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Stable Networked Control Systems
With Bounded Control Authority
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Abstract—We study the stability of a class of networked control systems
with hard bounds on the control authority. The plant dynamics are
discrete-time, linear, and time-invariant, with stochastic process noise and
measurement noise. The controller is designed as a norm-bounded causal
history-dependent function of the past outputs perturbed by bounded
noise. The resulting control signals are assumed to be transmitted through
a lossy channel with packet dropouts. We show that under mild assump-
tions on the system matrices, the statistics of the process and measurement
noise sequences, and the probability of dropouts, it is possible to ensure
bounded variance of the system in closed-loop.

Index Terms—Linear Quadratic Gaussian (LQG), networked control
systems (NCS).

I. INTRODUCTION

Communication channels have become ubiquitous in control appli-
cations such as remotely operated robotic systems [12]. In such appli-
cations, measurement and control signals are exchanged via lossy and
noisy communication channels resulting inNetworked Control Systems
(NCS). The research in NCS has branched into many different direc-
tions that deal with the (individual or combined) effects of delays, lim-
ited information exchange, and information losses on the stability of
the plant, see, e.g., [8], [9], [15], [23] and the references therein. The
designed control laws are not required in general to satisfy a prede-
fined bound and hence may take arbitrarily large values, depending on
the state of the system as well as the noise sequence.
Control under information loss in the communication channel has

been extensively studied within the Linear Quadratic Gaussian (LQG)
framework [13], [19]. Typically, the communication channel(s) are
modeled by independent and identically distributed (i.i.d) Bernoulli
processes, which assign probabilities to the successful transmission
of packets. Perhaps the most well known result in this setting is:
When the transmission of sensor and control data packets happens
over a network with TCP-like protocols, the closed-loop system under
an LQG controller can be mean-square stabilized provided that the
probabilities of successful transmission are above a certain threshold.
Since the TCP-like protocols enable the receiver to obtain an acknowl-
edgment of whether or not the packets were successfully transmitted,
the separation principle holds and the optimal LQG controller is linear
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in the estimated state. The control inputs in this case are generated via
linear state feedback, and hence no hard input bounds may be imposed.
Guaranteeing hard bounds on the control inputs is of paramount im-

portance in applications. Consequently, many researchers have pursued
the problem of optimal control and stabilization for linear systems with
bounded control inputs, see, for example, [22], [20], [18], [2]. This
problem has also received a renewed interest in recent years [17], [21],
[4], [10], [7]. In the deterministic setting, it is well-known [24] that
global asymptotic stabilization of a linear system
with bounded inputs is possible if and only if the pair is stabi-
lizable under unbounded controls and the spectral radius of the system
matrix is at most 1. In the stochastic setting, it was argued in [14]
and proven in [6] that ensuring a mean-square bound for every ini-
tial condition is not possible for linear systems with bounded control
inputs if the system matrix is unstable. In [17] we established the
existence of a policy with sufficiently large control authority that en-
sures mean-square boundedness of the states of the system under the
assumption that is Lyapunov stable. Although Lyapunov stability of
is a stronger requirement than the spectral radius of being at most

1, to the best of our knowledge this is the current state of the art.
In general, one would aim for a unifying design framework for NCS

that takes into account various kinds of network imperfections, such as
delays, limited data rates, quantization, packet dropouts, etc. However,
this is extremely difficult and most of the past research effort has been
focused on addressing one or at best two of the imperfections. In this
article we address the single issue of input channel dropouts and prove
that it is possible to stabilize NCS in the sense of bounded variance
with bounded control authority, relying on imperfect state information.
In the article [5], we address the effect of limited data exchange rate,
due to quantization, and show that under full state information it is
possible to obtain bounded state variance with a finite alphabet. The
setup in [5] is different from the one in this article and the authors are
not aware of a method of unifying the two sets of results. Finally, the
main result in this technical note generalizes that in [3] from the perfect
state information case to the imperfect one.

Notation

On a probability space , we denote the conditional expec-
tation given a sub- -algebra of as . For any two matrices
and of compatible dimensions, we denote by the -th step
reachability matrix . For any
matrix , we let and be its smallest and largest
singular values, respectively, and be its Moore-Penrose pseudo-in-
verse. For a symmetric positive definite matrix , let and

denote its smallest and largest eigenvalues, respectively. We
shall denote by the usual Euclidean norm and by the set of non-
negative integers . In a Euclidean space we denote by
the closed Euclidean ball of radius centered at the origin. For
let be the radial saturation function, defined by

if ,
otherwise.

II. PROBLEM SETUP

Consider the following discrete-time stochastic linear system:

(1a)

(1b)

where is the state, is the control input, is
the output, and and are some random process and measurement
noise, respectively. We would like to control the system (1) via a com-
munication network, as shown in Fig. 1. The output of the system
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Fig. 1. Networked control system.

is passed through the network and is received at the controller side as
, where is an additional disturbance term introduced

by the network, which can model for example the error introduced by
a uniform quantizer, with an infinite but countable alphabet, on . At
any time , the estimator utilizes the available information of ( -algebra
generated by) the outputs

(2)

to generate an estimate . This estimate is in turn used by the con-
troller to generate a control input that is transmitted back to the plant
via a lossy channel. The channel is characterized by a Bernoulli random
variable that takes values 0 or 1 with probabilities and , re-
spectively. Accordingly, the input to the plant is given by .
We have the following standing assumption.
Assumption 1:
1) The matrix is orthogonal.
2) The pair is reachable in steps, i.e.,

.
3) The pair is observable.
4) The initial condition , the process and measurement noise
vectors and , and the input dropout variable are mutually
independent and individually i.i.d., with: ,

, , and is a Bernoulli random
variable with mean .

5) The disturbance term satisfies the following uniform bound

(3)

6) The control inputs are required to satisfy

(4)

7) The control inputs ...
are generated at times

and the whole sequence is transmitted as a
block across the communication channel at time .

Assumption 1-1) and 1-2) constitute no loss of generality, since the
result may be easily extended to cover the case of being Lyapunov
stable and the pair being reachable in steps (see the discussion
in the Introduction and [17]). Assumption 1-3) is quite standard when
dealing with problems with imperfect state information. Assumption
1-4) constitutes a technical requirement similar to those in [17] and
[19].

III. MAIN RESULT

We shall give a positive answer to the following fundamental ques-
tion:Does there exist a causal control policy satisfying (4), such that for
any initial filtration the state has bounded variance in closed-loop,
i.e., does the following bound:

(5)

hold for some finite constant ?

A. Estimator

Since we do not have access to the full state information at the con-
troller side, we start by designing a state estimator. The prediction step
is given by

(6)

with , and the update step is given by

(7)

where is the estimation error and is a static matrix
gain to be chosen so that thematrix is a Schur stablematrix.
Remark 2: The estimator (6)–(7) has been designed for UDP-like

transmission protocols in which there are no acknowledgements of
packet reception being sent back from the plant to the estimator (see
[19]). It is not the optimal estimator for our problem setup. All the
subsequent results also hold with minor changes for the TCP-like pro-
tocols, in which the filtration available to the estimator includes
knowledge of the history of the dropout sequence .
Using (1), (6), and (7), we can see that the estimation (update) error

satisfies the following recursion:

(8)

The error process in (8) has a bounded conditional fourth moment as
shown in the following lemma.
Lemma 3: Let Assumption 1 hold and choose a matrix gain so

that is Schur stable.1 Then, there exists a finite positive
constant such that the following bound holds:

(9)

Proof: Since is Schur stable, there exist matrices
and that solve the following discrete-time

Lyapunov equation:

(10)

Note that the existence of a stabilizing gain follows from the facts that
is observable and the matrix is orthogonal by Assumption 1.2

Define . We have that

(11)

1It is always possible to choose such a matrix , as will be seen in the proof.
2Since the pair is observable, there exits a matrix such that

is Schur stable or equivalently, there exists symmetric positive definite
matrices and satisfying the Lyapunov equation

. Let , see [1, Proposition 11.10.5]. Then we have that
, or equivalently, by the orthogonality

of , . Multiplying the
last equality by and from the left and right, respectively, and setting

and yields the result.
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where . Ex-
panding the first term in (11) and upper-bounding the result, we obtain

(12)

where

(13)

Moreover, we have that

(14)

where we have used the bounds (3) and (4) and the fact that
. Using the upper bound (14), the independence of , and ,
and Jensen’s inequality,3 we can further upper-bound as follows:

(15)

with the constants

and

The constants through may be computed using the upper bound
(14) and the statistics of and . Returning to (12), we have that

since is independent of the measurement . It follows from (10)
that

(16)

3For , 2, 3 we have that

since is a concave function.

Combining (12), (15), and (16), we obtain

where .4 Hence, for a sufficiently large
, for example

we have that

Iterating the last inequality, we obtain the following bound:

Therefore

Finally, is bounded by Assumption 1-4) on , (1b),
and the definition of in (6).
We are now ready to state our main result.
Theorem 4: Let Assumption 1 hold and choose the matrix as in

Lemma 3. Then, there exist an average dropout threshold and a
causal deterministic -step control policy satisfying (4) with a minimal
control authority (depending on and the problem parameters),
such that for all the closed-loop system is mean-square
bounded.

Proof: The state variance in (5) may be upper-bounded as
follows:

(17)

The error variance in (17) is bounded by Lemma 3, since

(18)

where the last bound follows from Jensen’s inequality. Therefore, we
only need to show that there exists a causal deterministic -step causal
control policy satisfying (4) that ensures that

4It holds
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is finite. This is achieved by considering the sub-sampled process
, given by

...

...

...
...

...
... (19)

and showing that it is mean-square bounded, from which the required
result follows.
Our proof that the sub-sampled process (19) is mean-square bounded

relies on the following (immediate) adaptation of the fundamental re-
sult [16, Theorem 1].
Proposition 5: Let be a sequence of nonnegative random

variables on some probability space , and let be
any filtration to which is adapted. Suppose that there exist con-
stants , and , such that , and for all

(20)

(21)

Then there exists a constant such that

.
Henceforth, let be as in (2). Accordingly, we have that

...

...

...

...

...

... (22)

By Lemma 3 and Assumption 1 there exists a constant given by

(23)

that upper-bounds the last four terms in (22). In the spirit of [11], we
propose the following control policy

... (24)

for some radius of the saturation function to be specified. The
policy (24) is generated every steps using the state estimate and
is sent to the plant through the lossy network according to Assumption
1-7). As such, the sequence of inputs is either re-
ceived by the plant if or it is dropped if . Plugging the
policy (24) into (22) and using the constant in (23), we obtain

Pick an and define the dropout threshold
. Then,

For any , we have that

(25)

on the event , if we choose the ra-
dius . Accordingly, using (24), the required control au-
thority is defined as , and condition
(20) of Proposition 5 is satisfied for .
We proceed to show that the condition (21) is satisfied as well. The

following upper bound holds:

...

...

... (26)

where we have used the policy (24), the fact that
since is orthogonal, and the upper bound (3) on the channel-induced
disturbance . It follows from Lemma 3 and Assumption 1-4) that
there exists a bound , such that

(27)
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Fig. 2. Empirical variance of the state with 500 sample paths of the noise
sequences and and input drop sequences

: The results for for various choices of transmission probability
with state estimation are shown in dashed blue

lines, while the results for the the policy in [17] with full state information is
shown in the solid red line.

and condition (21) is satisfied for . Therefore, by Proposi-
tion 5 there exists a constant such that

(28)

By the linearity of the dynamics (7), the boundedness of the control
inputs, Lemma 3, and Assumption 1-4), we can show using a similar
argument as in [17] the existence of a constant depending on
such that

(29)

Finally, setting completes the proof.

IV. EXAMPLE

Consider the system

with .We simulated the policy proposed
in this technical note with , ,

starting from the initial condition and an initial estimate

for 500 sample paths of the noise sequences and and
drop sequences . The matrix used in the estimator was chosen to

be , which places the poles of

at 0.3497 and 0.5081.
Fig. 2 depicts the results for the empirical average achieved for

various choices of the average drop rate in . The variance of
the state grows unbounded for a choice of and as increases
towards 1, the variance of the state approaches (in a uniform way)
the one achieved utilizing the policy proposed in [17] with full state
feedback. The difference between the state variance achieved by using
the policy proposed in this technical note for versus the one
achieved by using the one proposed in [17] is due to the incurred
estimation error. Finally, note that the chosen is lower than

the one required for obtaining the theoretical mean-square bounds
on the state in Theorem 4 and that our control policy is still stabi-
lizing for a value of that is much lower than the required

. In other words,
our main result establishes conditions which are sufficient, but clearly
conservative.
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