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Abstract— We consider the Georgiou-Lindquist problem of
approximating a spectral density function with spectra that
are consistent with given state-covariance. Rather than the
Kullback-Leibler pseudo-distance, however, we employ the
Hellinger distance. We characterize the optimal solution and
provide an iterative scheme for the Lagrange multiplier matrix
that allows to solve numerically the dual problem.

I. INTRODUCTION

In [1], Georgiou and Lindquist have studied the problem

of approximating a (prior) spectral density when new infor-

mation becomes available in the form of asymptotic state-

covariance statistics. The approximation has been carried

out in the Kullback-Leibler pseudo-metric. This study arose

naturally in the frame of a broad program on generalized

analytic interpolation and generalized moment problems

with complexity constraint carried out over a number of

years by Byrnes, Georgiou, Linquist and co-workers, see

[8], [9], [10], [11], [21], [22]. This body of work originates

from various important problems in the field such as the

covariance extension problem, spectral estimation and H∞

control, cf. [9], [21], [10], [2] and references therein.

The choice of a entropy type criterion was motivated

in [1] by the following fact. While studying questions

of existence and parametrization of solutions of general

moment problems, the above mentioned authors realized

that the two parametric families of measures that played a

central role were critical points of entropy like functionals,

see [3, p.3]. In the latter paper and in [4], homotopy like

methods are proposed as an effective tool to solve a class of

scalar and multidimensional generalized moment problems.

Very recently, Georgiou has investigated other distances

for power spectra, [5], [6]. His motivation lies in prediction

theory, where the optimal Wiener-Kolmogorov predictor

does not depend on the L1 norm of the spectrum. Con-

sidering the degradation of performance when an optimal

filter of one stochastic process is employed to predict a

different stochastic process naturally led him to formulate a

distance between rays of spectral densities. Approximation

with respect to the latter distance amounts to approximating

the ”shape” of a spectrum as it is sensible to pursue in

several applications such as speech processing. Since the

a priori and approximating spectrum do not necessarily
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have the same zero-th Fourier coefficient, the Kullback-

Leibler approximation also amounts in many situations to

approximating the shape of the a priori density, see [1,

Section III].

In this paper, we take a different approach to con-

strained spectrum approximation borrowing from mathe-

matical statistics another metric, namely the Hellinger dis-

tance [17], [18]. This approach appears to be more suitable

to approximating a specific spectral density function rather

than just approximating its shape. Indeed, as is shown in

[13], the Hellinger distance is a bona fide distance that arises

naturally as the minimum L2 distance between spectral

factors of the two spectra. Moreover, the variational analysis

can be carried out in a straighforward manner also in the

multivariate case.

The outline of the paper is as follows. In Section 2, we

introduce the Hellinger distance between spectral density

functions and formulate the corresponding constrained ap-

proximation problem. In Section 3, we derive the form of

the optimal solution in terms of a Hermitian multiplier ma-

trix. The following section is devoted to the dual problem.

A matricial iterative algorithm to solve numerically the dual

problem is introduced at the beginning of Section 5. We then

present simulation results where the optimal solution in the

Hellinger distance is compared to the optimal solution in

the Kullback-Leibler sense.

II. CONSTRAINED SPECTRUM APPROXIMATION

We adopt the same notation as in [1]. Let C+(T) be the

everywhere positive, continuous functions on the unit circle.

We consider the rational transfer function1

G(z) = (I − zA)−1B, A ∈ C
n×n, B ∈ C

n×1, (1)

where A is a stability matrix, i.e. has all its eigenvalues

in the open unit disc, and (A,B) is a reachable pair.

The latter property, as is well known, is equivalent to

the controllability matrix Cn = [B,AB,A2B, . . . , An−1B]
having full rank. Let Ψ ∈ C+(T) represent the a priori

estimate of the spectrum of an underlying zero-mean, wide-

sense stationary stochastic process {y(n), n ∈ Z}. We

consider the situation where new data become available in

the form of an estimate Σ of the state covariance of the

system

1Notice that notation in (1) is different from the usual control engineer-
ing notation where z represents the forward shift. In this case, as it is
customary in the mathematical literature, z represents the backward shift
so that when A is a stability matrix, G(z) is analytic inside (instead of
outside) the unit disc.
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y(n) x(n)
- -G(z)

Here Σ, which is assumed to be positive definite, is obtained

by feeding y to a bank of filters modeled by G until it

reaches steady state, and then estimating the state covari-

ance. When Ψ is not consistent with Σ, we need to find

Φ in C+(T) that is closest to Ψ in a suitable sense among

spectra consistent with Σ.

In order to turn this into a mathematical problem, we

need to introduce a metric on spectral density functions.

Given Φ and Ψ in C+(T), we define the Hellinger distance

between them by

dH(Φ,Ψ) :=

[

∫ π

−π

(

√

Φ(eiθ)−
√

Ψ(eiθ)

)2
dθ

2π

]1/2

.

It is a bona fide distance on C+(T). Moreover, it satisfies

the following properties.

Proposition 2.1: Consider Φ,Ψ ∈ C+(T). Then

1) dH(Φ,Ψ) ≤
√

‖Φ‖1 + ‖Ψ‖1;

2) dH(Φ,Ψ)2 ≤ ‖Φ−Ψ‖1;

3) ‖Φ−Ψ‖1 ≤
(

√

‖Φ‖1 +
√

‖Ψ‖1
)

dH(Φ,Ψ).

Proof: Observe that

∫ π

−π

(√
Φ−
√

Ψ
)2 dθ

2π
=

∫ π

−π

(

Φ + Ψ− 2
√

ΦΨ
) dθ

2π
≤
∫ π

−π

(Φ + Ψ)
dθ

2π

which proves 1). Also

∫ π

−π

|Φ−Ψ| dθ

2π
=

∫ π

−π

|
√

Φ−
√

Ψ||
√

Φ +
√

Ψ| dθ

2π
≥

∫ π

−π

|
√

Φ−
√

Ψ||
√

Φ−
√

Ψ| dθ

2π

which proves 2). Finally

∫ π

−π

|Φ−Ψ| dθ

2π
=

∫ π

−π

|
√

Φ−
√

Ψ||
√

Φ +
√

Ψ| dθ

2π
≤

dH(Φ,Ψ)×
[
∫ π

−π

(

Φ + Ψ + 2
√

ΦΨ
) dθ

2π

]1/2

≤

dH(Φ,Ψ)

[

∫ π

−π

(Φ + Ψ)
dθ

2π
+ 2

√

∫

Φ

∫

Ψ

]1/2

=

(

√

‖Φ‖1 +
√

‖Ψ‖1
)

dH(Φ,Ψ),

where we have used the Cauchy-Schwarz inequality twice.

This establishes 3). Q.E.D.

We are now ready to formulate our approximation problem.

Problem 2.2: (Approximation problem) Let Ψ ∈
C+(T), and let Σ ∈ C

n×n satisfy Σ = Σ∗ > 0. Find

Φ̂ that solves

minimize d2
H(Φ,Ψ) (2)

over

{

Φ ∈ C+(T) |
∫

GΦG∗ = Σ

}

, (3)

where star denotes transposition plus conjugation.

The constraint (3) expresses the fact that Φ is consistent

with Σ. First of all, one needs to worry about existence of

Φ ∈ C+(T) satisfying constraint (3). It was shown in [21],

[22] that such family is nonempty if and only if there exists

H ∈ C
1×n such that

Σ−AΣA∗ = BH + H∗B∗,

or, equivalently, the following rank condition holds

rank

(

Σ−AΣA∗ B
B∗ 0

)

= rank

(

0 B
B∗ 0

)

(4)

It was shown in [1], that the constraint occurs in some

important applications. In both examples below, the family

of spectral densities consistent with the data is nonempty if

Σ ≥ 0 and contains infinitely many elements if Σ > 0.

Example 1: (Covariance extension problem) Let

A =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...

0 0 0 . . . 1
0 0 0 . . . 0















, B =















0
0
...

0
1















(5)

so that the k-th component of G(z) is Gk(z) = zn−k. Also

let Σ be the Toeplitz matrix:

Σ =











c0 c1 . . . cn−1

c̄1 c0 . . . cn−2

...
...

. . .
...

c̄n−1 c̄n−2 . . . c0











(6)

where

ck := E{y(n)ȳ(n + k)}.
Thus, the information available on the process y is the finite

sequence of covariance lags c0, c1, . . . , cn−1.

Example 2: In this case

A =















p1 0 0 . . . 0
0 p2 0 . . . 0
...

...
. . .

...

0 0 0 . . . 0
0 0 0 . . . pn















, B =















1
1
...

1
1















(7)

so that the k-th element of G(z) is Gk(z) = 1

1−pkz
. The

matrix Σ is a Pick matrix with elements Σi,j =
wi+w̄j

1−pip̄j

where

wk =
1

4π

∫ π

−π

e−iθ + pk
e−iθ − pk

Φ(eiθ)dθ, k = 1, 2, . . . , n. (8)

In this case the problem is a Nevanlinna-Pick interpolation

problem [19], [20], [8], [9] whose solution permits spectral

estimation by selective harmonic amplification [8], [9], [21].
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III. VARIATIONAL ANALYSIS

The variational analysis is similar to the case when the

Kullback-Leibler index is employed [1]. Define

L := {Λ ∈ C
n×n|Λ = Λ∗, 1 + G∗ΛG > 0 ∀eiθ ∈ T}.

For Λ ∈ L, consider the Lagrangian function

L(Φ,Λ) = d2
H(Φ,Ψ) + trace

(

Λ

(
∫

GΦG∗ − Σ

))

= d2
H(Φ,Ψ) +

∫

G∗ΛGΦ− trace (ΛΣ). (9)

Next, consider the minimization of L(Φ,Λ):

minimize{L(Φ,Λ)|Φ ∈ C+(T)}. (10)

Remark 3.1: First of all, observe that C+(T) is an open,

convex subset of C(T). Second, notice that, for each Λ, the

functional

Φ→ L(Φ,Λ)

is strictly convex. Thus, (10) is a convex optimization prob-

lem. Finally, observe that the smoothness of the integrands

in (9) makes L(Φ,Λ) Gâteaux differentiable at Φ in any

direction δΦ ∈ C(T).
It then follows from a basic result of convex optimization

that Φ̂ ∈ C+(T) solves problem (10) if and only if it

satisfies the condition

δL(Φ̂,Λ; δΦ) = 0, ∀δΦ ∈ C(T). (11)

Here, δL(Φ̂,Λ; δΦ), the first variation of L at Φ̂ in direction

δΦ, is defined by

δL(Φ̂,Λ; δΦ) = lim ǫ→0

1

ǫ

[

L(Φ̂ + ǫδΦ,Λ)− L(Φ̂,Λ)
]

.

Proposition 3.2: The unique solution Φ̂ to problem (10)

is given by

Φ̂ =
Ψ

(1 + G∗ΛG)2
. (12)

Proof: For Φ ∈ C(T), we get

δL(Φ,Λ; δΦ) =

∫

(

1−Ψ1/2Φ−1/2 + G∗ΛG
)

δΦ.

By (11), Φ̂ ∈ C+(T) solves (10) if and only if
∫

(

1−Ψ1/2Φ−1/2 + G∗ΛG
)

δΦ = 0, ∀δΦ ∈ C(T).

(13)

We get

Φ̂1/2 =
Ψ1/2

1 + G∗ΛG
, (14)

from which (12) follows. Q.E.D.

In the spirit of Lagrange, we get the following elementary,

albeit fundamental, result.

Theorem 3.3: Suppose Λ̂ = Λ̂∗ is such that

1 + G∗Λ̂G > 0, ∀eiθ ∈ T, (15)
∫

G
Ψ

(1 + G∗Λ̂G)2
G∗ = Σ. (16)

Then Φ̂ given by

Φ̂ =
Ψ

(1 + G∗Λ̂G)2
(17)

is the unique solution of the approximation problem (2)-(3).

Proof: Let Φ ∈ C+(T) satisfy the constraint
∫

GΦG∗ = Σ. (18)

By Proposition (3.2), and by the strict convexity of the

functional L(·, Λ̂), we get

d2
H(Φ,Ψ) = L(Φ, Λ̂) > L(Φ̂, Λ̂) = d2

H(Φ̂,Ψ).

By (16), Φ̂ in (17) satisfies the constraint (18). Hence it is

optimal for the original constrained problem. Q.E.D.

Thus, the original problem (2)-(3) is now reduced to finding

Λ̂ satisfying (15)-(16). This is accomplished, as in [1], via

duality theory.

IV. THE DUAL PROBLEM

To simplify the writing, we assume from now on that

Σ = I . Indeed, if Σ 6= I , it suffices to replace G by

G′ := Σ−1/2G and (A,B) with (A′ = Σ−1/2AΣ1/2, B′ =
Σ−1/2B). Moreover, if Λ̂′ has been found such that

∫

G′
Ψ

(1 + G′∗Λ̂′G′)2
G′∗ = I,

then
∫

G
Ψ

(1 + G′∗Λ̂′G′)2
G∗ = Σ.

Hence, Φ̂ in (17) may also be obtained directly from G′

and Λ̂′ as

Φ̂ =
Ψ

(1 + G′∗Λ̂′G′)2
. (19)

In view of Proposition 3.2, for Λ satisfying (15), the dual

functional takes the form

Λ→ L(
Ψ

(1 + G∗ΛG)2
,Λ) =

∫

ΨG∗ΛG

1 + G∗ΛG
− trace (Λ). (20)

We consider the maximization of the dual functional (20)

over the set L = {Λ = Λ∗|1 + G∗ΛG > 0,∀eiθ ∈ T}. Let

JΨ(Λ) := trace (Λ)−
∫

ΨG∗ΛG

1 + G∗ΛG

The dual problem is then equivalent to

minimize {JΨ(Λ)|Λ ∈ L}. (21)

Remark 4.1: Notice that L is convex. Moreover, Λ →
JΨ(Λ) is convex on L, but, in general, not strictly convex.

More precisely, JΨ is strictly convex when restricted to the

range of the operator Γ defined on C(T) by

Γ(Φ) =

∫

GΦG∗. (22)
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This can be established along the lines of [1, Section V].

Details will be provided in [13]. Observe that L is an open

subset of the set H of all n×n Hermitian matrices and JΨ

is Gâteaux differentiable in any direction δΛ ∈ H.

Hence, Λ̂ ∈ L solves (21) if and only if, for all δΛ ∈ H,

we have

δJψ(Λ̂; δΛ) = trace

[(

I −
∫

GΨG∗

(1 + G∗Λ̂G)2

)

δΛ

]

= 0.

(23)

Arguing as in the minimization of the Lagrangian, we get

the following result.

Proposition 4.2: Λ̂ ∈ L solves (21) if and only if it

satisfies (16) with Σ = I .

Remark 4.3: Existence of a minimum of JΨ on L is

established in [13] along the lines of [12] (a detailed

existence proof for the Kullback-Leibler case is contained in

[14]). This result implies that, under assumption (4), there

exists a Λ̂ in L satisfying (16). Such a Λ̂ then provides

the optimal solution of the primal problem (2)-(3) via (17).

This, of course, establishes existence also for the dual

problem (21) in view of Proposition (4.2).

As for the Kullback-Leibler case, a closed form solution

of the dual problem may be obtained only in certain specific

cases. In general, one needs to resort to an iterative scheme.

We provide a simple method for the numerical solution of

the dual problem in the next section.

V. SIMULATION RESULTS

Reparametrization of L or of a subset of it where to look

for a solution to the dual problem has the advantage of lead-

ing to a vectorial iteration. It has the disadvantage, however,

that it may lead to loss of convexity or unboundness of the

gradient at the boundary, see [9], [23], [24] . As in [7] for

the Kullback-Leibler case, we prefer therefore a matricial

iterative scheme. In view of (23), one can easily recover an

expression for the gradient of JΨ at Λ:

∇JΨ(Λ) = I −
∫

GΨG∗

(1 + G∗ΛG)2

and resort to a steepest descent-type algorithm. Simulations

were performed using the simple iteration with constant step

size α > 0

Λk+1 = Λk − α∇JΨ(Λk), Λ0 = 0. (24)

As observed in Remark 4.1, JΨ is strictly convex on

Range Γ. By Remark 4.3, the identity matrix, and conse-

quently ∇JΨ(Λ), belongs to Range Γ. Thus, if we start

the iteration in Range Γ, Λk evolves in Range Γ. Local

convergence of (24) can be established for a sufficiently

small step size. As is well known, convergence in this

method may be rather slow for bad conditioned problems. In

that case, more efficient methods such as the backtracking

line search descent described below (or a Newton-type

method) may be employed [13]. For the backtracking line

search descent, let t = 1, choose 0 < β < 1 and

0 < α < 1/2 and consider the following iteration:

• While JΨ(Λk−t∇JΨ(Λk))>JΨ(Λk)−αt||∇JΨ(Λk)||2
or Λk−t∇JΨ(Λk) does not belong to L, decrease t by

setting t← βt;
• set Λk+1 := Λk − t∇JΨ(Λk).

Since it is a descent algorithm, the iteration evolves in

the subset S ∩ Range Γ, where S = {Λ = Λ∗|JΨ(Λ) ≤
JΨ(Λ0)}, whenever Λ0 ∈ Range Γ. This algorithm is of

the type “steepest descent with backtracking line search”,

see e.g. [25, Chapter 9].

Simulation 1. Consider the following instance of Exam-

ple 1 (corresponding to a covariance extension problem):

A :=

[

0 1
0 0

]

, B =

[

0
1

]

.

and

Σ = I

Let Ψ(z) = Wψ(z)W ∗

ψ(z), where

Wψ(z) := K
z − 1/2

(

z2 + 5

100
z + 1/4

)

(z + 1/4)
.

Select K = 0.7747 so that
∫

Ψ = 1. We have iterated the

algorithm (24) with the stopping condition ‖M−Θ(M)‖ <
10−9. The algorithm converged to the matrix

Λ̂′ =

[

−0.0425 −0.3160
−0.3160 −0.0425

]

.

The optimal solution Φo(eiω) is depicted (bold line)

together with Ψ(eiω) (dashed line) in Figure 1. For the

purpose of comparison, the optimal Kullback-Leibler ap-

proximant ΦoKL of [1] is also depicted in Figure 1 (solid

line). In this case, the Hellinger approximant appears to be

considerably better at low frequencies than the Kullback-

Liebler approximant.

ï3.14 0 3.14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 1. Graphics of Ψ(eiω) (dashed line), Φo(eiω) (bold line), and
Φo

KL
(eiω) (solid line) as functions of ω.

Simulation 2. Consider the following instance of Ex-

ample 2 (corresponding to a Nevanlinna-Pick interpolation
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problem):

A :=





0 0 0
0 1/2 0
0 0 1/3



 , B =





1
1
1



 .

and

Σ =





1 1 1
1 4/3 6/5
1 6/5 9/8





After the renormalization described at the beginning of

Section 4 to transform Σ into the identity, we get

A′ =

[

−0.4378 −0.2433 −0.4370
−0.0592 0.8659 0.2793
0.6724 −0.3326 0.4052

]

, B′ =

[

0.7471
0.4106
0.5226

]

Let Ψ(z) = Wψ(z)W ∗

ψ(z), where

Wψ(z) := K[1− 1]

(

zI −
[

−0.9 0
0 0.8

])

−1 [

1
1

]

,

and K = 0.3813 so that
∫

Ψ = 1.

The algorithm converged to the matrix

Λ̂′ =





0.0650 0.1033 −0.0511
0.1033 0.1097 −0.0507
−0.0511 −0.0507 −0.2636





The optimal solution Φo(eiω) is depicted (bold line) to-

gether with Ψ(eiω) (dashed line) and the optimal con-

strained Kullback-Leibler approximation of Ψ (solid line)

in Figure 2.

!!"#$ % !"#$
%

&

$

'

(

#%

#&

#$

Fig. 2. Graphics of Ψ(eiω) (dashed line), Φo(eiω) (bold line), and
Φo

KL
(eiω) (solid line) as functions of ω.

Simulation 3. Consider now the same case as in the

Simulation 2 but with a different reference spectral density

Ψ. Namely, let Ψ(z) = Wψ(z)W ∗

ψ(z), where

Wψ(z) := [0 K]

(

zI −
[

5/100 1/4
−1 0

])

−1 [

1
0

]

.

Take K = 0.9675 to ensure
∫

Ψ = 1 (notice that W has

complex poles).

The algorithm converged to the matrix

Λ̂′ =





0.0151 −0.0114 0.0036
−0.0114 −0.0561 0.0105
0.0036 0.0105 0.0340





The optimal solution Φo(eiω) is depicted (bold line) to-

gether with Ψ(eiω) (dashed line) and the optimal con-

strained Kullback-Leibler approximation of Ψ (solid line)

in Figure 3.

!!"#$ % !"#$
%"$

%"&

%"'

#

#"(

#"$

#"&

#"'

Fig. 3. Graphics of Ψ(eiω) and Φo(eiω) (bold line) as functions of ω.

It will be interesting to compare the two approaches as

spectral estimation methods, in the sense of [9].
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