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A New Classification Algorithm With Guaranteed
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Applications
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Abstract—We propose a novel algorithm to construct
binary classifiers, in the spirit of the recently proposed
guaranteed error machine (GEM) but with a-posteriori
assessment of the “support” instances and without the
need for a ternary output. We provide rigorous guaran-
tees on the probability of misclassification; differently from
GEM, such guarantees aim to bound the conditional proba-
bility of error given the true value of the classified instance.
The proposed classifier can be tuned in order to give more
importance to one of the two kinds of error, and to bal-
ance their ratio also in the presence of unbalanced training
sets. Guaranteeing the conditional probabilities of error
is crucial in many classification problems, in particular
medical diagnoses, where being able to push the tradeoff
between sensitivity (conditional probability of detecting a
“true positive”) and specificity (conditional probability of
detecting a “true negative”) toward higher sensitivity is of
paramount importance. The application that first motivated
our study is the classification of ventricular fibrillation
(VF) into cases where restoration of an organized electri-
cal activity is achieved immediately after a defibrillatory
shock (“positive”), and cases where prompt resuscitation
does not happen (“negative”). We provide experimental evi-
dence that our approach is promising by testing it against
three well-known medical datasets, against some data on
VF that are available to the authors, and with Monte Carlo
simulations.

Index Terms—Pattern recognition and classification, sta-
tistical learning, healthcare and medical systems.

I. INTRODUCTION

MACHINE learning (ML) techniques are gaining popu-
larity as a means for the diagnosis of illnesses and in the

prediction of therapy outcomes. In supervised ML a classifier
is trained from a set of previously recorded pairs (xi, yi), where
xi are vectors of features (parameters extracted from an image,
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from a blood analysis, etc.) and yi ∈ {0, 1} are labels denoting
the corresponding class (for example “healthy” and “ill”, or
“effective” and “ineffective” in the case of a therapy). When
fed with a new vector of features x the classifier ŷ(·) provides
an automated prediction ŷ(x) for the corresponding y. In this
letter we propose a new method to construct a classifier that
has guaranteed properties to correctly predict y conditionally
to its true value 0 or 1.

The application that originally motivated our study was the
first-aid therapy of patients in ventricular fibrillation (VF).
European guidelines indicate that VF can be of two kinds. The
first one (to which we shall associate the label “1”) is promptly
reversible with rescue shocks, so that defibrillation results in
recovery of circulation and survival, [7]. By contrast, rescue
shocks do not result in spontaneous circulation when applied
to the other kind of VF (“0”). In this case there is evidence
that reperfusion prior to rescue shocks improves defibrillation
success and survival, [15]. The quest for effective methods
of analysis of VF electrocardiographic (ECG) waveforms and
automatic classification to support first-aid decisions (defib-
rillation or reperfusion followed by defibrillation) is openly
endorsed by the last European guidelines, [13]. In a previous
work, [1], the Guaranteed Error Machine (GEM) algorithm
proposed in [3] was applied to the problem of VF classifica-
tion (the features xi ∈ R

d were extracted by numerical analysis
of ECG’s) in view of its several attractive properties. First,
it allows the user to calibrate the probability of misclassifi-
cation P

[
ŷ(x) �= y

]
in a rigorous mathematical way. Second,

GEM can lead to good generalization performances even in
the presence of many features (d � 1). On the other hand,
the GEM algorithm used in [1] was not able to keep control
on the two types of error: misclassifying a “0” (false positive)
and misclassifying a “1” (false negative).

With respect to VF, if a patient of class 1 is classified as 0
then s/he will not be promptly shocked, with potentially fatal
consequences. On the other hand, if a patient of class 0 is
wrongly classified as 1, the action taken will be to defibrillate
as soon as possible, with no benefit. Errors of the first type
are critical and must be guarded against with the maximum
possible care; errors of the second type should be avoided if
possible, but given the circumstances are not as critical. In the
same way, classifying a patient as healthy when s/he is actually
ill has potentially serious consequences and is a critical error,
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while classifying someone as ill when s/he is not will involve
further diagnosis procedures (possibly expensive and inva-
sive), but otherwise cause no harm. Thus, a wise approach
to these classification problems is to distinguish between
the conditional error probabilities P

[
ŷ(x) �= y | y = 1

]
and

P
[
ŷ(x) �= y | y = 0

]
, and to assign higher importance to the

former. In medical statistics it is commonplace to focus on
correct classification, and to call sensitivity the probability
P

[
ŷ(x) = y | y = 1

] = 1−P
[
ŷ(x) �= y | y = 1

]
; the probabil-

ity P
[
ŷ(x) = y | y = 0

]
is instead called specificity. In the VF

classification problem, a 95% sensitivity with a 50% specificity
are considered target values, see [6], [11], [14].

The algorithm introduced in this letter provides a well-
principled way for building classifiers in the presence of
unbalanced datasets, where different classes are not equally
represented, [10], so as to guarantee a desired balance between
sensitivity and specificity. Hence, the key novelty of our
algorithm is that, while providing a rigorous mathematical
guarantee in the same spirit of GEM, it does so for condi-
tional error probabilities, and it can be tuned in order to favor
sensitivity over specificity. Of course, how high sensitivity and
specificity actually are depends on the number of observations
and on how simple the classifier happens to be (many obser-
vations and simple constructions lead to stronger claims on
sensitivity and specificity). The fundamental point is that, in
all cases, the values of sensitivity and specificity are assessable
by means of a precise theory prior to using the classifier.

II. THE PROPOSED CLASSIFICATION ALGORITHM

A training sequence T = ((x1, y1), . . . , (xN, yN)), with
xi ∈ R

d and yi ∈ {0, 1} has been observed. Assume that
(xi, yi), i = 1, . . . , N are pairs independent and distributed
according to a common distribution P; assume, moreover, that
the marginal probability of xi admits density (except for this
assumption, no knowledge of the underlying distribution of
(xi, yi) is required to formulate precise guarantees on sensi-
tivity and specificity). Let N0 be the number of points whose
label is zero, yi = 0, and N1 be the number of points whose
label is one, yi = 1 (thus N0 + N1 = N).

The algorithm below needs to be initialized with a special
pair (x∗, y∗). This can either be one more data point besides
T , or more simply an arbitrary point x∗ ∈ R

d and an arbi-
trary label, e.g., y∗ = 0. The theory developed in the sequel
applies to both cases. Moreover, in the algorithm c0, c1 are
two positive integers called the “complexity” parameters. Their
values are chosen by the user and impact on the sensitivity and
specificity guarantees as later described in Theorem 1.

The classifier is built according to Algorithm A.
The algorithm stops when B = R

d. Since (when B �= R
d)

at step 2.(c) the list R gets reduced, the algorithm certainly
comes to termination.

Algorithm A constructs a sequence of balls, with alter-
nate labels 0, 1, 0, 1, . . . , until the space R

d is completely
covered. At the exit of the algorithm, the sets S0 and S1
contain the “important points”, those that determine the con-
struction. While Algorithm A maintains the same spirit of
the GEM algorithm first proposed in [3], it departs from it
in many respects. First, the construction only involves balls

Algorithm A
1) Initialize: xc ← x∗ (current center); y ← y∗ (current

label); B ← () (list of balls and associated labels);
S0 ← ∅ (set of “support” points xi with label 0);
S1 ← ∅ (set of “support” points xi with label 1);
R ← (x1, . . . , xN) (list of remaining points).

2) Repeat the following steps,
a) if there are less than c1−y points in R with label

1 − y, set B← R
d; otherwise let B be the largest

open ball, centered at xc, containing less than c1−y
points in R with label 1−y. If B �= R

d, then almost
surely only one point (with label 1− y) lies on the
boundary of B: denote this point x̂;

b) add to S1−y the points in R with label 1− y that
belong to B and, if B �= R

d, also add to S1−y the
boundary point x̂;

c) remove from R all points belonging to B;
d) append (B, y) to the list B;
e) if B �= R

d, set xc ← x̂ and y← 1− y,
until B = R

d;
3) Define the classifier ŷ(·) as follows: for any x ∈ R

d,
ŷ(x) := the label yi associated with the first ball Bi of
the list B that contains x;

4) Output the classifier ŷ(·) and the integers k0 =
card(S0)+ y, k1 = card(S1)+ (1− y).

(GEM considered more complex shapes). Second, GEM was
a ternary classifier that admitted the output “unknown”. This
circumstance is inappropriate whenever a decision has nec-
essarily to be made, hence the new classifier always returns
an answer 0 or 1. Third, Algorithm A contains a fundamental
mechanism to unbalance sensitivity and specificity to favor the
former. This is the presence of the complexity parameters c0
and c1: increasing the value of c0 generates 1-labelled balls
of larger size so providing higher sensitivity (normally, at the
cost of a smaller specificity). This mechanism was not present
in GEM.

The next theorem, which quantitatively substantiates the
evaluation of sensitivity and specificity, is the main theoretical
result of this letter.

Theorem 1: Fix small confidence parameters β0, β1 ∈
(0, 1).1 Define ε0(0) = ε1(0) = 0, ε0(N0 + 1) = ε1(N1 +
1) = 1, and, for 1 ≤ k0 ≤ N0 and 1 ≤ k1 ≤ N1, let
ε0(k0), ε1(k1) ∈ (0, 1) be quantiles such that

∫ 1

ε0(k0)

fk0,N0(p) dp = β0

N0
,

∫ 1

ε1(k1)

fk1,N1(p) dp = β1

N1
,

where fk0,N0 and fk1,N1 are the probability density functions of
a Beta(k0, N0 + 1 − k0) and of a Beta(k1, N1 + 1 − k1) ran-
dom variable respectively. Then, irrespective of the distribution
according to which the pairs (xi, yi), i = 1, . . . , N, have been
sampled, if (x, y) is a new pair independent of all the (xi, yi)

and sampled according to the same distribution, the statements

P
[
ŷ(x) = 1 | y = 0

] ≤ ε0(k0) (1)

P
[
ŷ(x) = 0 | y = 1

] ≤ ε1(k1) (2)

1β0 and β1 are normally very small values like 10−3 or 10−4.
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(where k0 and k1 are output of Algorithm A along with ŷ(·))
hold true simultaneously with confidence 1 − β0 − β1, i.e.,
the probability with which a training sequence T returns a
classifier such that (1) or (2) are not satisfied is no more than
β0 + β1.

III. PROOF OF THE MAIN THEOREM

Given N, the number of data points, the proportion of
0 and 1-labelled points, as given by N0 and N1, is ran-
dom. First we fix N0 and N1 to given values and show that,
conditionally to the chosen values of N0 and N1, the event
E0 = {P

[
ŷ(x) = 1 | y = 0

]
> ε0(k0)} has probability at most

β0, i.e.,

PN[E0 | N0, N1] ≤ β0. (3)

Since this formula holds for any value of N0 and N1, it follows
that PN[E0] ≤ β0. The fact that PN[E1 | N0, N1] ≤ β1, and
hence PN[E1] ≤ β1, where E1 = {P

[
ŷ(x) = 0 | y = 1

]
>

ε1(k1)}, is proven similarly. From PN[E0] ≤ β0 and PN[E1] ≤
β1, we then have that (1) and (2) in the statement of Theorem 1
hold true simultaneously with probability 1− β0 − β1.2

To proceed with the proof of (3), notice that changing the
order of the pairs (xi, yi), i = 1, . . . , N, does not change the
classifier ŷ(·) generated by Algorithm A. This yields

PN[
P

[
ŷ(x) = 1 | y = 0

]
> ε0(k0) | N0, N1

]

= PN1
1 × PN0

0

[
P0

[
ŷ(x) = 1

]
> ε0(k0)

]

=
∫

(Rd)N1
PN0

0

[
P0

[
ŷ(x) = 1

]
> ε0(k0)

]
dPN1

1 , (4)

where P0 and P1 are the conditional distributions of x, given
y = 0 and given y = 1 respectively, and the second equality
is Fubini’s theorem.

In (4), the integrand PN0
0 [P0

[
ŷ(x) = 1

]
> ε0(k0)] is a func-

tion of the N1 points with label 1. From now on, we will
assume that the values of the N1 points with label 1 are fixed,
and we will show that

PN0
0

[
P0

[
ŷ(x) = 1

]
> ε0(k0)

] ≤ β0 (5)

irrespective of such values. Integrating over the values of the
points with label 1, as is done in (4), gives (3).

To prove (5), start by noting that k0 is a random variable
ranging from 0 to N0 + 1. Hence,

PN0
0

[
P0

[
ŷ(x) = 1

]
> ε0(k0)

]

= PN0
0

[
P0

[
ŷ(x) = 1

]
> ε0(k0) and 0 ≤ k0 ≤ N0 + 1

]
.

(6)

The case k0 = 0 happens only when the initialization label
is y∗ = 0 and there are no “ones” (N0 = N, N1 = 0); in this
case ŷ(x) = 0 for all x ∈ R

d, hence P0[ŷ(x) = 1] = 0 and
the inequality P0[ŷ(x) = 1] > ε0(0) = 0 in (6) is false. For
k0 = N0+1, ε(k0) = 1, so that P0[ŷ(x) = 1] > ε0(N0+1) = 1
is also clearly false. To handle the other cases k0 = 1, . . . , N0,
we introduce N0 auxiliary classifiers ŷ1(·), . . . , ŷN0(·), which

2In view of this approach, we notice that the result of the theorem holds,
more strongly, for any values taken by N0 and N1, even though in the theo-
rem’s statement we have preferred, for the sake of simplicity, not to provide
a conditional statement on N0 and N1.

Algorithm B(k0)
1) Initialize: xc ← x∗; y← y∗; B← (); S0 ← ∅; S1 ←

∅; R ← (x1, . . . , xN);
2) Repeat the following steps,

a) let c̃0 = min{c0, k0 − card(S0)} and c̃1 = c1;
if there are less than c̃1−y points in R with label
1 − y, set B← R

d; otherwise let B be the largest
open ball, centered at xc, containing less than c̃1−y
points in R with label 1−y. If B �= R

d, then almost
surely only one point (with label 1− y) lies on the
boundary of B: denote this point x̂;

b) add to S1−y the points in R with label 1− y that
belong to B and, if B �= R

d, also add to S1−y the
boundary point x̂;

c) remove from R all points belonging to B;
d) append (B, y) to the list B;
e) if B �= R

d, set xc ← x̂ and y← 1− y,
until either card(S0) = k0 or B = R

d;
3) If card(S0) = k0, append (Rd, 0) to the list B;

else (card(S0) < k0), find the smallest closed ball B
centered at x∗ containing k0 − card(S0) points in the
set {points in (x1, . . . , xN) that have label 0 and are not
in S0}; prepend (B, 1) to the list B;

4) Define the classifier ŷk0(·) as follows: for any x ∈ R
d,

ŷk0(x) := the label yi associated with the first ball Bi of
the list B that contains x; output ŷk0(·).

are only used to establish certain theoretical relations (these
classifiers are not used in practice). Each classifier ŷk0(·),
k0 = 1, . . . , N0, is generated by Algorithm B(k0). Differently
from Algorithm A, Algorithm B(k0) generates a set S0 whose
cardinality is exactly equal to k0.

Observe now that, whenever k0 generated by Algorithm A
takes a value k0 in {1, . . . , N0}, the only difference between
the classifier ŷ(·) generated by Algorithm A and the classifier
ŷk0(·) generated by Algorithm B(k0) is the ball that Algorithm
B(k0) might have introduced in the “else” part of step 3. Such a
ball is prepended to B, and it affects the constructed classifier
in such a way that ŷk0(x) = 1 may happen for values of x in
the ball for which ŷ(x) = 0. Hence, for every training sequence
T such that 1 ≤ k0 ≤ N0, it holds that

P0
[
ŷ(x) = 1

] ≤ P0
[
ŷk0(x) = 1

]
. (7)

Thus, (6) can be bounded as follows

PN0
0

[
P0

[
ŷ(x) = 1

]
> ε0(k0) and 0 ≤ k0 ≤ N0 + 1

]

= PN0
0

[
P0

[
ŷ(x) = 1

]
> ε0(k0) and 1 ≤ k0 ≤ N0

]

≤ PN0
0

[
P0

[
ŷk0(x) = 1

]
> ε0(k0) and 1 ≤ k0 ≤ N0

]

≤
N0∑

k0=1

PN0
0

[
P0

[
ŷk0(x) = 1

]
> ε0(k0)

]
.

The last part of the proof consists in showing that, for any fixed
k0, P0[ŷk0(x) = 1] has a Beta(k0, N0 + 1 − k0) distribution,3

3In this last part of the proof, we will use a moment identity and a
combinatorial argument as in [3] and [4].
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so that, by the definition of ε0(·), we can conclude that

PN0
0

[
P0

[
ŷk0(x) = 1

]
> ε0(k0)

] ≤ β0

N0
,

and statement (5) follows from (6).
Algorithm B(k0) is defined for a sequence T of N data

points. As already explained after equation (4), we con-
sider the N1 points with label 1 fixed and let the N0 points
with label 0 be random and distributed according to P0.
It turns out that investigating the probability of the event
{P0

[
ŷk0(x) = 1

]
> ε0(k0)} requires to consider Algorithm

B(k0) fed with an enlarged training sequence, which we call
Tj, obtained by joining the original sequence of N pairs with
more pairs (xN+1, 0), . . . , (xN+j, 0) extracted according to P0,
where j is any natural number. Let us maintain the notation
ŷk0(·) for the classifier obtained by feeding B(k0) with T and
let us denote ŷ(j)

k0
(·) the classifier obtained from Tj.

Except for an event with probability zero (a subset of the
event {at least one among xN+1, . . . , xN+j belongs to the
boundary of a ball in the list B that defines ŷk0(·)}, which
has probability zero), the following implications hold:

1) if all the points xN+1, . . . , xN+j are classified correctly
by ŷk0(·), then they do not play any role in the construc-
tion performed by B(k0) when this algorithm is fed with
Tj, i.e., ŷ(j)

k0
(·) = ŷk0(·), and the k0 support points end-

ing up in S0 during the construction of ŷ(j)
k0

(·) are the
same as those in the construction of ŷk0(·) and belong
to (x1, . . . , xN);

2) conversely, if at least one point among xN+1, . . . , xN+j
is misclassified by ŷk0(·), then at least one among
xN+1, . . . , xN+j must end up in S0 during the construc-
tion of ŷ(j)

k0
(·).

Together, these two implications lead to the following fact:
almost surely, ŷk0(xN+i) = 0 for all i = 1, . . . , j if and only if
the support points in S0 obtained in the construction of ŷ(j)

k0
(·)

are taken from (x1, . . . , xN).
Using this fact, we can compute the probability pj of the

event
{
ŷk0(xN0+i) = 0 for all i = 1, . . . , j

}
.

Start by noticing that, since Algorithm B(k0) is permutation
invariant, we can assume that the points with label 1 are the
first N1 and those with label 0 are those in the positions N1+1
through N (when using T ) or through N+ j (when using Tj).
Hence, pj is the probability that the k0 support points in the
construction of ŷ(j)

k0
(·), are taken from the first N0 points in

the positions N1 + 1 through N. Exploiting the independence
of points and applying simple combinatorics, we then find
pj =

(N0
k0

)
/
(N0+j

k0

)
.

On the other hand, applying Fubini’s theorem, we get

pj = PN0+j
0

[
ŷk0(xN+i) = 0 for all i = 1, . . . , j

]

=
∫

(Rd)N0
Pj

0

[
ŷk0(xN+i) = 0 for all i = 1, . . . , j

]
dPN0

0

=
∫

(Rd)N0

(
P0

[
ŷk0(x) = 0

])j
dPN0

0

= E
[
P0

[
ŷk0(x) = 0

]j
]
,

i.e., pj =
(N0

k0

)
/
(N0+j

k0

)
is the j-th order moment of the random

variable P0[ŷk0(x) = 0].
Finally, it is easy to check, using, e.g., the recursion

in [9, beginning of p. 36], that the j-th order moment of
a Beta(N0 + 1 − k0, k0) random variable is indeed equal
to pj =

(N0
k0

)
/
(N0+j

k0

)
. But then, since the random variable

P0[ŷk0(x) = 0] has compact support and all its moments
coincide with those of a Beta(N0 + 1 − k0, k0) random
variable, we obtain that the distribution of P0[ŷk0(x) = 0]
is a Beta(N0 + 1 − k0, k0) (see the uniqueness state-
ment in [12, ch. II, sec. 12.9, Corollary 1 to Theorem 7]).
This implies that the distribution of P0[ŷk0(x) = 1] = 1 −
P0[ŷk0(x) = 0] is a Beta(k0, N0+1−k0), as was to be shown.
This concludes the proof of the Theorem.

IV. EXPERIMENTAL EVIDENCE AND SIMULATIONS

In this section, we first illustrate the key theoretical proper-
ties of the proposed algorithm on easily reproducible synthetic
data (Section IV-A), then we apply the algorithm on a few
benchmark medical datasets (Section IV-B). We also apply our
methodology to the ventricular fibrillation dataset that moti-
vated this letter, and conclude that no significant guarantees
can be issued on the sensitivity and specificity of the obtained
classifier because data are too scarce (N1 = 15), but we argue
that our algorithm might perform well, with strong guarantees,
when more data are considered.

A. Synthetic Data

In order to illustrate the validity of the theory, we applied
our algorithm to a synthetic problem that can be easily repro-
duced. The problem is that of predicting the output y of the
binary function kstest([x(1), . . . , x(7)], ‘Alpha’, 0.005) in the
MATLAB Statistics and Machine Learning Toolbox, when the
feature vector x = [x(1), . . . , x(7)] is uniformly and indepen-
dently sampled over [0, 1]7. For such a distribution of x, the
probability that y = 1 is about 1/10 of the probability that
y = 0. We took N = 1100 and, for the sake of simplicity,
we considered datasets all having N0 = 1000 and N1 = 100.4

Three conditions for c0 and c1 were tried out, namely c1:c0
equal to 1:1, to 1:10, and to 1:50. For each of these cases,
we generated 100 training sets. For each training set, we
constructed a classifier5 and computed the guaranteed lower
bounds on its sensitivity and specificity, with β0 = β1 = 10−3,
so that, according to Theorem 1, the bounds are expected to be
satisfied unless the generated training set belongs to a set of
small probability 0.2%. For each classifier that we obtained,
we also evaluated the true sensitivity and specificity using
the knowledge of the data generation mechanism (which is
usually not available in non-artificial experiments). The results
are reported in Fig. 1 (a), (b), and (c). The true sensitivity-
specificity couples are connected to the guaranteed bounds
by a line: in all of the cases, lines are green to indicate that

4Note that the statement of Theorem 1 is not conditional on N0 and N1.
However, the theorem’s statement extends to the conditional case, see the
footnote 2.

5In every Monte Carlo run, one extra 0-labelled point was generated and
its value was assigned to x∗. In all the numerical studies in this letter, the
initial point x∗ is a random 0-labelled point that is not included in the count
of N0.
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Fig. 1. Results for reproducible artificial data. Labels are generated by using the MATLAB kstest function. N0 = 1000, N1 = 100.

the bounds are satisfied by the true values. Note that some
conservatism in the bound is a matter of necessity since bound
satisfaction is enforced with high confidence 99.8%, and sen-
sitivity and specificity are subject to stochastic fluctuation.
In Fig. 1 (d), we have connected the true sensitivity-specificity
points with the corresponding values (1− k1

N1
, 1− k0

N0
). A care-

ful inspection of the algorithm reveals that (1 − k1
N1

, 1 − k0
N0

)

can be interpreted as a Leave-One-Out estimate (LOO), [8], of
the sensitivity and the specificity of the classifier. Our exper-
iments show that this estimate provides us with a valuable
indication of the performance of the classifier. Nonetheless, in
many cases the evaluation provided by (1− k1

N1
, 1− k0

N0
) is opti-

mistic (red lines in the picture) and therefore cannot be used
reliably as a lower bound. We here remark that k1

N1+1 is the
mean of the Beta(k1, N1 + 1− k1) distribution whose quan-
tile is computed in Theorem 1. Thus, the guaranteed bounds
are obtained by adding a safety margin to the Leave-One-Out
estimate, so as to keep under control the variability of the
performance of the classifier over the different training sets.
These margins are guaranteed for all distributions by which
data are generated and yet they are quite tight owing to the
fact that they descend from an universal Beta distribution that
does not depend on the original distribution of the data.

B. Medical Datasets

We applied the classifier developed in this letter to
three well-known medical datasets (BreastW, Haberman, and
Pima) that had been previously used for testing the GEM
algorithm, see [3] for more details and comparisons with other
techniques. The algorithm was applied for different choices
of c1 : c0, which resulted in the values k1 and k0, and
the corresponding guaranteed sensitivity and specificity values
(Sens:Spec), reported in Table I. As an additional remark, we

note that the reported confidence 1 − β1 − β0 is valid when
the couple c1 : c0 is fixed in advance: when n instances of the
algorithm are run for n values of c1 : c0, the bounds are guar-
anteed with a (lower) overall confidence 1−nβ1−nβ0. Finally,
we applied the algorithm to the ventricular fibrillation dataset
that was presented in [1], with some additional amplitude and
frequency features.6 The results are given in the upper part
of Table II. Note that even when k1

N1
≈ k0

N0
the guaranteed

sensitivity and specificity differ considerably. This is due to
the fact that the variability of the critical type of error when
only 15 samples are available is large, so that a considerably
large margin from the leave-one-out estimate k1

N1
is necessary

to guarantee the claimed sensitivity with the same confidence
as for the claimed specificity. Overall, we must conclude that
this dataset results in poor guarantees due to the small number
of positive instances, and that we need more data. As a proof
of concept, we artificially generated more data by using the
Synthetic Minority Oversampling TEchnique7(SMOTE, [5]).

6Overall, we considered 19 features: Root Mean Square, Average Segment
Amplitude, Mean Amplitude, Wave Amplitude, Maximum Value of the Signal,
Minimum Value of the Signal, Peak-To-Trough, Peak-Peak Amplitude, Mean
Slope, Median Slope, AMSA (sum of the absolute value of the product
between the amplitude spectral density and the corresponding frequency),
absAMSA (absolute value of the sum of the product between the amplitude
spectral density and the corresponding frequency), PSA (like AMSA, but
with power spectral density instead of amplitude spectral density), Centroid
Frequency (frequency of the “center of mass” of the power spectral den-
sity), Centroid Power, Dominant Frequency, Edge Frequency, Energy, Spectral
Flatness Measure, [1], [2]. Including some features that might look redun-
dant is intentional. In fact, the dimensionality of the feature vector does not
enter Theorem 1, and we expect that the algorithm performs implicit feature
selection as discussed in [1].

7We used the MATLAB function available at https://it.mathworks.com/
/matlabcentral/fileexchange/38830-smote–synthetic-minority-over-sampling-
technique-. The function was applied twice to increase the number of positive
samples, and twice to increase the number of negative samples so as to
preserve the imbalance ratio.
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TABLE I
GUARANTEES OBTAINED BY APPLYING THE ALGORITHM WITH PARAMETERS c1 : c0, β0, β1 TO BENCHMARK MEDICAL DATASETS [3]

TABLE II
GUARANTEES OBTAINED BY APPLYING THE ALGORITHM WITH

PARAMETERS c1:c0, β0, β1 TO THE VF DATA [1]

We thus obtained an (artificial) dataset with N0 = 2476 and
N1 = 240. Results are in the bottom part of Table II. If
these data were real, performances would be guaranteed to
be very good, close to the values of 95% sensitivity and
50% specificity that are commonly indicated as target values
in [6], [11], and [14].

V. CONCLUSION

In this letter we have introduced a new Guaranteed Error
Machine algorithm for binary classification. The algorithm
inherits from GEM the capability of accommodating the sys-
tematic use of many features and, like GEM, is grounded on a
rigorous statistical framework that makes it attractive for criti-
cal applications. Differently from GEM, the new algorithm has
no reject option (its output is always 0 or 1), and has tunable
sensitivity and specificity balancing. Moreover, rigorous cer-
tificates on the sensitivity and the specificity of the constructed
classifier can be issued based on the training set only (i.e., no
independent validation set is required). We applied the method
to synthetic and medical datasets. Although we have focused
on a simple construction based on covering balls, a whole class
of algorithms with certificates on sensitivity and specificity can
be designed in line with the scheme proposed in this letter.
The discussion of the main design knobs (such as the shape
of the regions, the possibility of allowing misclassifications in
the training set, etc.) will be the subject of future research.
In addition, the proposed algorithm contains some freedom
in its initialization: the first ball that is being constructed is
centered at an observation which, in a generalized form of
the algorithm, can be selected by the user. We plan to exploit
this degree of freedom to train different classifiers and then
boost the performance of the final algorithm by majority-based
decisions.
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