Brown (2007) the authors reformulate the stochastic programming
problem as a deterministic one with bounded noise support
and solve a robust optimization problem over a finite horizon,
followed by estimating the performance when the noise can
take unbounded values, i.e., when the noise is unbounded, but
takes high values with low probability. A similar approach was
utilized in Oldewurtel, Jones, and Morari (2008) as well. There
are also other approaches, e.g., those employing randomized
algorithms as in Batina (2004), Blackmore (2006) andMaciejowski,
Lecchini, and Lygeros (2007). Results on obtaining lower bounds
on the value functions of the stochastic optimization problem
have been recently reported in Wang and Boyd (2009), and a
novel stochastic MPC scheme based on the scenario approach
has appeared in Bernardini and Bemporad (2009). Other works
employing probabilistic constraints may be found in Li, Wendt,
and Wozny (2002) and Schwarm and Nikolaou (1999). In Magni,
Pala, and Scattolini (2009), an input-to-state stability approach
is employed and stability is shown under full state feedback and
bounded additive process noise. An MPC scheme for systems with
imperfect state information has been proposed in Yan and Bitmead
(2005) under general hypotheses with probabilistic constraints.
However, the ability to dealwith noise of an unbounded nature (for
example Gaussian) is still absent, in which stability and recursive
feasibility could not be proven in Yan and Bitmead (2005) under
bounded control inputs.

The rest of this article is organized as follows. We formulate
the stochastic receding horizon control problem with all the
underlying assumptions, the construction of the estimator, and the
main optimization problem to be solved in Section 2. We provide
the main results pertaining to tractability of the optimization
problem andmean-square boundedness of the closed-loop system
in Section 3. We comment on the obtained results and provide
someextensions in Section 4.We thenpresent numerical examples
in Section 5 and conclude in Section 6. Finally, we provide the
proofs in the Appendix.
Notation. Let (Ω, F, P) be a general probability space. We denote
the conditional expectation given the sub-σ algebra F′ of F as
EF′ [.]. For any random vector s we let Σs := E[ssT] and EYt [.]
denote the conditional expectation given Yt . Hereafter we let
N+ := {1, 2, . . .} and N := N+ ∪ {0}. We let tr (·) denote the trace
of a square matrix, ‖·‖p denote the standard p-norm, and simply
‖·‖ denote the Euclidean norm. We denote by ‖s‖M :=

√
sTMs

for M = MT ⩾ 0. In a Euclidean space we denote by Br the
closed Euclidean ball of radius r centered at the origin. For any two
matrices A and B of compatible dimensions, we denote by Rk(A, B)
the k-th step reachability matrix Rk(A, B) :=


Ak−1B · · · AB B


.
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For anymatrixM , we let σmin and σmax be its minimal andmaximal
singular values, respectively. We let (M)i1:i2 denote the sub-matrix
obtained by selecting the rows i1 through i2 of M and (M)i denote
the i-th row of M . For any positive real number s, ⌈s⌉ denotes the
smallest integer that upper-bounds s.

2. Problem setup

Consider the following affine discrete-time stochastic dynami-
cal model:

xt+1 = Axt + But + wt , (1a)
yt = Cxt + vt , (1b)

where t ∈ N, xt ∈ Rn is the state, ut ∈ Rm is the control input,
yt ∈ Rp is the output,wt ∈ Rn is a randomprocess noise, vt ∈ Rp is
a randommeasurement noise, and A, B, and C are knownmatrices.
We posit the following standing assumption:

Assumption 1. (i) The pair (A, B) is stabilizable (Bernstein,
2009, Chapter 12).

(ii) Thematrix A is Lyapunov stable (Bernstein, 2009, Chapter 12),
i.e., the eigenvalues {λi(A) | i = 1, . . . , n} lie in the closed unit
disc, and those eigenvalues λj(A)with

λj(A) = 1 have equal
algebraic and geometric multiplicities.

(iii) The initial condition and the process and measurement noise
vectors are mutually independent and normally distributed,
i.e., x0 ∼ N (0,Σx0), wt ∼ N (0,Σw), and vt ∼ N (0,Σv),
withΣw > 0 andΣv > 0.

(iv)

A,Σ1/2

w


is controllable and (A, C) is observable.

(v) The control inputs satisfy

‖ut‖∞ ⩽ Umax ∀t ∈ N. (2)

Without loss of generality, we assume that A is given in real Jor-
dan canonical form. Indeed, given a linear system described by the
systemmatrices


Ã, B̃


, there exists a coordinate transformation in

the state-space that brings the pair

Ã, B̃


to the pair (A, B), where

A is in real Jordan form (Horn & Johnson, 1990, p. 150). In par-
ticular, choosing a suitable ordering of the Jordan blocks, we can
ensure that the pair (A, B) has the form


As 0
0 Ao


,

Bs
Bo


, where

As ∈ Rns×ns is Schur stable, and Ao ∈ Rno×no has its eigenvalues on
the unit circle. By Assumption 1(ii), Ao is therefore block-diagonal
with the diagonal blocks being either ±1, or 2 × 2 rotation ma-
trices. As a consequence, Ao is orthogonal. Moreover, since (A, B)
is stabilizable, the pair (Ao, Bo) must be reachable in a number of
steps κ ⩽ no that depends on the dimension of Ao. Therefore, we
can start by considering that the state Eq. (1a) has the form[
xst+1
xot+1

]
=

[
Asxst
Aoxot

]
+

[
Bs

Bo

]
ut +

[
ws

t
wo

t

]
, (3)

where As is Schur stable, Ao is orthogonal, and there exists a non-
negative integer κ ⩽ no such that the subsystem (Ao, Bo) is reach-
able in κ steps. This reachability index κ is fixed throughout the
rest of the article.

For each t ∈ N, let Yt := {y0, . . . , yt} denote the set of output
observations up to time t . Fix a prediction horizon N ∈ N+, with
N ⩾ κ , and define the cost Jt as

Jt = EYt


N−1−
k=0


‖xt+k‖2Qk

+ ‖ut+k‖
2
Rk


+ ‖xt+N‖2QN


, (4)

where Qk = Q T
k ⩾ 0, QN = QN

T ⩾ 0, and Rk = RT
k ⩾ 0 are given

matrices of appropriate dimension, for k = 0, . . . ,N − 1.
The evolution of the system (1a)–(1b) over a single prediction
horizon N , starting at t , can be described in a compact form as

Xt = Axt +BUt +DWt , Yt = CXt + Vt , (5)

where Xt =


xt

xt+1
.
.
.

xt+N

 ,Ut =


ut

ut+1
.
.
.

ut+N−1

 ,Wt =


wt
wt+1
.
.
.

wt+N−1

 ,
Yt =


yt

yt+1
.
.
.

yt+N

 , Vt =


vt
vt+1
.
.
.

vt+N

 ,A =


I
A
.
.
.

AN

 ,B =


0 · · · · · · 0

B
. . .

.

.

.

AB B
. . .

.

.

.

.

.

.
. . . 0

AN−1B · · · AB B

 ,D =


0 · · · · · · 0

I
. . .

.

.

.

A I
. . .

.

.

.

.

.

.
. . . 0

AN−1 · · · A I

, and C =

diag{C, . . . , C}. The cost function (4) at time t can also be written
compactly as

Jt = EYt


‖Xt‖

2
Q + ‖Ut‖

2
R


, (6)

where Q = diag{Q0, . . . ,QN} and R = diag{R0, . . . , RN−1}. The
cost Jt in (4) is a conditional expectation given the observations
up to time t , the evaluation of which requires the conditional
density f (xt | Yt) of the state given the previous and current
measurements. For t, s ∈ N, define x̂t|s = EYs [xt ] and Pt|s =
EYs [(xt − x̂t|s)(xt − x̂t|s)T].

The following result is a slight extension of the standard Kalman
filter. A proof may be found in Kumar and Varaiya (1986, p.102).

Proposition 2. Let Assumption 1(iii) hold and assume that ut is a
deterministic function of Yt . Then f (xt | Yt) and f (xt+1 | Yt) are
the probability densities of Gaussian distributions N (x̂t|t , Pt|t) and
N (x̂t+1|t , Pt+1|t), respectively, with Pt|t ⩾ 0 and Pt+1|t ⩾ 0. For
t = −1, 0, 1, 2, . . . , their conditional means and covariances can
be computed iteratively starting at (x̂0|−1, P0|−1) := (0,Σx0), as
follows:

x̂t+1|t+1 = x̂t+1|t + Pt+1|tCT(CPt+1|tCT

+Σv)
−1(yt+1 − Cx̂t+1|t) (7)

Pt+1|t+1 = Pt+1|t − Pt+1|tCT(CPt+1|tCT
+Σv)

−1CPt+1|t (8)

x̂t+1|t = Ax̂t|t + But (9)

Pt+1|t = APt|tAT
+Σw. (10)

Proposition 2 states that the conditional mean and covariances
of xt can be propagated by an iterative algorithm which resembles
the Kalman filter. In particular, the matrix Pt|t together with x̂t|t
characterize the conditional density f (xt | Yt), which is needed
in the computation of the cost (4) (or equivalently (6)). We note
here that in the receding horizon control case considered in this
paper ut will be a nonlinear function of {y0, . . . , yt}; therefore we
cannot assume that all the probability distributions in the problem
are Gaussian as in the case of LQG; in fact, the a priori distributions
of xt and of Yt are not. Hereafter, we shall denote for notational
convenience by x̂t the estimate x̂t|t , and let

x̂t =

(x̂st)

T (x̂ot )
T

T, (11)

which corresponds to the Jordan decomposition in (3). Let Kt :=

(APt|tAT
+ Σw)CT(C(APt|tAT

+ Σw)CT
+ Σv)

−1 and define Γt :=

I − KtC and Φt := ΓtA. Then, we can write the estimation error
vector over a single prediction horizon N as

Et := Xt − X̂t = Ftet + GtWt −HtVt , (12)
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where et = xt − x̂t , X̂t =

 x̂t
.
.
.

x̂t+N

, Ft =


I
Φt

Φt+1 · Φt
.
.
.

Φt+N−1 · · ·Φt

,

Gt =



0 · · · 0 0
Γt · · · 0 0

Φt+1Γt · · · 0 0
...

...
...

Φt+N−2 · · ·Φt+1Γt · · · Γt+N−2 0
Φt+N−1 · · ·Φt+1Γt · · · Φt+N−1Γt+N−2 Γt+N−1

 ,

Ht =



0 0 · · · 0 0
0 Kt · · · 0 0
0 Φt+1Kt · · · 0 0
...

...
...

...
0 Φt+N−2 · · ·Φt+1Kt · · · Kt+N−2 0
0 Φt+N−1 · · ·Φt+1Kt · · · Φt+N−1Kt+N−2 Kt+N−1

 .
The innovation sequence can be written as

Yt − Ŷt = CFtet + CGtWt + (I − CHt)Vt , (13)

where Ŷt := CX̂t . Consequently, the innovation sequence over the
prediction horizon is independent of the input vector Ut . Also, under
the forgoing assumptions, the error vector et is a Gaussian random
variable with mean zero and variance Pt|t .

2.1. Optimization problem and control policies

We would like to minimize the cost (4) over the class of all
causal feedback policies. However, this optimization problem is
extremely difficult to solve in general (Bertsekas, 2000, 2007).
Therefore, we restrict attention to a subclass of causal feedback
policies for which the optimization problem is tractable. Guided
by our earlier approach in Chatterjee et al. (in press), Hokayem
et al. (2009), Hokayem, Chatterjee et al. (2010), and Hokayem,
Cinquemani et al. (2010) and given a control horizon Nc ⩾ 1 and a
prediction horizon N ⩾ Nc , we would like to periodically minimize
the cost (4) at times t = 0,Nc, 2Nc, . . . over the following class of
control policies

ut+ℓ = ηt+ℓ +

ℓ−
i=0

θt+ℓ,t+iϕi(yt+i − ŷt+i), (14)

where ℓ = 0, 1, . . . ,N − 1, ŷi = Cx̂i is the output of the
estimator, and for any vector z =


z1, . . . , zp


∈ Rp, ϕi(z) =

ϕi,1(z1), . . . , ϕi,p(zp)

, where ϕi,j : R → R is any function with

sups∈R |ϕi,j(s)| ⩽ ϕmax < ∞ for some ϕmax > 0. The feedback
gains θℓ,i ∈ Rm×p and the affine terms ηℓ ∈ Rm are the decision
variables. The value of ut+ℓ in (14) depends on the values of the
measured outputs from the beginning of the prediction horizon
at time t up to time t + ℓ only, which requires finite memory.
Note that we have chosen to saturate themeasurements we obtain
from the vectors (yi − ŷi) before employing them in the control
policy. This allows us to consider unbounded noise and yet ensure
bounded policies; neither the process noise nor the measurement
noise distributions are defined over a compact domain, in contrast
to robust deterministic receding horizon control (Mayne et al.,
2000) or other stochastic receding horizon control approaches as
in Cannon, Cheng, Kouvaritakis, and Raković (2010). Moreover, the
choice of element-wise saturation functions ϕi(·) is left open. As
such, we can accommodate standard saturation, piecewise linear,
and sigmoidal functions, to name a few. The control policy (14) at
time t can be compactly written as

Ut = ηt +2tϕ(Yt − Ŷt), (15)
where 2t has the following (causal) lower block triangular
structure

2t :=


θt,t 0 . . . 0

θt+1,t θt+1,t+1
...

...
...

. . . 0
θt+N−1,t θt+N−1,t+1 . . . θt+N−1,t+N−1

 , (16)

ηt :=


ηt
ηt+1
...

ηt+N−1

 ,

and ϕ(Yt − Ŷt) :=

 ϕ0(yt − ŷt)
...

ϕN−1(yt+N−1 − ŷt+N−1)

 .
Since the innovation vector Yt − Ŷt in (13) is not a function of
ηt and 2t , the control inputs Ut in (14) remain affine in the
decision variables. This fact is important to show convexity of the
optimization problem, as will be seen in the next section. Finally,
the constraint (2) can be rewritten as:

‖Ut‖∞ ⩽ Umax ∀t = 0,Nc, 2Nc, . . . . (17)

Summarizing, the optimization problem to be solved periodically
at times t = 0,Nc, 2Nc, . . . is given by

min
(ηt ,2t )


Jt | (5), (15), (16), (17)


. (18)

3. Main results

Even if problem (18) is successively feasible every Nc steps,
in general the resulting control actions do not guarantee stabil-
ity of the resulting receding horizon controller. Unlike standard
deterministic stability arguments utilized in MPC, see, for exam-
ple, (Mayne et al., 2000), we cannot assume the existence of a com-
pact robust positively invariant terminal region, since the process
noise sequence does not have a compact support. Instead,we intro-
duce an additional stability constraint which, if recursively feasible,
renders the state of the closed-loop systemmean-square bounded.
Guided by the argument in Ramponi et al. (2010), we then show
that this constraint is indeed recursively feasible.

For t = 0,Nc, 2Nc, . . . , the state estimate at time t +Nc can be
written as

x̂t+Nc = ANc x̂t +RNc (A, B)

 ut
...

ut+Nc−1

+ Ξt , (19)

where RNc (A, B) is the reachability matrix as defined earlier and
Ξt is defined as

Ξt :=

ANc−1KtCA ANc−2Kt+1CA · · · Kt+Nc−1CA

  et
...

et+Nc−1


+


ANc−1KtC ANc−2Kt+1C · · · Kt+Nc−1C

  wt
...

wt+Nc−1



+

ANc−1Kt ANc−2Kt+1 · · · Kt+Nc−1

  vt+1...
vt+Nc

 . (20)
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In order to show boundedness of the state variance, we require
that theNc-step iteration (19) has bounded variance. However, this
estimate has the term Ξt , which involves the error in the state
estimation process as well as the process and measurement noise
vectors. This termΞt may be viewed as ‘noise’ entering the system,
with bounded fourth moment. In particular, we require that there
exists, at least after some time T ′, a uniform bound on its first
moment. This is captured by the following Proposition.

Proposition 3. There exists an integer T ′ and a positive constant ζ ,
depending on the given problem parameters, such that

EYt [‖Ξt‖] ⩽ ζ for all t ⩾ T ′. (21)

Using the constant ζ , we now require the following ‘‘drift con-
dition’’ to be satisfied: for any chosen constant ε > 0 and for every
t = 0,Nc, 2Nc, . . . ,Ut ∈ U is designed such that the following
condition is satisfiedANc

o x̂ot +RNc (Ao, Bo)

 ut
...

ut+Nc−1


 ⩽

x̂ot − 
ζ +

ε

2


whenever

x̂ot  ⩾ ζ + ε. (22)

As will be shown later, condition (22) above guarantees that on av-
erage the state norm contracts every Nc steps, a crucial ingredient
towards showing mean-square boundedness of the closed-loop
system.Moreover,Nc needs to be chosen appropriately (depending
on the reachability index κ) in order to ensure that the constraint

is feasible. Note that

 ut
.
.
.

ut+Nc−1

 = (ηt)1:Ncm + (2t)1:Ncmϕ(Y − Ŷ ).

(For notational convenience, we have retained ϕ(Y − Ŷ ) with the
knowledge that the matrix (2t)1:Ncm causally selects the first Nc
output vectors as they become available, see (16).) We augment
problem (18) with the stability constraint (22) to obtain

min
(ηt ,2t )


Jt | (5), (15), (16), (17), (22)


. (23)

The ingredients of our stochastic receding horizon control problem
corresponding to (23) are summarized in Algorithm 1.

Algorithm 1 Basic Stochastic Receding Horizon Algorithm
Require: density f (x0|Y−1) := N (0,Σx0)
1: set t ← 0, x̂0|−1 ← 0, and P0|−1 ← Σx0
2: loop
3: for i = 0 to Nc − 1 do
4: measure yt+i
5: calculate x̂t+i(= x̂t+i|t+i) and Pt+i|t+i using (7)–(8)
6: if i = 0 then
7: solve the optimization problem (23) for the optimal

policy {u∗t , . . . , u
∗

t+N−1}

8: end if
9: using the obtained control policy above, compute and

apply u∗t+i
10: calculate x̂t+i+1|t+i and Pt+i+1|t+i using (9)–(10)
11: end for
12: set t ← t + Nc
13: end loop

Assumption 4. We require that:
(i) The control and prediction horizons satisfyN ⩾ Nc = κ , where
κ is the reachability index of the orthogonal subsystem (Ao, Bo)
in (3).
(ii) The control authority Umax ⩾ U∗max, where U∗max := σmin(RNc

(Ao, Bo))
−1


ζ + ε

2


and RNc (Ao, Bo) is the Nc-step reachability

matrix of the orthogonal subsystem.

In fact, choosing any control horizon Nc ⩾ κ turns out to be
sufficient in order to have a feasible control vector Ut for problem
(23) with an upper bound Umax = U∗max; however, we will take
Nc = κ for simplicity.

Theorem 5. Consider the system (1a)–(1b), and suppose that
Assumptions 1 and 4 hold. Then:

(i) For every time t = 0,Nc, 2Nc, . . . , the optimization problem
(23) in Algorithm 1 is convex and can be conservatively
approximated and solved via the following globally (hence
recursively) feasible second-order cone program (SOCP):

minimize
(z1,z2,z3,ηt ,2t )

z1 (24)

subject toηt +2tΛ
ϕ
t

2
M
+ tr


2t

TM2t(Λ
ϕϕ
t −Λ

ϕ
t Λ

ϕ
t
T)


+ 2x̂tTATQBηt + 2 tr


2t

TBTQ(DΛ
wϕ
t +AΛ

xϕ
t )


⩽ z1 (25)
|(ηt)i| + ‖(2t)i‖1 ϕmax ⩽ Umax ∀ i = 1, . . . ,Nm, (26)ANc

o x̂ot +RNc (Ao, Bo)(ηt)1:Ncm
 ⩽ z2RNc (Ao, Bo)(2t)1:Ncm


∞

⩽ z3
z2 +
√
noϕmaxz3 ⩽

x̂ot − 
ζ +

ε

2




whenever
x̂ot  ⩾ ζ + ε (27)

the structure of 2t in (16), where M := R +BTQB , and

Λ
ϕ
t := EYt [ϕ(Yt − Ŷt)], Λ

xϕ
t := EYt [xtϕ(Yt − Ŷt)

T
],

Λ
wϕ
t := EYt [Wϕ(Yt − Ŷt)

T
],

Λ
ϕϕ
t := EYt [ϕ(Yt − Ŷt)ϕ(Yt − Ŷt)

T
]. (28)

(ii) The application of Algorithm 1 via the SOCP approximation in part
(i) above renders the closed-loop system mean-square bounded,
i.e., for any initial Y0, there exists a (computable) finite constant
γ > 0, depending on the given problem parameters, such that

sup
t∈N

EY0


‖xt‖2


⩽ γ . (29)

In practice, it may be also of interest to further impose
constraints both on the state and the input vectors. For example,
one may be interested in imposing linear and/or quadratic
constraints on the state of the form

EYt


‖Xt‖

2
S +LTXt


⩽ αt , (30)

where S = ST ⩾ 0 and αt > 0. Moreover, expected energy
expenditure constraints can be posed as follows

EYt


‖Ut‖

2
S̃


⩽ βt , (31)

where S̃ = S̃T ⩾ 0 and βt > 0. In the absence of hard input
constraints, such expectation-type constraints are commonly used
in the stochastic MPC (Eugenio, Agarwal, Chatterjee, D & Lygeros,
in press; Primbs & Sung, 2009) and in stochastic optimization
in the form of integrated chance constraints (Klein Haneveld,
1983; Klein Haneveld & van der Vlerk, 2006). This is partly
because it is not possible, without posing further restrictions on
the boundedness of the process noise wt , to ensure that hard
constraints on the state are satisfied. For example, in the standard
LQG setting nontrivial hard constraints on the system state would
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generally be violated with nonzero probability. Moreover, in
contrast to chance constraints where a bound is imposed on the
probability of constraint violation, expectation-type constraints
tend to give rise to convex optimization problems under weak
assumptions (Eugenio et al., in press; Klein Haneveld, 1983; Klein
Haneveld & van der Vlerk, 2006). We can augment problem (23)
with the constraints (30) and (31) to obtain

min
(ηt ,2t )


Jt | (5), (15), (16), (17), (22), (30), (31)


. (32)

Notice that the constraints (30) and (31) are not necessarily
feasible at time t for any choice of parameters αt and βt . As such,
problem (32) may become infeasible over time if we simply apply
Algorithm1.We thereforemodify step 7 in Algorithm1 to generate
Algorithm 2. In this new version of the algorithm, problem (32) is
either feasible at step 7 with the given αt and βt , or a bisection
search is implemented (steps 12–26), with αt and βt as lower
bounds, and upper bounds

α∗t := 3 tr

ATSAEYt


xtxtT


+DTSDΣw


+LTAx̂t

+ 3Nmσmax(B
TSB)U2

max +
LTB


1 Umax

β∗t := Nmσmax(S̃)U2
max (33)

that guarantee feasibility. The search is iterated until the change
in α and β falls below a pre-specified precision number δ or a
maximal number of iterations ν̄ is reached, which is used to keep
the computational burden limited.

Corollary 6. Consider the system (1a)–(1b), and suppose that
Assumptions 1 and 4 hold. Then:
(i) For every time t = 0,Nc, 2Nc, . . . the optimization problem

(32) in Algorithm 2 is convex and can be conservatively
approximated and solved via the following globally (hence
recursively) feasible (at either step7 or step13) second-order cone
program (SOCP):

minimize
(z1,z2,z3,ηt ,2t )

z1

subject toηt +2tΛ
ϕ
t

2
M
+ tr


2t

TM2t(Λ
ϕϕ
t −Λ

ϕ
t Λ

ϕ
t
T)


+ 2x̂tTATQBηt + 2 tr


2t

TBTQ(DΛ
wϕ
t +AΛ

xϕ
t )


⩽ z1

|(ηt)i| + ‖(2t)i‖1 ϕmax ⩽ Umax ∀ i = 1, . . . ,Nm,ANc
o x̂ot +RNc (Ao, Bo)(ηt)1:Ncm

 ⩽ z2RNc (Ao, Bo)(2t)1:Ncm

∞

⩽ z3
z2 +
√
noϕmaxz3 ⩽

x̂ot − 
ζ +

ε

2




whenever
x̂ot  ⩾ ζ + εηt +2tΛ

ϕ
t

2
BTSB
+ tr


2t

TBTSB2t(Λ
ϕϕ
t −Λ

ϕ
t Λ

ϕ
t
T)


+ 2x̂tTATSBηt + 2 tr


2t

TBTS(DΛ
wϕ
t +AΛ

xϕ
t )


+LTB(ηt +2tΛ

ϕ
t )+ tr


ATSAEYt


xtxtT


+ tr


DTSDΣw


+LTAx̂t ⩽ αt (34)ηt +2tΛ

ϕ
t

2
S̃
+ tr


2t

TS̃2t(Λ
ϕϕ
t −Λ

ϕ
t Λ

ϕ
t
T)


⩽ βt (35)

the structure of 2t in (16), where all the required constant
matrices are defined as in Theorem 5.

(ii) The application of Algorithm 2 via the SOCP approximation
in part(i)above renders the closed-loop system mean-square
bounded, i.e., for any initial Y0, there exists a (computable) finite
constant γ > 0, depending on the given problem parameters,
such that

sup
t∈N

EY0


‖xt‖2


⩽ γ . (36)
Algorithm 2 Modified Stochastic Receding Horizon Algorithm
Require: density f (x0|Y−1) := N (0,Σx0)
1: set t ← 0, x̂0|−1 ← 0, and P0|−1 ← Σx0
2: loop
3: for i = 0 to Nc − 1 do
4: measure yt+i
5: calculate x̂t+i(= x̂t+i|t+i) and Pt+i|t+i using (7)–(8)
6: if i = 0 then
7: solve the optimization problem (32) using the given αt

and βt
8: if step 7 is feasible then
9: save the optimal sequence {u∗t , u

∗

t+1, . . . , u
∗

t+N−1}

10: goto step 28
11: else
12: set α← α∗t , α← αt , β ← β∗t , and β ← βt

13: solve the optimization problem (32) using α and β to
obtain the sequence {u∗t , u

∗

t+1, . . . , u
∗

t+N−1}

14: set ν ← 1
15: repeat
16: set αt ← (α + α)/2 and βt ← (β + β)/2
17: solve the optimization problem (32) using the new

αt and βt
18: if step 17 is feasible then
19: set α← αt and β ← βt
20: save the new optimal sequence

{u∗t , u
∗

t+1, . . . , u
∗

t+N−1}

21: else
22: set α← αt and β ← βt

23: end if
24: set ν = ν + 1
25: until (|α − α| ≤ δ and |β − β| ≤ δ) or (ν > ν̄)
26: end if
27: end if
28: apply u∗t+i
29: calculate x̂t+i+1|t+i and Pt+i+1|t+i using (9)–(10)
30: end for
31: set t = t + Nc
32: end loop

4. Discussion

4.1. Recursive feasibility

The SOCPs solved in Theorem 5 and Corollary 6 are globally
feasible, independently of the initial conditions of the plant and the
estimator. As such, there is no a priori requirement for an initially
feasible and invariant set of initial conditions, as is the case in
nominal or robust receding horizon control (Mayne et al., 2000).
This guarantee of recursive feasibility is shown in the proofs of
Theorem 5 and Corollary 6 by providing a feasible control law that
satisfies all the constraints in the SOCPs.

4.2. Mean-square boundedness

The mean-square boundedness conditions (29) and (36)
provide an on-average guarantee that the state does not grow
arbitrarily large. This is a weaker notion of stability than, for
example, asymptotic stability or input-to-state stability (ISS) that
have been utilized in nominal and robust receding horizon control,
respectively. However, in the presence of possibly unbounded
process and measurement noise, it is virtually impossible to
guarantee that the state converges to the origin or that it is
ultimately bounded in some compact set for every initial condition
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and every realization of the noise processes. In this case, similarly
to LQG (i.e., even with unbounded control authority), mean-
square boundedness is the best that can be aimed for within our
setting, given the unboundedness of the noise processes and the
limited control authority. The constants γ in (29) and (36) may be
computed using the derivations in the Appendix and the formulas
in the remark in Pemantle and Rosenthal (1999, pp.145).

4.3. More general policies

It is not difficult to show that one can also use quadratic policies
of the form

Ut = ηt +2tϕ(Yt − Ŷt)+ 2̃t ϕ̃(Yt − Ŷt), (37)

instead of (14),where 2̃t has the same causal structure of of2t and
ϕ̃(Yt− Ŷt) := [ϕ̃0(yt− ŷt)Tϕ̃0(yt− ŷt) · · · ϕ̃N−1(yt+N−1− ŷt+N−1)T
ϕ̃N−1(yt+N−1 − ŷt+N−1)]T, with sups∈R | ϕ̃i(s) |⩽ ϕ̃max < ∞ for
some ϕ̃max > 0. The underlying optimization problems (23) and
(32) with the policy (37) are still convex and both Theorem 5 and
Corollary 6 still apply with minor changes.

4.4. Off-line computation of theΛmatrices

The optimization problems (23) and (32) solved in Theorem 5
and in Corollary 6, respectively, are second-order cone programs
(SOCP) for which efficient numerical solvers are available via
software packages such as yalmip (Löfberg, 2004). As such, the
optimization may be performed online. However, at any time
t = 0,Nc, 2Nc, . . . , our ability to solve the optimization problems
in Theorem 5 and Corollary 6, respectively, hinges upon the
computation of the matrices in (28).

Recall that Yt − Ŷt is the innovation sequence that was given in
(13), and that x̂t is the optimal mean-square estimate of xt given
the history Yt . The matrices (28) may be computed by numerical
integration with respect to the independent Gaussian measures of
wt , . . . , wt+N−1, of vt , . . . , vt+N , and of (xt − x̂t) given Yt . Due to
the large dimensionality of the integration space, this approach
may be impractical for online computations. One alternative
approach relies on the observation thatΛϕt ,Λ

wϕ
t , andΛϕϕt depend

on xt via the difference xt − x̂t . Since xt − x̂t is conditionally
zero-mean given Yt , we can write the dependency of (28) on the
time-varying statistics of xt given Yt as follows: Λxϕ

t (x̂t , Pt|t) =
Λ

eϕ
t (Pt|t) + x̂tΛ

ϕ
t (Pt|t)T, Λ

wϕ
t (Pt|t), and Λ

ϕϕ
t (Pt|t), where Λeϕ

t :=

EYt [(xt − x̂t)ϕ(Yt − Ŷt)
T
]. In principle one may compute off-line

and store thematricesΛeϕ
t (Pt|t),Λ

ϕ
t (Pt|t),Λ

wϕ
t (Pt|t), andΛ

ϕϕ
t (Pt|t),

which depend on the covariance matrices Pt|t but not on x̂t , and
just update online the value of Λxϕ

t (x̂t , Pt|t) as the estimate x̂t
becomes available. However, this poses serious requirements in
terms of memory. A more appealing alternative is to exploit the
convergence properties of the covariancematrix Pt|t . The following
result can be inferred, for instance, from Kamen and Su (1999,
Theorem 5.1).

Proposition 7. Under Assumption 1(iii) and (iv) the discrete-time
algebraic Riccati equation in P ∈ Rn×n, P = A[P − PCT(CPCT

+

Σv)
−1CP]AT

+Σw , has a unique solution P∗ ⩾ 0. The sequence Pt+1|t
defined by (8) and (10) converges to P∗ as t tends to∞, for any initial
condition P0|−1 ⩾ 0.

As a consequence, from (8) one sees that Pt|t converges to
P◦ = P∗ − P∗CT(CP∗CT

+ Σv)
−1CP∗, which is the asymptotic

error covariance matrix of the estimator x̂t . Thus, neglecting the
initial transient, one may just compute off-line and store the
matricesΛeϕ

t (P◦),Λ
ϕ
t (P◦),Λ

wϕ
t (P◦), andΛϕϕt (P◦), and just update

the matrixΛxϕ
t (x̂t , P◦) for new values of the estimate x̂t .
Fig. 1. Average and standard deviation of the state norm for Umax = 453.

Fig. 2. Total cost for Umax = 453.

5. Simulations

Consider the system (1a)–(1b) with the following matrices:

A =

0.9 0 0 0
0 1 0 0
0 0 cos(ψ) − sin(ψ)
0 0 sin(ψ) cos(ψ)


, B =

0
1
0
1


, and C = I , where

ψ = π
2 . The orthogonal part of the state is 3-dimensional, and the

controllability index of the orthogonal part is κ = 3.

Example 1. The simulation data was chosen to be: x0 ∼ N (0, I),
wt ∼ N (0, 10I), vt = N (0, 10I), Q = I , R = 1, N = 5,
Nc = κ = 3, and ϕ the usual piecewise linear saturation function
withϕmax = 1. For this example the theoretical bound on the input
is Umax =̃ 453 for a choice of ε = 10.

We simulated the system above using Algorithm 1 for the
discrete-time interval [0, 100]. In comparison, we simulated also
the policy (38) proposed by the authors in Ramponi et al. (2010)
whenever the state is estimated using a Kalman filter, with the
understanding that this goes beyond the results in Ramponi et al.
(2010), since Ramponi et al. (2010) deals only with the case of
perfect state information. We also simulated the standard LQG
controller for this system with post-saturation of the obtained
controls. The average state norm as well as the standard deviation
of the state norm using the three strategies are depicted in Fig. 1
and the total costs are plotted in Fig. 2. Fig. 2 shows approximately
16% improvement in the cost after 100 time steps by using
Algorithm 1 versus the policy (38) in Ramponi et al. (2010) coupled
with a Kalman filter. The performance of our policy is close to
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Fig. 3. Average and standard deviation of the state norm for Umax = 3.2664.

Fig. 4. Total cost for Umax = 3.2664.

that of clipped LQG, which remains mean-square ‘optimal’ since
the theoretical upper bound on the control authority is never
reached by the LQG policy, i.e., the LQG policy is never clipped
(for our choice of initial condition x0). The optimization problem
was solved using yalmip (Löfberg, 2004) and sdpt3 (Toh,
Todd, & Tatuncu, 1999) and the solver times were as follows:
minimum = 0.1238 s, maximum = 0.5831 s, average =
0.1691 s, and standard deviation = 0.0144 s. This data pertains
to an Intel(R) Core(TM)2 Duo CPU running at 2.66 GHz, with
a Linux operating system. The computation of the matrices
Λeϕ(P◦), Λϕ(P◦), Λwϕ(P◦), and Λϕϕ(P◦) was done off-line using
the steady state error covariance matrix P°, as discussed in the
previous section, via classical Monte Carlo integration using 105

samples.

Example 2. We also simulated the same system as before with
Q = 100I and R = 1. In this case the theoretical bound ζ = 336.6
and the corresponding Umax = 440.45. As this theoretical bound
on ζ is conservative, we reduced ζ down to 2 and chose ε = 0.5,
which result in Umax = 3.2664. This choice of ζ is far below the
required theoretical bound (which was given in Example 1 above)
and as such the stability guarantees in the article do not apply
anymore, i.e., there is no theoretical guarantee that the closed-
loop system ismean-square bounded. However, it is apparent from
Figs. 3 and 4 that our policy is stabilizing. It is important to notice
that the clipped LQG policy hits the saturation level Umax quite
often, whereas our policy does not, as seen in Fig. 5. However,
despite the fact that our strategy does not take full advantage of the
Fig. 5. Average inputs for Umax = 3.2664.

available control authority, it is still able to outperform the clipped
LQG as well as the adapted policy in Ramponi et al. (2010).

6. Conclusions

We presented a method for stochastic receding horizon con-
trol of discrete-time linear systemswith process andmeasurement
noise and bounded input policies. We showed that the optimiza-
tion problem solved periodically is successively feasible and con-
vex. Moreover, we illustrated how a certain stability condition can
be utilized to ensure that the application of the receding horizon
controller renders the state of the system mean-square bounded.
We discussed how certain matrices in the cost function can be
computed off-line and provided examples that illustrate our ap-
proach, showing conditions under which it outperforms certain
competing approaches.
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Appendix. Proofs

We begin by considering the estimation equation in (7)
and combining it with (9) and the system dynamics (1a)–(1b)
to obtain (recall that x̂t is used instead of x̂t|t for notational
simplicity) x̂t+1 = Ax̂t + But + Kt


CA(xt − x̂t) + Cwt + vt+1


,

where Kt =

APt|tAT

+Σw

CT


C(APt|tAT

+Σw)CT
+Σv

−1
and Pt|t is the error covariance matrix defined in (8). Both Kt
and Pt are uniformly norm-bounded as shown in the following
Lemma:

Lemma 8. Consider the system (1a)–(1b), and let Assumption 1(iv)
hold. In addition, assume that P0|0 ⩾ 0. Then, there exists a time
T ′ ∈ N and constants ρ, ρm > 0 such that tr


Pt|t


⩽ ρ and

‖Kt‖ ⩽ ρm, ∀t ⩾ T ′.

Proof. First, observe that
∑κ1−1

i=0 AiΣw(Ai)T =

Σ

1/2
w AΣ1/2

w · · ·

Aκ1−1Σ1/2
w


Σ

1/2
w AΣ1/2

w · · · Aκ1−1Σ1/2
w


T, and since (A,Σ1/2

w ) is
controllable by Assumption 4(iv), we see that there exists κ1 ∈ N+
such that for all k ⩾ κ1 the rank of


Σ

1/2
w AΣ1/2

w · · · Aκ1−1Σ1/2
w


=

http://www.feednetback.eu
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n; indeed, κ1 is the reachability index of (A,Σ1/2
w ). Thus,∑κ1−1

i=0 AiΣw(Ai)T is positive definite, and therefore, there exists
some δ′1, δ

′

2 > 0 such that δ′1I ⩽
∑κ1−1

i=0 AiΣw(Ai)T ⩽ δ′2I . Sec-

ond, observe that
∑κ2−1

i=0 (A
i)TCTΣ−1v CAi

=


C
CA
.
.
.

CAκ2−1

 T

Iκ2 ⊗Σ

−1
v




C
CA
.
.
.

CAκ2−1

, where⊗ denotes the standard Kronecker product. Since

(A, C) is observable by assumption, there exists κ2 ∈ N+ such that

the rank of the matrix

CT ATCT

· · · (Aκ2−1)TCT

T is n. The ma-

trix Iκ2 ⊗Σ
−1
v is clearly positive definite by Assumption 4(iv), and

therefore, we see that there exists δ′′1 , δ
′′

2 > 0 such that δ′′1 I ⩽∑κ2−1
i=0 (A

i)TCTΣ−1v CAi ⩽ δ′′2 I . Third, the conditions of Lemma 7.1
in Jazwinski (1970, pp. 234) are satisfied, for a choice of δ1 =
min{δ′1, δ

′′

1 } and δ2 = max{δ′2, δ
′′

2 }, and the bound Pt|t ⩽ ρ ′I for
someρ ′ > 0 is established for all t ⩾ T ′ := max{κ1, κ2}. The asser-
tion now follows immediately from: EYt

xt − x̂t
2
= tr


Pt|t


⩽

nλmax(Pt|t) ⩽ nρ ′ =: ρ. Since by assumption Σv > 0, one pos-

sible bound on

‖Kt‖


t⩾T ′ is given by ‖Kt‖ ⩽

‖APt|tAT+Σw‖‖CT‖
λmin(Σv)

⩽
‖Σw‖+‖A‖2‖Pt|t‖


‖CT‖

λmin(Σv)
=: ρm. �

Using the bounds in Lemma 8, we can proceed to prove
Proposition 3.

Proof (Proof of Proposition 3). Recall the expression of Ξt in (20)
and define the following quantities:
Ft :=


ANc−1KtCA ANc−2Kt+1CA · · · Kt+Nc−1CA


,

Gt := [ANc−1KtC ANc−2Kt+1C · · · Kt+Nc−1C],
Ht := [ANc−1Kt ANc−2Kt+1 · · · Kt+Nc−1].
Using Lemma 8, we have that ‖Ft‖ ⩽ Nc ‖CA‖ ‖Kt‖ ⩽ Ncρm ‖CA‖,
‖Gt‖ ⩽ Nc ‖C‖ ‖Kℓ‖ ⩽ Ncρm ‖C‖, and ‖Ht‖ ⩽ Nc ‖Kℓ‖ ⩽ Ncρm, for
all t ⩾ T ′. It follows that

EYt [‖Ξt‖] ⩽ Ncρm ‖CA‖EYt




et
...

et+Nc−1




+Ncρm ‖C‖EYt




wt
...

wt+Nc−1


+ NcρmEYt



vt+1
...

vt+Nc




⩽ Nc
3/2ρm(‖CA‖

√
ρ + ‖C‖


tr (Σw)+


tr (Σv)) =: ζ ,

for allt ⩾ T ′. �

Proof of Theorem 5. We begin by showing the first claim in
Theorem 5. �

Lemma 9. Consider the system (1a)–(1b), and suppose that Assump-
tion 4 holds. Then assertion(i) of Theorem 5 holds.

Proof. Convexity: It is clear that Xt
TQXt + Ut

TRUt is convex in
Xt and Ut , and both Xt and Ut are affine functions of the design
parameters (ηt ,2t) for every realization of the noise sequences
(wt)t∈N and (vt)t∈N. Since taking expectation of a convex function
retains convexity (Boyd & Vandenberghe, 2004), we conclude that
the cost Vt = EYt


Xt

TQXt + Ut
TRUt


is convex in (ηt ,2t).

Similarly, the constraints (17) and (22) are convex in (ηt ,2t) as
they are a composition of convex and affine functions (Boyd &
Vandenberghe, 2004).
SOCP formulation: Substituting the augmented dynamics (5) into
the objective function (6), we have that Jt = EYt [‖Axt + BUt

+DWt‖
2
Q + ‖Ut‖

2
R] = EYt


‖Ut‖

2
M + 2Ut

TBTQ(Axt +DWt)

+

EYt


‖Wt‖

2
DTQD

+ ‖xt‖2ATQA


, where we have used the fact that

the noise Wt is zero-mean (and M = R + BTQB). Note that
the last termabovedoes not dependon thedecision variables sowe
shall henceforth drop it from the optimization. Now, substituting
the policy (15) into the last equation and completing the square
yields Jt=̃EYt


(ηt + 2tϕ(Yt − Ŷt))

TM(ηt + 2tϕ(Yt − Ŷt)) +

2(ηt + 2tϕ(Yt − Ŷt))
TBTQ(Axt + DWt)

 ηt +2tΛ
ϕ
t

2
M
+

tr

2t

TM2t(Λ
ϕϕ
t −Λ

ϕ
t Λ

ϕ
t
T)


+ 2ηt

TBTQAx̂t + 2 tr(2t
TBTQ

(AΛ
xϕ
t + DΛ

wϕ
t )). Note that Λϕϕt − Λ

ϕ
t Λ

ϕ
t
T ⩾ 0, so we can

further write the quadratic term in 2t in a symmetric fashion,
i.e., since Λϕϕt − Λ

ϕ
t Λ

ϕ
t
T is positive semidefinite, there exists

a matrix L so that Λϕϕt − Λ
ϕ
t Λ

ϕ
t
T
= LLT. It follows that

tr

2t

TM2t(Λ
ϕϕ
t −Λ

ϕ
t Λ

ϕ
t
T)


= tr


2t

TM2tLLT

= tr (L) T

2t
TM2tL. Using the epigraph formulation gives the cost (24) and

constraint (25).
Concerning the constraint (26), we have shown in Chatterjee

et al. (in press) and Hokayem et al. (2009) that combining the
constraint ‖ut‖∞ ⩽ Umax and the class of policies (15) is equivalent
to the constraints

(ηt)i
 + ‖(2t)i‖1 ϕmax ⩽ Umax for all i =

1, . . . ,Nm. Substituting (15) into the stability constraint (22), we
obtain

‖ANc
o x̂ot +RNc (Ao, Bo)(ηt)1:Ncm

+RNc (Ao, Bo)(2t)1:Ncmϕ(Yt − Ŷt)‖

⩽
ANc

o x̂ot +RNc (Ao, Bo)(ηt)1:Ncm


+

RNc (Ao, Bo)(2t)1:Ncmϕ(Yt − Ŷt)


⩽

ANc
o x̂ot +RNc (Ao, Bo)(ηt)1:Ncm


+
√
no

RNc (Ao, Bo)(2t)1:Ncmϕ(Yt − Ŷt)


∞

⩽
ANc

o x̂ot +RNc (Ao, Bo)(ηt)1:Ncm


+
√
no

RNc (Ao, Bo)(2t)1:Ncm

∞
ϕmax.

Enforcing that the last term above is ⩽
x̂ot − 

ζ − ε
2


, wheneverx̂ot  ⩾ ζ + ε, is equivalent to the constraint (27), where the

decision variables are now (z2, z3, ηt ,2t). Moreover, if the
constraint (27) is satisfied, then the stability constraint (22) is
satisfied as well. As such, the optimization problem solved in
Theorem 5(i) is a conservative approximation of (23) due to the
fact that the constraint (27) is tighter than (22).

Feasibility: It remains to show that all the constraints are
simultaneously feasible. Inspired by the work in Ramponi et al.
(2010), we consider the candidate controller

ũt,t+Nc−1 =

 ηt
...

ηt+Nc−1

 = −RNc (Ao, Bo)
Ďsatr(ANc

o x̂ot ) (38)

with ηt+Nc = ηt+Nc+1 = · · · = ηt+N−1 = 0 and 2t = 0,
where r := ζ + ε/2 and recall that satr(v) = v if ‖v‖ ⩽ r and
satr(v) = rv/ ‖v‖ if ‖v‖ > r . First, we have that

ũt,t+Nc−1

∞

⩽ũt,t+Nc−1

2 ⩽ σmin(RNc (Ao, Bo))

−1(ζ + ε/2) = U∗max, and the
constraint (2) is feasible. Regarding the constraint (22), we have
that

ANc
o x̂ot +RNc (Ao, Bo)ũt,t+Nc−1

 = x̂ot  − r ⩽
x̂ot  − (ζ +

ε/2), whenever
x̂ot  ⩾ ζ + ε, where the first equality follows

from the orthogonality of Ao (see Ramponi et al. (2010)), and the
constraint (22) is also feasible.
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Finally, it is easy to see that the cost (24) is linear and
(25) through (27) are second-order cone constraints, hence the
optimization program is a SOCP (Ben-Tal & Nemirovski, 2001). �

The following result pertains to mean-square boundedness of
the Schur subsystem x̂st of the estimator, i.e., x̂st+1 = Asx̂st + Bsut +

(Kt)1:ns

CA(xt − x̂t) + Cwt + vt+1


, where (Kt)1:ns are the first ns

rows of the gain Kt .

Lemma 10. Let Assumption 1 hold. Then there exists a constant
γs > 0, depending on the given problem parameters, such that
EYT ′

x̂st2
⩽ γs, ∀t ⩾ T ′, where T ′ is as defined in Proposition 3.

Proof. Since the matrix As is Schur stable, there exists a posi-
tive definite matrix M ∈ Rns×ns that satisfies As

TMAs − M =

−I , see Bernstein (2009, Proposition 11.10.5). Pick a constant
ν ∈]0,min


1, 1/λmax


M


[ such that As

TMAs − M ⩽ −νM .

Then for any t ∈ N,EYt

x̂st+12
M


−

x̂st2
M ⩽ −ν

x̂st2
M +

2EYt


(x̂st)

TAs
TMBsut


+ EYt [‖(Kt)1:ns


CA(xt − x̂t)+ Cwt + vt+1


‖
2
M ], where ‖x‖2M := xTMx. Using Young’s inequality and Assump-

tion 1, we have that 2EYt


(x̂st)

TAs
TMBsut


⩽ εEYt

Asx̂st
2
M


+

1
ε
EYt

Bsut
2
M


⩽ εEYt

Asx̂st
2
M


+

mσmax(BTs MBs)
ε

U2
max, for ε > 0 and

for all t ∈ N. Also, using Lemma 8 and Assumption 1, we have that
EYt

(Kt)1:ns

CA(xt − x̂t)+ Cwt + vt+1

2
M


⩽ 3λmax(M)ρ2

m

(‖CA‖2 ρ + ‖C‖2 tr (Σw) + tr (Σv)). Choose an ε ⩽ ν

2‖As‖2M
and

let c := mσmax(BTs MBs)
ε

U2
max + 3λmax(M)ρ2

m(‖CA‖
2 ρ + ‖C‖2 tr (Σw)

+ tr (Σv)), then we have EYt

x̂st+12
M


⩽


1− ν

2

 x̂st2
M + c ,

for all t ⩾ T ′. Iterating the last inequality, we have EYT ′

x̂st2
M


⩽

1− ν
2

(t−T ′) x̂sT ′2
M+

∑t−T ′−1
i=0


1− ν

2

i c ⩽
x̂sT ′2

M+

1− ν

2

−1 c ,
for all t ⩾ T ′. Setting γs :=

x̂sT ′2
M +


1− ν

2

−1 c , completes the
proof. �

We consider next the orthogonal subsystem of the estimator
and show that the process (x̂ot )t∈N is mean-square bounded. We
shall rely on the following fundamental result pertaining to mean-
square boundedness of a general random sequence (ξt)t∈N; it
is an immediate consequence of Pemantle and Rosenthal (1999,
Theorem 1).

Proposition 11. Let (ξt)t∈N be a sequence of nonnegative random
variables on some probability space (Ω, F, P), and let (Ft)t∈N be
any filtration to which (ξt)t∈N is adapted. Suppose that there exist
constants ε > 0, and J,M <∞, such that ξ0 ⩽ J, and for all t ∈ N:

EFt


ξt+1 − ξt


⩽ −

ε

2
on the event {ξt > J} (39)

and Eξ0,...,ξt

|ξt+1 − ξt |

4 ⩽ M. (40)

Then there exists a constant γ = γ (ε, J,M) > 0 such that
supt∈N E


ξ 2t


⩽ γ .

Lemma 12. Let Assumptions 1 and 4 hold. Then there exists a
constant γo > 0, depending on the given problem parameters, such
that

EYT

x̂ot 2


⩽ γo, ∀t ⩾ T := Nc

T ′/κ


. (41)

Proof. Consider the subsampled process x̂ot+Nc
= ANc

o x̂ot +
RNc (Ao, Bo)ut,t+Nc−1 + (Ξt)n−no+1:n for t = 0,Nc, 2Nc, . . . ,where
Ξt is as defined in (20) and ut,t+Nc−1 :=

 ut
.
.
.

ut+Nc−1

. We shall first

verify the two conditions (39) and (40) of Proposition 11 for the
process (ξt)t=0,Nc ,2Nc ,... =

x̂ot 
t=0,Nc ,2Nc ,...

. Using the triangle

inequality, we have that EYt

x̂ot+Nc

 − x̂ot 
⩽ EYt

ANc
o x̂ot +

RNc (Ao, Bo)ut,t+Nc−1

 − x̂ot 
+ EYt

(Ξt)n−no+1:n

.We know

fromProposition 3 that there exists a uniform (with respect to time
t) upper bound ζ for the last term on the right-hand side of the
last inequality for t ⩾ T := Nc


T ′/κ


. Accordingly, we have

EYt

x̂ot+Nc

 − x̂ot 
⩽ EYt


‖ANc

o x̂ot + RNc (Ao, Bo)ut,t+Nc−1‖ −x̂ot 
+ ζ ⩽ − ε

2 whenever
x̂ot  ⩾ ζ + ε for all t = T , T +Nc, T +

2Nc, . . . , where the last inequality follows from the satisfaction
of the stability constraint (22); condition (39) of Proposition 11 is
satisfied. By orthogonality of Ao, we have that

x̂ot  = ANc
o x̂ot

. It
follows by the triangle inequality that, for all

t = T , T + Nc, T + 2Nc, . . .E
‖x̂oi ‖


i=T ,T+Nc ,...,t


×

x̂ot+Nc

− x̂ot 4
= E

‖x̂oi ‖

i=T ,T+Nc ,...,t

x̂ot+Nc

− ANc
o x̂ot

4
⩽ E

‖x̂oi ‖

i=T ,T+Nc ,...,t


×

RNc (Ao, Bo)ut,t+Nc−1
+ (Ξt)n−no+1:n

4 
.

Using the inequality (a+ b)2 ⩽ 2a2 + 2b2, it follows that

E
‖x̂oi ‖


i=T ,T+Nc ,...,t

x̂ot+Nc

− x̂ot 4
⩽ 8E

‖x̂oi ‖

i=T ,T+Nc ,...,t


×

RNc (Ao, Bo)ut,t+Nc−1
4
+

(Ξt)n−no+1:n
4


.

By design, ‖ui‖∞ ⩽ Umax. In addition, Ξt is independent ofx̂oi 
i=T ,T+Nc ,...,t

and is Gaussian; it has its fourth moment
bounded. Therefore, there exists a constant M > 0 such that
E
‖x̂oi ‖


i=T ,T+Nc ,...,t

[RNc (Ao, Bo)ut,t+Nc−1
4
+

(Ξt)n−no+1:n
4
] ⩽

M , for all t ⩾ T . The two conditions of Proposition 11 are verified
for the sequence (

x̂ot )t=T ,T+Nc ,T+2Nc ,.... Thus, by Proposition 11,
there exists a constant γ ′o > 0, depending on the given problem
parameters, such that EYT

x̂ot 2
⩽ γ ′o , for all t = T , T + Nc, T +

2Nc, . . .. Finally, using a standard argument (as in Ramponi et al.
(2010)) we can show the existence of another constant γo ⩾ γ ′o
such that the condition (41) holds. �

Proof (Proof of Theorem 5). Claim (i) of Theorem 5 was proved
in Lemma 9. It remains to show claim (ii). We start by asserting
the following inequality EYT


‖xt‖2


⩽ 2EYT

xt − x̂t
2
+

2EYT

x̂t2, for all t ⩾ T = Nc

T ′/κ


. We know from Lemma 8

that EYT

xt − x̂t
2

⩽ ρ for all t ⩾ T ⩾ T ′. We have that
x̂t2

=x̂st2
+

x̂ot 2
, where x̂s and x̂o are states corresponding to the Schur

and orthogonal parts of the system, respectively. It then follows
that EYT

x̂t2
= EYT

x̂st2
+ EYT

x̂ot 2
. Using Lemmas 10

and 12 we conclude that EYT

x̂t2
⩽ γs + γo, for all t ⩾ T ,

and therefore, EYT


‖xt‖2


⩽ 2ρ + 2(γs + γo), for all t ⩾ T .

Since the sequence (xt)t∈N in (1a) is generated through the addition
of independent mean-square bounded random variables and a
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bounded control input, and since T < ∞, it follows that there
exists a constant γ > 0 such that EY0


‖xt‖2


⩽ γ , for all t ∈ N,

establishing the claim (ii) of Theorem 5. �

Proof (Proof of Corollary 6). The proof of Corollary 6 follows
exactly the same reasoning as in the proof of Theorem 5, except
for the constraints in (34) and (35). Rewriting the constraints
(30) and (31) as (34) and (35), respectively, can be done
similarly to the way we rewrote the cost (6) in Theorem 5. It
remains to show the upper bounds α∗ and β∗ in (33). For the
constraint (30) we have the upper-bound EYt


‖Xt‖

2
S +LTXt


= EYt


‖Axt +BUt +DWt‖

2
S + LT(Axt + BUt + DWt)


⩽

3EYt


‖Axt‖2S + ‖BUt‖

2
S + ‖DWt‖

2
S


+ LTAx̂t + |LTBUt | ⩽

LTAx̂t + 3Nmσmax(B
TSB)U2

max +
LTB


1 Umax + 3 tr(ATSAEYt

xtxtT

+ DTSDΣw), where the first inequality follows from

the fact that (a + b + c)2 ⩽ 3(a2 + b2 + c2), for any
a, b, c > 0, and the noise being zero-mean; the second inequality
follows from applying norm bounds between the 2 and∞-norms
and Hölder’s inequality. As for the constraint (31), we have the
bound EYt


Ut

TS̃Ut


⩽ σmax(S̃) ‖Ut‖
2 ⩽ Nmσmax(S̃) ‖Ut‖

2
∞

⩽

Nmσmax(S̃)U2
max. �
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